1
|
Reger De Moura C, Louveau B, Jouenne F, Vilquin P, Battistella M, Bellahsen-Harrar Y, Sadoux A, Menashi S, Dumaz N, Lebbé C, Mourah S. Inactivation of kindlin-3 increases human melanoma aggressiveness through the collagen-activated tyrosine kinase receptor DDR1. Oncogene 2024; 43:1620-1630. [PMID: 38570692 DOI: 10.1038/s41388-024-03014-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024]
Abstract
The role of the focal adhesion protein kindlin-3 as a tumor suppressor and its interaction mechanisms with extracellular matrix constitute a major field of investigation to better decipher tumor progression. Besides the well-described role of kindlin-3 in integrin activation, evidence regarding modulatory functions between melanoma cells and tumor microenvironment are lacking and data are needed to understand mechanisms driven by kindlin-3 inactivation. Here, we show that kindlin-3 inactivation through knockdown or somatic mutations increases BRAFV600mut melanoma cells oncogenic properties via collagen-related signaling by decreasing cell adhesion and enhancing proliferation and migration in vitro, and by promoting tumor growth in mice. Mechanistic analysis reveals that kindlin-3 interacts with the collagen-activated tyrosine kinase receptor DDR1 (Discoidin domain receptor 1) modulating its expression and its interaction with β1-integrin. Kindlin-3 knockdown or mutational inactivation disrupt DDR1/β1-integrin complex in vitro and in vivo and its loss improves the anti-proliferative effect of DDR1 inhibition. In agreement, kindlin-3 downregulation is associated with DDR1 over-expression in situ and linked to worse melanoma prognosis. Our study reveals a unique mechanism of action of kindlin-3 in the regulation of tumorigenesis mediated by the collagen-activated tyrosine kinase receptor DDR1 thus paving the way for innovative therapeutic targeting approaches in melanoma.
Collapse
Affiliation(s)
- Coralie Reger De Moura
- Department of Pharmacology and Tumor Genomics, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
- Université Paris Cité, INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010, Paris, France
| | - Baptiste Louveau
- Department of Pharmacology and Tumor Genomics, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
- Université Paris Cité, INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010, Paris, France
| | - Fanélie Jouenne
- Department of Pharmacology and Tumor Genomics, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
- Université Paris Cité, INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010, Paris, France
| | - Paul Vilquin
- Department of Pharmacology and Tumor Genomics, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Maxime Battistella
- Department of Pathology, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Yaelle Bellahsen-Harrar
- Department of Pathology, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Aurélie Sadoux
- Department of Pharmacology and Tumor Genomics, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Suzanne Menashi
- Department of Pharmacology and Tumor Genomics, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
- Université Paris Cité, INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010, Paris, France
| | - Nicolas Dumaz
- Université Paris Cité, INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010, Paris, France
| | - Céleste Lebbé
- Université Paris Cité, INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010, Paris, France
- Department of Dermatology and CIC, Hôpital Saint Louis, Cancer Institute, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France
| | - Samia Mourah
- Department of Pharmacology and Tumor Genomics, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, F-75010, Paris, France.
- Université Paris Cité, INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology & Immunotherapy (HIPI), F-75010, Paris, France.
| |
Collapse
|
2
|
King AD, Deirawan H, Klein PA, Dasgeb B, Dumur CI, Mehregan DR. Next-generation sequencing in dermatology. Front Med (Lausanne) 2023; 10:1218404. [PMID: 37841001 PMCID: PMC10570430 DOI: 10.3389/fmed.2023.1218404] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/04/2023] [Indexed: 10/17/2023] Open
Abstract
Over the past decade, Next-Generation Sequencing (NGS) has advanced our understanding, diagnosis, and management of several areas within dermatology. NGS has emerged as a powerful tool for diagnosing genetic diseases of the skin, improving upon traditional PCR-based techniques limited by significant genetic heterogeneity associated with these disorders. Epidermolysis bullosa and ichthyosis are two of the most extensively studied genetic diseases of the skin, with a well-characterized spectrum of genetic changes occurring in these conditions. NGS has also played a critical role in expanding the mutational landscape of cutaneous squamous cell carcinoma, enhancing our understanding of its molecular pathogenesis. Similarly, genetic testing has greatly benefited melanoma diagnosis and treatment, primarily due to the high prevalence of BRAF hot spot mutations and other well-characterized genetic alterations. Additionally, NGS provides a valuable tool for measuring tumor mutational burden, which can aid in management of melanoma. Lastly, NGS demonstrates promise in improving the sensitivity of diagnosing cutaneous T-cell lymphoma. This article provides a comprehensive summary of NGS applications in the diagnosis and management of genodermatoses, cutaneous squamous cell carcinoma, melanoma, and cutaneous T-cell lymphoma, highlighting the impact of NGS on the field of dermatology.
Collapse
Affiliation(s)
- Andrew D. King
- Department of Dermatology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Hany Deirawan
- Department of Dermatology, Wayne State University School of Medicine, Detroit, MI, United States
| | | | - Bahar Dasgeb
- Department of Surgical Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, United States
| | - Catherine I. Dumur
- Bernhardt Laboratories, Sonic Healthcare Anatomic Pathology Division, Jacksonville, FL, United States
| | - Darius R. Mehregan
- Department of Dermatology, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
3
|
Ott N, Faletti L, Heeg M, Andreani V, Grimbacher B. JAKs and STATs from a Clinical Perspective: Loss-of-Function Mutations, Gain-of-Function Mutations, and Their Multidimensional Consequences. J Clin Immunol 2023:10.1007/s10875-023-01483-x. [PMID: 37140667 DOI: 10.1007/s10875-023-01483-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/01/2023] [Indexed: 05/05/2023]
Abstract
The JAK/STAT signaling pathway plays a key role in cytokine signaling and is involved in development, immunity, and tumorigenesis for nearly any cell. At first glance, the JAK/STAT signaling pathway appears to be straightforward. However, on closer examination, the factors influencing the JAK/STAT signaling activity, such as cytokine diversity, receptor profile, overlapping JAK and STAT specificity among non-redundant functions of the JAK/STAT complexes, positive regulators (e.g., cooperating transcription factors), and negative regulators (e.g., SOCS, PIAS, PTP), demonstrate the complexity of the pathway's architecture, which can be quickly disturbed by mutations. The JAK/STAT signaling pathway has been, and still is, subject of basic research and offers an enormous potential for the development of new methods of personalized medicine and thus the translation of basic molecular research into clinical practice beyond the use of JAK inhibitors. Gain-of-function and loss-of-function mutations in the three immunologically particularly relevant signal transducers STAT1, STAT3, and STAT6 as well as JAK1 and JAK3 present themselves through individual phenotypic clinical pictures. The established, traditional paradigm of loss-of-function mutations leading to immunodeficiency and gain-of-function mutation leading to autoimmunity breaks down and a more differentiated picture of disease patterns evolve. This review is intended to provide an overview of these specific syndromes from a clinical perspective and to summarize current findings on pathomechanism, symptoms, immunological features, and therapeutic options of STAT1, STAT3, STAT6, JAK1, and JAK3 loss-of-function and gain-of-function diseases.
Collapse
Affiliation(s)
- Nils Ott
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Laura Faletti
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian Heeg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Division of Biological Sciences, Department of Molecular Biology, University of California, La Jolla, San Diego, CA, USA
| | - Virginia Andreani
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Clinic of Rheumatology and Clinical Immunology, Center for Chronic Immunodeficiency (CCI), Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Olbryt M. Potential Biomarkers of Skin Melanoma Resistance to Targeted Therapy—Present State and Perspectives. Cancers (Basel) 2022; 14:cancers14092315. [PMID: 35565444 PMCID: PMC9102921 DOI: 10.3390/cancers14092315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Around 5–10% of advanced melanoma patients progress early on anti-BRAF targeted therapy and 20–30% respond only with the stabilization of the disease. Presumably, these patients could benefit more from first-line immunotherapy. Resistance to BRAF/MEK inhibitors is generated by genetic and non-genetic factors inherent to a tumor or acquired during therapy. Some of them are well documented as a cause of treatment failure. They are potential predictive markers that could improve patients’ selection for both standard and also alternative therapy as some of them have therapeutic potential. Here, a summary of the most promising predictive and therapeutic targets is presented. This up-to-date knowledge may be useful for further study on implementing more accurate genetic/molecular tests in melanoma treatment. Abstract Melanoma is the most aggressive skin cancer, the number of which is increasing worldwide every year. It is completely curable in its early stage and fatal when spread to distant organs. In addition to new therapeutic strategies, biomarkers are an important element in the successful fight against this cancer. At present, biomarkers are mainly used in diagnostics. Some biological indicators also allow the estimation of the patient’s prognosis. Still, predictive markers are underrepresented in clinics. Currently, the only such indicator is the presence of the V600E mutation in the BRAF gene in cancer cells, which qualifies the patient for therapy with inhibitors of the MAPK pathway. The identification of response markers is particularly important given primary and acquired resistance to targeted therapies. Reliable predictive tests would enable the selection of patients who would have the best chance of benefiting from treatment. Here, up-to-date knowledge about the most promising genetic and non-genetic resistance-related factors is described. These are alterations in MAPK, PI3K/AKT, and RB signaling pathways, e.g., due to mutations in NRAS, RAC1, MAP2K1, MAP2K2, and NF1, but also other changes activating these pathways, such as the overexpression of HGF or EGFR. Most of them are also potential therapeutic targets and this issue is also addressed here.
Collapse
Affiliation(s)
- Magdalena Olbryt
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| |
Collapse
|
5
|
Rusu S, Verocq C, Trepant AL, Maris C, De Nève N, Blanchard O, Van Campenhout C, De Clercq S, Rorive S, Cotoi OS, Decaestecker C, Salmon I, D'Haene N. Immunohistochemistry as an accurate tool for the assessment of BRAF V600E and TP53 mutations in primary and metastatic melanoma. Mol Clin Oncol 2021; 15:270. [PMID: 34790354 PMCID: PMC8591695 DOI: 10.3892/mco.2021.2432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 07/15/2021] [Indexed: 11/24/2022] Open
Abstract
Metastatic melanoma is a fatal disease with poor prognosis. Ever since targeted therapy against oncogenic BRAF was approved, molecular profiling has become an integral part of the management of such patients. While molecular testing is not available in all pathology laboratories, immunohistochemistry (IHC) is a reliable screening option. The major objective of the present study was to evaluate whether IHC detection of BRAF and the tumor (suppressor) protein 53 gene (TP53) are reliable surrogates for mutation detection. Formalin-fixed paraffin-embedded samples of melanomas for which molecular data were previously obtained by targeted next-generation sequencing (NGS) between January 2014 and February 2019 were immunostained with BRAF V600E and p53 antibodies. A blinded evaluation of the IHC slides was performed by two pathologists in order to evaluate inter-observer concordance (discordant cases were reviewed by a third observer). The associations between the results of IHC and molecular profiling were evaluated. The study included a series of 37 cases of which 15 harbored a BRAF mutation and five a TP53 mutation. IHC had an overall diagnostic accuracy of 93.9% for BRAF V600E and 68.8% for TP53 compared to NGS. A statistically significant association between the two diagnostic methods was obtained for BRAF V600E (P=0.0004) but not for p53 (P=0.3098) IHC. The κ coefficient for IHC assessment of p53 was 0.55 and that for BRAF V600E was 0.72. In conclusion, the present results evidenced that IHC staining is a reliable surrogate for NGS in identifying the BRAF V600E mutation, which may become an efficient screening tool. Aberrant expression of p53 on IHC is at times associated with TP53 mutations but it was not possible to establish a direct link.
Collapse
Affiliation(s)
- Stefan Rusu
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, B-1070 Brussels, Belgium
| | - Camille Verocq
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, B-1070 Brussels, Belgium
| | - Anne Laure Trepant
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, B-1070 Brussels, Belgium.,Centre Universitaire Inter Regional d'Expertise en Anatomie Pathologique Hospitalière (CurePath), B-6040 Charleroi (Jumet), Belgium
| | - Calliope Maris
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, B-1070 Brussels, Belgium.,Centre Universitaire Inter Regional d'Expertise en Anatomie Pathologique Hospitalière (CurePath), B-6040 Charleroi (Jumet), Belgium
| | - Nancy De Nève
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, B-1070 Brussels, Belgium
| | - Oriane Blanchard
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, B-1070 Brussels, Belgium
| | - Claude Van Campenhout
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, B-1070 Brussels, Belgium
| | - Sarah De Clercq
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, B-1070 Brussels, Belgium
| | - Sandrine Rorive
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, B-1070 Brussels, Belgium.,Centre Universitaire Inter Regional d'Expertise en Anatomie Pathologique Hospitalière (CurePath), B-6040 Charleroi (Jumet), Belgium
| | - Ovidiu Simion Cotoi
- Department of Pathology, Clinical County Hospital of Targu Mures, University of Medicine, Pharmacy, Science and Technology 'George Emil Palade' of Targu Mures, Targu Mures, RO-540139 Mures County, Romania
| | - Christine Decaestecker
- DIAPath-Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles, B-6041 Gosselies, Belgium.,Laboratory of Image Synthesis and Analysis, Ecole Polytechnique de Bruxelles, Université Libre de Bruxelles, B-1050 Brussels, Belgium
| | - Isabelle Salmon
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, B-1070 Brussels, Belgium.,Centre Universitaire Inter Regional d'Expertise en Anatomie Pathologique Hospitalière (CurePath), B-6040 Charleroi (Jumet), Belgium.,DIAPath-Center for Microscopy and Molecular Imaging, Université Libre de Bruxelles, B-6041 Gosselies, Belgium
| | - Nicky D'Haene
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, B-1070 Brussels, Belgium.,Centre Universitaire Inter Regional d'Expertise en Anatomie Pathologique Hospitalière (CurePath), B-6040 Charleroi (Jumet), Belgium
| |
Collapse
|
6
|
Stockhammer P, Okumus Ö, Hegedus L, Rittler D, Ploenes T, Herold T, Kalbourtzis S, Bankfalvi A, Sucker A, Kimmig R, Aigner C, Hegedus B. HDAC Inhibition Induces Cell Cycle Arrest and Mesenchymal-Epithelial Transition in a Novel Pleural-Effusion Derived Uterine Carcinosarcoma Cell Line. Pathol Oncol Res 2021; 27:636088. [PMID: 34257602 PMCID: PMC8262245 DOI: 10.3389/pore.2021.636088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/01/2021] [Indexed: 12/11/2022]
Abstract
Objective: Uterine carcinosarcoma (UCS) is a rare but highly aggressive malignancy with biphasic growth pattern. This morphology can be attributed to epithelial-mesenchymal transition (EMT) that often associates with tumor invasion and metastasis. Accordingly, we analyzed a novel patient-derived preclinical model to explore whether EMT is a potential target in UCS. Methods: A novel UCS cell line (PF338) was established from the malignant pleural effusion of a 59-year-old patient at time of disease progression. Immunohistochemistry was performed in primary and metastatic tumor lesions. Oncogenic mutations were identified by next-generation sequencing. Viability assays and cell cycle analyses were used to test in vitro sensitivity to different standard and novel treatments. E-cadherin, β-catenin and pSMAD2 expressions were measured by immunoblot. Results: Whereas immunohistochemistry of the metastatic tumor showed a predominantly sarcomatous vimentin positive tumor that has lost E-cadherin expression, PF338 cells demonstrated biphasic growth and carried mutations in KRAS, PIK3CA, PTEN and ARID1A. PF338 tumor cells were resistant to MEK- and TGF-β signaling-inhibition but sensitive to PIK3CA- and PARP-inhibition and first-line chemotherapeutics. Strikingly, histone deacetylase (HDAC) inhibition markedly reduced cell viability by inducing a dose-dependent G0/1 arrest and led to mesenchymal-epithelial transition as evidenced by morphological change and increased E-cadherin and β-catenin expression. Conclusions: Our data suggest that HDAC inhibition is effective in a novel UCS cell line by interfering with both viability and differentiation. These findings emphasize the dynamic manner of EMT/MET and epigenetics and the importance of molecular profiling to pave the way for novel therapies in UCS.
Collapse
Affiliation(s)
- Paul Stockhammer
- Department of Thoracic Surgery, Ruhrlandklinik, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,Division of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Özlem Okumus
- Department of Thoracic Surgery, Ruhrlandklinik, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Luca Hegedus
- Department of Thoracic Surgery, Ruhrlandklinik, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Dominika Rittler
- 2nd Institute of Pathology, Semmelweis University, Budapest, Hungary
| | - Till Ploenes
- Department of Thoracic Surgery, Ruhrlandklinik, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Thomas Herold
- Institute of Pathology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Stavros Kalbourtzis
- Institute of Pathology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Agnes Bankfalvi
- Institute of Pathology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Antje Sucker
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Clemens Aigner
- Department of Thoracic Surgery, Ruhrlandklinik, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Balazs Hegedus
- Department of Thoracic Surgery, Ruhrlandklinik, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
7
|
Louveau B, Jouenne F, Têtu P, Sadoux A, Gruber A, Lopes E, Delyon J, Serror K, Marco O, Da Meda L, Ndiaye A, Lermine A, Dumaz N, Battistella M, Baroudjian B, Lebbe C, Mourah S. A Melanoma-Tailored Next-Generation Sequencing Panel Coupled with a Comprehensive Analysis to Improve Routine Melanoma Genotyping. Target Oncol 2020; 15:759-771. [PMID: 33151472 DOI: 10.1007/s11523-020-00764-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Tumor molecular deciphering is crucial in clinical management. Pan-cancer next-generation sequencing panels have moved towards exhaustive molecular characterization. However, because of treatment resistance and the growing emergence of pharmacological targets, tumor-specific customized panels are needed to guide therapeutic strategies. OBJECTIVE The objective of this study was to present such a customized next-generation sequencing panel in melanoma. METHODS Melanoma patients with somatic molecular profiling performed as part of routine care were included. High-throughput sequencing was performed with a melanoma tailored next-generation sequencing panel of 64 genes involved in molecular classification, prognosis, theranostic, and therapeutic resistance. Single nucleotide variants and copy number variations were screened, and a comprehensive molecular analysis identified clinically relevant alterations. RESULTS Four hundred and twenty-one melanoma cases were analyzed (before any treatment initiation for 94.8% of patients). After bioinformatic prioritization, we uncovered 561 single nucleotide variants, 164 copy number variations, and four splice-site mutations. At least one alteration was detected in 368 (87.4%) lesions, with BRAF, NRAS, CDKN2A, CCND1, and MET as the most frequently altered genes. Among patients with BRAFV600 mutated melanoma, 44.5% (77 of 173) harbored at least one concurrent alteration driving potential resistance to mitogen-activated protein kinase inhibitors. In patients with RAS hotspot mutated lesions and in patients with neither BRAFV600 nor RAS hotspot mutations, alterations constituting potential pharmacological targets were found in 56.9% (66 of 116) and 47.7% (63 of 132) of cases, respectively. CONCLUSIONS Our tailored next-generation sequencing assay coupled with a comprehensive analysis may improve therapeutic management in a significant number of patients with melanoma. Updating such a panel and implementing multi-omic approaches will further enhance patients' clinical management.
Collapse
Affiliation(s)
- Baptiste Louveau
- Department of Pharmacology and Solid Tumor Genomics, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, 1 Avenue Claude Vellefaux, 75475, Paris Cedex 10, France.,Université de Paris, Paris, France.,INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology and Immunotherapy (HIPI), Paris, France
| | - Fanélie Jouenne
- Department of Pharmacology and Solid Tumor Genomics, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, 1 Avenue Claude Vellefaux, 75475, Paris Cedex 10, France.,Université de Paris, Paris, France.,INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology and Immunotherapy (HIPI), Paris, France
| | - Pauline Têtu
- Department of Dermatology, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Aurélie Sadoux
- Department of Pharmacology and Solid Tumor Genomics, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, 1 Avenue Claude Vellefaux, 75475, Paris Cedex 10, France
| | - Aurélia Gruber
- Department of Pharmacology and Solid Tumor Genomics, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, 1 Avenue Claude Vellefaux, 75475, Paris Cedex 10, France
| | - Eddie Lopes
- Department of Pharmacology and Solid Tumor Genomics, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, 1 Avenue Claude Vellefaux, 75475, Paris Cedex 10, France
| | - Julie Delyon
- Université de Paris, Paris, France.,INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology and Immunotherapy (HIPI), Paris, France.,Department of Dermatology, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Kevin Serror
- Department of Plastic, Reconstructive and Esthetic Surgery, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Oren Marco
- Department of Plastic, Reconstructive and Esthetic Surgery, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Laetitia Da Meda
- Department of Dermatology, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Aminata Ndiaye
- MOABI-APHP Bioinformatics Platform-WIND-DSI, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alban Lermine
- MOABI-APHP Bioinformatics Platform-WIND-DSI, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Nicolas Dumaz
- INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology and Immunotherapy (HIPI), Paris, France
| | - Maxime Battistella
- Université de Paris, Paris, France.,INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology and Immunotherapy (HIPI), Paris, France.,Department of Pathology, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Barouyr Baroudjian
- Department of Dermatology, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Céleste Lebbe
- Université de Paris, Paris, France.,INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology and Immunotherapy (HIPI), Paris, France.,Department of Dermatology, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Samia Mourah
- Department of Pharmacology and Solid Tumor Genomics, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, 1 Avenue Claude Vellefaux, 75475, Paris Cedex 10, France. .,Université de Paris, Paris, France. .,INSERM UMR-S 976, Team 1, Human Immunology Pathophysiology and Immunotherapy (HIPI), Paris, France.
| |
Collapse
|
8
|
Seo H, Cho DH. Feature selection algorithm based on dual correlation filters for cancer-associated somatic variants. BMC Bioinformatics 2020; 21:486. [PMID: 33121438 PMCID: PMC7596964 DOI: 10.1186/s12859-020-03767-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 09/18/2020] [Indexed: 12/30/2022] Open
Abstract
Background Since the development of sequencing technology, an enormous amount of genetic information has been generated, and human cancer analysis using this information is drawing attention. As the effects of variants on human cancer become known, it is important to find cancer-associated variants among countless variants. Results We propose a new filter-based feature selection method applicable for extracting cancer-associated somatic variants considering correlations of data. Both variants associated with the activation and deactivation of cancer’s characteristics are analyzed using dual correlation filters. The multiobjective optimization is utilized to consider two types of variants simultaneously without redundancy. To overcome high computational complexity problem, we calculate the correlation-based weight to select significant variants instead of directly searching for the optimal subset of variants. The proposed algorithm is applied to the identification of melanoma metastasis or breast cancer stage, and the classification results of the proposed method are compared with those of conventional single correlation filter-based method. Conclusions We verified that the proposed dual correlation filter-based method can extract cancer-associated variants related to the characteristics of human cancer.
Collapse
Affiliation(s)
- Hyein Seo
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, 34141, Daejeon, Republic of Korea
| | - Dong-Ho Cho
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, 34141, Daejeon, Republic of Korea.
| |
Collapse
|
9
|
Blateau P, Coyaud E, Laurent E, Béganton B, Ducros V, Chauchard G, Vendrell JA, Solassol J. TERT Promoter Mutation as an Independent Prognostic Marker for Poor Prognosis MAPK Inhibitors-Treated Melanoma. Cancers (Basel) 2020; 12:E2224. [PMID: 32784823 PMCID: PMC7463448 DOI: 10.3390/cancers12082224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/23/2020] [Accepted: 08/03/2020] [Indexed: 01/09/2023] Open
Abstract
Although the development of mitogen-activated protein kinase (MAPK) inhibitors has greatly improved the prognosis of BRAFV600 cutaneous melanomas, the identification of molecular indicators for mutated patients at risk of early progression remains a major issue. Using an amplicon-based next-generation-sequencing (NGS) assay that targets cancer-related genes, we investigated co-occurring alterations in 89 melanoma samples. We analyzed both their association with clinicopathological variables and clinical significance in terms of progression-free survival (PFS) and overall survival (OS) according to BRAF genotyping. Among co-occurring mutations, TERT promoter was the most frequently mutated gene. Although no significant difference in PFS was observed in the presence or absence of co-occurring alterations to BRAFV600, there was a trend of longer PFS for patients harboring TERT c.-124C>T mutation. Of most interest, this mutation is an independent marker of good prognosis in subgroups of patients with poor prognosis (presence of brain metastasis and elevated level of lactate dehydrogenase, LDH). Moreover, combination of elevated LDH level, presence of brain metastasis, and TERT c.-124C>T mutation was identified as the best fit model for predicting clinical outcome. Our work revealed the potential interest of c.-124C>T status determination in order to refine the prognosis of BRAFV600 melanoma under mitogen-activated protein kinase (MAPK) inhibitors.
Collapse
Affiliation(s)
- Pauline Blateau
- Laboratoire de Biologie des Tumeurs Solides, Département de Pathologie et Oncobiologie, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France; (P.B.); (B.B.); (V.D.); (G.C.); (J.A.V.)
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut du Cancer de Montpellier, Université de Montpellier, 34000 Montpellier, France
| | - Etienne Coyaud
- Laboratoire Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), INSERM U1192, Université de Lille, Centre Hospitalier Universitaire Lille, F-59000 Lille, France; (E.C.); (E.L.)
| | - Estelle Laurent
- Laboratoire Protéomique Réponse Inflammatoire Spectrométrie de Masse (PRISM), INSERM U1192, Université de Lille, Centre Hospitalier Universitaire Lille, F-59000 Lille, France; (E.C.); (E.L.)
| | - Benoit Béganton
- Laboratoire de Biologie des Tumeurs Solides, Département de Pathologie et Oncobiologie, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France; (P.B.); (B.B.); (V.D.); (G.C.); (J.A.V.)
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut du Cancer de Montpellier, Université de Montpellier, 34000 Montpellier, France
| | - Vincent Ducros
- Laboratoire de Biologie des Tumeurs Solides, Département de Pathologie et Oncobiologie, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France; (P.B.); (B.B.); (V.D.); (G.C.); (J.A.V.)
| | - Géraldine Chauchard
- Laboratoire de Biologie des Tumeurs Solides, Département de Pathologie et Oncobiologie, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France; (P.B.); (B.B.); (V.D.); (G.C.); (J.A.V.)
| | - Julie A. Vendrell
- Laboratoire de Biologie des Tumeurs Solides, Département de Pathologie et Oncobiologie, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France; (P.B.); (B.B.); (V.D.); (G.C.); (J.A.V.)
| | - Jérôme Solassol
- Laboratoire de Biologie des Tumeurs Solides, Département de Pathologie et Oncobiologie, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France; (P.B.); (B.B.); (V.D.); (G.C.); (J.A.V.)
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut du Cancer de Montpellier, Université de Montpellier, 34000 Montpellier, France
| |
Collapse
|
10
|
Yokomichi H, Inozume T, Wada M, Asai J, Igaki H, Namikawa K, Hayashi A, Fukushima S, Fujimura T, Koga H, Nakamura Y, Mochizuki M, Yamagata Z. Concordance and Discordance Rates of V-Raf Murine Sarcoma Viral Oncogene Homolog B1 ( BRAF) V600E Status in Metastatic against Primary Lesion of Melanoma: A Meta-analysis. JMA J 2020; 3:274-279. [PMID: 33150263 PMCID: PMC7590371 DOI: 10.31662/jmaj.2020-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/01/2020] [Indexed: 12/01/2022] Open
Affiliation(s)
| | - Takashi Inozume
- Department of Dermatology, University of Yamanashi, Chuo, Japan
| | - Makoto Wada
- Department of Dermatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Jun Asai
- Department of Dermatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroshi Igaki
- Department of Radiation Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Kenjiro Namikawa
- Department of Dermatologic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Ayato Hayashi
- Department of Plastic and Reconstructive Surgery, Juntendo University Urayasu Hospital, Urayasu, Japan
| | - Satoshi Fukushima
- Department of Dermatology and Plastic Surgery, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Taku Fujimura
- Department of Dermatology, Tohoku University, Sendai, Japan
| | - Hiroshi Koga
- Department of Dermatology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yasuhiro Nakamura
- Department of Skin Oncology/Dermatology, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Mie Mochizuki
- Department of Pediatrics, University of Yamanashi, Chuo, Japan
| | - Zentaro Yamagata
- Department of Health Sciences, University of Yamanashi, Chuo, Japan
| |
Collapse
|
11
|
Olbryt M, Pigłowski W, Rajczykowski M, Pfeifer A, Student S, Fiszer-Kierzkowska A. Genetic Profiling of Advanced Melanoma: Candidate Mutations for Predicting Sensitivity and Resistance to Targeted Therapy. Target Oncol 2020; 15:101-113. [PMID: 31980996 PMCID: PMC7028806 DOI: 10.1007/s11523-020-00695-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Molecularly targeted therapy has revolutionized the treatment of advanced melanoma. However, despite its high efficiency, a majority of patients experience relapse within 1 year of treatment because of acquired resistance, and approximately 10-25% patients gain no benefit from these agents owing to intrinsic resistance. This is mainly caused by the genetic heterogeneity of melanoma cells. OBJECTIVE We aimed to validate the predictive significance of selected genes in advanced melanoma patients before treatment with BRAF/MEK inhibitors. PATIENTS AND METHODS Archival DNA derived from 37 formalin-fixed paraffin-embedded pre-treatment advanced melanoma samples of patients treated with targeted therapy was used for next-generation sequencing analysis using the Ion Torrent platform. The AmpliSeq Custom Panel comprised coding sequences or hot spots of 23 melanoma genes: ATM, BRAF, CDK4, CDKN2A, CTNNB1, EGFR, HOXD8, HRAS, IDH1, KIT, KRAS, MAP3K8, MAP2K1, MAP2K2, MITF, MYC, NF1, NRAS, PAX5, PIK3R1, PTEN, RAC1, and RB1. The sequences were evaluated for genomic alterations and further validated using Sanger sequencing. RESULTS Our analysis revealed non-BRAF genetic alterations in 28 out of 37 samples (75.7%). Genetic changes were identified in PTEN, CDK4, CDKN2A, CTNNB1, EGFR, HOXD8, HRAS, KIT, MAP2K1, MAP2K2, MITF, MYC, NF1, PAX5, RAC1, and RB1. Fifteen known pathogenic mutations (single nucleotide variants or indels) and 11 variants of unknown significance were detected. Statistical analysis revealed an association between the presence of pathogenic mutations and time to progression during treatment with combination therapy. CONCLUSIONS Pathogenic mutations identified by gene panel sequencing have potential predictive value for targeted therapy of melanoma and are worth further validation in a larger series of cases. The role of some known mutations (e.g. CDK4R24, PTEN c.801 + 1G > A, CTNNB1S45F) as well as variants of unknown significance identified in this study (e.g. MITFR316K, KITG498S) in the generation of resistance to BRAF/MEK inhibitors should be further investigated.
Collapse
Affiliation(s)
- Magdalena Olbryt
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie Institute, Oncology Center Gliwice Branch, Wybrzeze Armii Krajowej 15, Gliwice, Poland.
| | - Wojciech Pigłowski
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie Institute, Oncology Center Gliwice Branch, Wybrzeze Armii Krajowej 15, Gliwice, Poland
- Tumor Pathology Department, Maria Sklodowska-Curie Institute, Oncology Center Gliwice Branch, Gliwice, Poland
| | - Marcin Rajczykowski
- II Clinic of Radiotherapy and Chemotherapy, Maria Sklodowska-Curie Institute, Oncology Center Gliwice Branch, Gliwice, Poland
| | - Aleksandra Pfeifer
- Department of Nuclear Medicine and Endocrine Oncology, Maria Sklodowska-Curie Institute, Oncology Center Gliwice Branch, Gliwice, Poland
| | - Sebastian Student
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, Gliwice, Poland
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, Gliwice, Poland
| | - Anna Fiszer-Kierzkowska
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie Institute, Oncology Center Gliwice Branch, Wybrzeze Armii Krajowej 15, Gliwice, Poland
| |
Collapse
|
12
|
The miRNAs Role in Melanoma and in Its Resistance to Therapy. Int J Mol Sci 2020; 21:ijms21030878. [PMID: 32013263 PMCID: PMC7037367 DOI: 10.3390/ijms21030878] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/20/2020] [Accepted: 01/26/2020] [Indexed: 12/11/2022] Open
Abstract
Melanoma is the less common but the most malignant skin cancer. Since the survival rate of melanoma metastasis is about 10–15%, many different studies have been carried out in order to find a more effective treatment. Although the development of target-based therapies and immunotherapeutic strategies has improved chances for patient survival, melanoma treatment still remains a big challenge for oncologists. Here, we collect recent data about the emerging role of melanoma-associated microRNAs (miRNAs) currently available treatments, and their involvement in drug resistance. We also reviewed miRNAs as prognostic factors, because of their chemical stability and resistance to RNase activity, in melanoma progression. Moreover, despite miRNAs being considered small conserved regulators with the limitation of target specificity, we outline the dual role of melanoma-associated miRNAs, as oncogenic and/or tumor suppressive factors, compared to other tumors.
Collapse
|
13
|
Primary Cutaneous Adenomyoepithelioma Ex Spiradenoma With Malignant Histologic Features, Epithelial-Myoepithelial Carcinoma Type: A First Case Report With Molecular Studies. Int J Surg Pathol 2019; 28:427-435. [DOI: 10.1177/1066896919888579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Adenomyoepithelioma is an extremely rare primary cutaneous neoplasm. Although there is ample evidence on the existence of malignant adenomyoepithelioma in the breast, a malignant counterpart in the skin has not been documented. We report a primary cutaneous adenomyoepithelioma (pcAME) with malignant features arising from a spiradenoma in a 39-year-old female patient. The tumor was solid-cystic in appearance and entirely located in the subcutaneous tissue. Histologically, the tumor displayed foci of adenomatous changes and adenomyoepitheliomatous hyperplasia adjacent to a minute spiradenoma. Gradual increase of architectural complexity, cytologic atypia, mitotic activity, and infiltrative growth were observed in a significant portion of the neoplasm, indicative of transformation to adenomyoepithelioma and subsequently low- to high-grade salivary-type epithelial-myoepithelial carcinoma (EMCA). The intimate dual populations of ductal and myoepithelial cells were highlighted by a panel of immunohistochemical stains in all different components of the tumor. Molecular studies revealed a PIKCA3 mutation, a genetic aberration that has been documented in EMCA, particularly of breast origin. The current case documents for the first time a pcAME with malignant features arising from a spiradenoma and suggests adenomyoepithelioma ex spiradenoma as a possible tumorigenesis pathway of this rare cutaneous tumor.
Collapse
|
14
|
Analytical Evaluation of an NGS Testing Method for Routine Molecular Diagnostics on Melanoma Formalin-Fixed, Paraffin-Embedded Tumor-Derived DNA. Diagnostics (Basel) 2019; 9:diagnostics9030117. [PMID: 31547467 PMCID: PMC6787639 DOI: 10.3390/diagnostics9030117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022] Open
Abstract
Next Generation Sequencing (NGS) is a promising tool for the improvement of tumor molecular profiling in view of the identification of a personalized treatment in oncologic patients. To verify the potentiality of a targeted NGS (Ion AmpliSeq™ Cancer Hotspot Panel v2), selected melanoma samples (n = 21) were retrospectively analyzed on S5 platform in order to compare NGS performance with the conventional techniques adopted in our routine clinical setting (Sequenom MassARRAY system, Sanger sequencing, allele-specific real-time PCR). The capability in the identification of rare and low-frequency mutations in the main genes involved in melanoma (BRAF and NRAS genes) was verified and integrated with the results deriving from other oncogenes and tumor suppressor genes. The analytical evaluation was carried out by the analysis of DNA derived from control cell lines and FFPE (Formalin-Fixed, Paraffin-Embedded) samples to verify that the achieved resolution of uncommon mutations and low-frequency variants was suitable to meet the technical and clinical requests. Our results demonstrate that the amplicon-based NGS approach can reach the sensitivity proper of the allele-specific assays together with the high specificity of a sequencing method. An overall concordance among the tested methods was observed in the identification of classical and uncommon mutations. The assessment of the quality parameters and the comparison with the orthogonal methods suggest that the NGS method could be implemented in the clinical setting for melanoma molecular characterization.
Collapse
|
15
|
Manca A, Paliogiannis P, Colombino M, Casula M, Lissia A, Botti G, Caracò C, Ascierto PA, Sini MC, Palomba G, Pisano M, Doneddu V, Cossu A, Palmieri G. Mutational concordance between primary and metastatic melanoma: a next-generation sequencing approach. J Transl Med 2019; 17:289. [PMID: 31455347 PMCID: PMC6712827 DOI: 10.1186/s12967-019-2039-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 08/18/2019] [Indexed: 12/21/2022] Open
Abstract
Background Cutaneous malignant melanoma (CMM) is one of the most common skin cancers worldwide. Limited information is available in the current scientific literature on the concordance of genetic alterations between primary and metastatic CMM. In the present study, we performed next-generation sequencing (NGS) analysis of the main genes participating in melanoma pathogenesis and progression, among paired primary and metastatic lesions of CMM patients, with the aim to evaluate levels of discrepancies in mutational patterns. Methods Paraffin-embedded tumor tissues of the paired lesions were retrieved from the archives of the institutions participating in the study. NGS was performed using a specific multiple-gene panel constructed by the Italian Melanoma Intergroup (IMI) to explore the mutational status of selected regions (343 amplicons; amplicon range: 125–175 bp; coverage 100%) within the main 25 genes involved in CMM pathogenesis; sequencing was performed with the Ion Torrent PGM System. Results A discovery cohort encompassing 30 cases, and a validation cohort including eleven Sardinian patients with tissue availability from both the primary and metachronous metastatic lesions were identified; the global number of analyzed tissue specimens was 90. A total of 829 genetic non-synonymous variants were detected: 101 (12.2%) were pathogenic/likely pathogenic, 131 (15.8%) were benign/likely benign, and the remaining 597 (72%) were uncertain/unknown significance variants. Considering the global cohort, the consistency in pathogenic/pathogenic like mutations was 76%. Consistency for BRAF and NRAS mutations was 95.2% and 85.7% respectively, without statistically significant differences between the discovery and validation cohort. Conclusions Our study showed a high level of concordance in mutational patterns between primary and metastatic CMM, especially when pathogenic mutations in driver genes were considered.
Collapse
Affiliation(s)
- Antonella Manca
- Unit of Cancer Genetics, Institute of Biomolecular Chemistry, National Research Council, Traversa La Crucca 3, 07100, Sassari, Italy
| | - Panagiotis Paliogiannis
- Department of Medical, Surgical, and Experimental Sciences, University of Sassari, Viale San Pietro 43, 07100, Sassari, Italy
| | - Maria Colombino
- Unit of Cancer Genetics, Institute of Biomolecular Chemistry, National Research Council, Traversa La Crucca 3, 07100, Sassari, Italy
| | - Milena Casula
- Unit of Cancer Genetics, Institute of Biomolecular Chemistry, National Research Council, Traversa La Crucca 3, 07100, Sassari, Italy
| | - Amelia Lissia
- Department of Medical, Surgical, and Experimental Sciences, University of Sassari, Viale San Pietro 43, 07100, Sassari, Italy
| | - Gerardo Botti
- Istituto Nazionale Tumori "Fondazione Pascale", Via Mariano Semmola, 53, 80131, Naples, Italy
| | - Corrado Caracò
- Istituto Nazionale Tumori "Fondazione Pascale", Via Mariano Semmola, 53, 80131, Naples, Italy
| | - Paolo A Ascierto
- Istituto Nazionale Tumori "Fondazione Pascale", Via Mariano Semmola, 53, 80131, Naples, Italy
| | - Maria Cristina Sini
- Unit of Cancer Genetics, Institute of Biomolecular Chemistry, National Research Council, Traversa La Crucca 3, 07100, Sassari, Italy
| | - Grazia Palomba
- Unit of Cancer Genetics, Institute of Biomolecular Chemistry, National Research Council, Traversa La Crucca 3, 07100, Sassari, Italy
| | - Marina Pisano
- Unit of Cancer Genetics, Institute of Biomolecular Chemistry, National Research Council, Traversa La Crucca 3, 07100, Sassari, Italy
| | | | | | - Valentina Doneddu
- Department of Medical, Surgical, and Experimental Sciences, University of Sassari, Viale San Pietro 43, 07100, Sassari, Italy
| | - Antonio Cossu
- Department of Medical, Surgical, and Experimental Sciences, University of Sassari, Viale San Pietro 43, 07100, Sassari, Italy
| | - Giuseppe Palmieri
- Unit of Cancer Genetics, Institute of Biomolecular Chemistry, National Research Council, Traversa La Crucca 3, 07100, Sassari, Italy.
| | | |
Collapse
|
16
|
Quattrini L, Coviello V, Sartini S, Di Desidero T, Orlandi P, Ke YY, Liu KL, Hsieh HP, Bocci G, La Motta C. Dual Kit/Aur Inhibitors as Chemosensitizing Agents for the Treatment of Melanoma: Design, Synthesis, Docking Studies and Functional Investigation. Sci Rep 2019; 9:9943. [PMID: 31289333 PMCID: PMC6617451 DOI: 10.1038/s41598-019-46287-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/19/2019] [Indexed: 12/30/2022] Open
Abstract
Melanoma is the most serious form of skin cancer but its medication is still far from being safe and thoroughly effective. The search of novel therapeutic approaches represents therefore a health emergency to push through eagerly. In this study, we describe a novel class of dual c-Kit/Aur inhibitors, characterized by a 1,2,4-triazole core and developed by a structure-based optimization of a previously developed hit, and report the evidence of their significance as drug candidates for the treatment of melanoma. Compound 6a, merging the best inhibitory profile against the target kinases, showed anti-proliferative efficacy against the human melanoma cell lines A2058, expressing the BRAF V600D mutation, and WM266-4, expressing BRAF V600E. Significantly, it displayed also a highly synergistic profile when tested in combination with vemurafenib, thus proving its efficacy not only per se but even in a combination therapy, which is nowadays acknowledged as the cornerstone approach of the forthcoming tumour management.
Collapse
Affiliation(s)
- Luca Quattrini
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Vito Coviello
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Stefania Sartini
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Teresa Di Desidero
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Paola Orlandi
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Yi-Yu Ke
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County, 350, Taiwan
| | - Kai-Lun Liu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County, 350, Taiwan
| | - Hsing-Pang Hsieh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35, Keyan Road, Zhunan Town, Miaoli County, 350, Taiwan
| | - Guido Bocci
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Via Roma 55, 56126, Pisa, Italy
| | - Concettina La Motta
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126, Pisa, Italy.
| |
Collapse
|
17
|
Undifferentiated Sarcoma as Intermediate Step in the Progression of Malignant Melanoma to Rhabdomyosarcoma: Histologic, Immunohistochemical, and Molecular Studies of a New Case of Malignant Melanoma With Rhabdomyosarcomatous Differentiation. Am J Dermatopathol 2019; 41:221-229. [DOI: 10.1097/dad.0000000000001236] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
18
|
Abstract
Genetic material derived from tumours is constantly shed into the circulation of cancer patients both in the form of circulating free nucleic acids and within circulating cells or extracellular vesicles. Monitoring cancer-specific genomic alterations, particularly mutant allele frequencies, in circulating nucleic acids allows for a non-invasive liquid biopsy for detecting residual disease and response to therapy. The advent of molecular targeted treatments and immunotherapies with increasing effectiveness requires corresponding effective molecular biology methods for the detection of biomarkers such as circulating nucleic acid to monitor and ultimately personalise therapy. The use of polymerase chain reaction (PCR)-based methods, such as droplet digital PCR, allows for a very sensitive analysis of circulating tumour DNA, but typically only a limited number of gene mutations can be detected in parallel. In contrast, next-generation sequencing allows for parallel analysis of multiple mutations in many genes. The development of targeted next-generation sequencing cancer gene panels optimised for the detection of circulating free DNA now provides both the flexibility of multiple mutation analysis coupled with a sensitivity that approaches or even matches droplet digital PCR. In this review, we discuss the advantages and disadvantages of these current molecular technologies in conjunction with how this field is evolving in the context of melanoma diagnosis, prognosis, and monitoring of response to therapy.
Collapse
|
19
|
Linos K, Tafe LJ. Isocitrate dehydrogenase 1 mutations in melanoma frequently co-occur with NRAS mutations. Histopathology 2018; 73:963-968. [PMID: 30003571 DOI: 10.1111/his.13707] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 07/11/2018] [Indexed: 01/19/2023]
Abstract
AIMS Isocitrate dehydrogenase 1 (IDH1) is a metabolic enzyme that converts isocitrate to α-ketoglutarate. IDH1 mutations are associated with the accumulation of the oncometabolite D-2-hydroxyglutarate, which acts as an epigenetic modifier, and the development of multiple malignancies. METHODS AND RESULTS From May 2013 to June 2017, 252 melanoma samples from 214 patients with advanced or distant metastatic disease were tested for somatic mutations with the 50-gene AmpliSeq version 2 Cancer Hotspot Panel. Two hundred and twenty-six samples were sequenced successfully from 206 patients with 26 samples being characterised as quantity not sufficient. Melanomas from 10 separate patients (4.9%) were positive for IDH1 R132C (nine) or R132S (one). In six cases, the tumours also had a co-existing NRAS mutation (p.Q61R, Q61L and Q61K in two patients each) (P = 0.0044), whereas three patients had BRAF non-V600E mutations (V600K, V600G and V600R). Two cases had a TP53 variant, two cases an ATM variant, one a CDKN2A variant and one had an APC variant. The patients' ages ranged from 45 to 82 years (mean = 65.3, median = 65 years) and three of 10 patients were female (M:F ratio = 2:3). Three patients were stage 3 and seven were stage 4. Two are deceased, five are alive with stable disease (four on pembrolizumab) and three have no evidence of disease. CONCLUSION IDH mutations may define a unique subset of melanoma patients who are eligible for IDH1 targeted therapies or combined therapies, such as MEK inhibitors when there is co-existing NRAS mutations, or immunotherapy.
Collapse
Affiliation(s)
- Konstantinos Linos
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center and Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Laura J Tafe
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center and Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
20
|
Zhu ML, Zhou L, Sadri N. Comparison of targeted next generation sequencing (NGS) versus isolated BRAF V600E analysis in patients with metastatic melanoma. Virchows Arch 2018; 473:371-377. [PMID: 29926184 DOI: 10.1007/s00428-018-2393-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/05/2018] [Accepted: 06/12/2018] [Indexed: 12/22/2022]
Abstract
Molecular testing on advanced metastatic melanoma is critical for guiding targeted therapy. Traditionally, this analysis has relied on isolated BRAF V600E analysis; however, more recently targeted next generation sequencing (NGS) is being utilized. The clinical utility of BRAF V600E allele-specific PCR and targeted NGS were compared for metastatic melanoma samples sent to UHCMC pathology during a two and half year span. In two thirds of cases, negative for BRAF V600E, additional mutations were detected that may stratify patients for potential or approved targeted therapies. Targeted-NGS testing is feasible and cost-affordable and provides additional potentially actionable information for patients with BRAF V600E/K negative metastatic melanoma. Based on this analysis, we have adopted to screen patients with advanced melanoma with allele-specific V600E/K PCR and reflex negative cases for targeted NGS to maximize patient benefit.
Collapse
Affiliation(s)
- Meng-Lei Zhu
- Department of Pathology and Laboratory Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Pathology, University Hospitals Cleveland Medical Center, 7100 Euclid Avenue, Cleveland, OH, 44103, USA
| | - Lan Zhou
- Department of Pathology and Laboratory Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Pathology, University Hospitals Cleveland Medical Center, 7100 Euclid Avenue, Cleveland, OH, 44103, USA
| | - Navid Sadri
- Department of Pathology and Laboratory Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
- Department of Pathology, University Hospitals Cleveland Medical Center, 7100 Euclid Avenue, Cleveland, OH, 44103, USA.
| |
Collapse
|