1
|
Philip AB, Brohan J, Goudra B. The Role of GABA Receptors in Anesthesia and Sedation: An Updated Review. CNS Drugs 2025; 39:39-54. [PMID: 39465449 PMCID: PMC11695389 DOI: 10.1007/s40263-024-01128-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2024] [Indexed: 10/29/2024]
Abstract
GABA (γ-aminobutyric acid) receptors are constituents of many inhibitory synapses within the central nervous system. They are formed by 5 subunits out of 19 various subunits: α1-6, β1-3, γ1-3, δ, ε, θ, π, and ρ1-3. Two main subtypes of GABA receptors have been identified, namely GABAA and GABAB. The GABAA receptor (GABAAR) is formed by a variety of combinations of five subunits, although both α and β subunits must be included to produce a GABA-gated ion channel. Other subunits are γ, δ, ε, π, and ϴ. GABAAR has many isoforms, that dictate, among other properties, their differing affinities and conductance. Drugs acting on GABAAR form the cornerstone of anesthesia and sedation practice. Some such GABAAR agonists used in anesthesia practice are propofol, etomidate, methohexital, thiopental, isoflurane, sevoflurane, and desflurane. Ketamine, nitrous oxide, and xenon are not GABAR agonists and instead inhibit glutamate receptors-mainly NMDA receptors. Inspite of its many drawbacks such as pain in injection, quick and uncontrolled conversion from sedation to general anesthesia and dose-related cardiovascular depression, propofol remains the most popular GABAR agonist employed by anesthesia providers. In addition, being formulated in a lipid emulsion, contamination and bacterial growth is possible. Literature is rife with newer propofol formulations, aiming to address many of these drawbacks, and with some degree of success. A nonemulsion propofol formulation has been developed with cyclodextrins, which form inclusion complexes with drugs having lipophilic properties while maintaining aqueous solubility. Inhalational anesthetics are also GABA agonists. The binding sites are primarily located within α+/β- and β+/α- subunit interfaces, with residues in the α+/γ- interface. Isoflurane and sevoflurane might have slightly different binding sites providing unexpected degree of selectivity. Methoxyflurane has made a comeback in Europe for rapid provision of analgesia in the emergency departments. Penthrox (Galen, UK) is the special device designed for its administration. With better understanding of pharmacology of GABAAR agonists, newer sedative agents have been developed, which utilize "soft pharmacology," a term pertaining to agents that are rapidly metabolized into inactive metabolites after producing desired therapeutic effect(s). These newer "soft" GABAAR agonists have many properties of ideal sedative agents, as they can offer well-controlled, titratable activity and ultrashort action. Remimazolam, a modified midazolam and methoxycarbonyl-etomidate (MOC-etomidate), an ultrashort-acting etomidate analog are two such examples. Cyclopropyl methoxycarbonyl metomidate is another second-generation soft etomidate analog that has a greater potency and longer half-life than MOC-etomidate. Additionally, it might not cause adrenal axis suppression. Carboetomidate is another soft analog of etomidate with low affinity for 11β-hydroxylase and is, therefore, unlikely to have clinically significant adrenocortical suppressant effects. Alphaxalone, a GABAAR agonist, is recently formulated in combination with 7-sulfobutylether-β-cyclodextrin (SBECD), which has a low hypersensitivity profile.
Collapse
Affiliation(s)
| | | | - Basavana Goudra
- Department of Anesthesiology, Jefferson Surgical Center Endoscopy, Sidney Kimmel Medical College, Jefferson Health, 111 S 11th Street, #7132, Philadelphia, PA, 19107, USA.
| |
Collapse
|
2
|
Dong H, Zhou W, Han L, Zhao Q. Propofol inhibits the proliferation, invasion, migration, and angiogenesis of oral squamous cell carcinoma through circ_0008898-mediated pathway. Chem Biol Drug Des 2024; 103:e14393. [PMID: 37955304 DOI: 10.1111/cbdd.14393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/26/2023] [Accepted: 10/23/2023] [Indexed: 11/14/2023]
Abstract
Propofol has been shown to inhibit oral squamous cell carcinoma (OSCC) progression. However, it is not clear whether propofol mediates OSCC progression through regulating circular RNA (circRNA) network. Quantitative real-time PCR was used to detect circ_0008898, miR-545-3p, and CT10 regulator of kinase-like protein (CRKL) expression. Cell functions were determined using CCK8 assay, Edu staining, MTT assay, transwell assay, wound healing assay, tube formation assay, and flow cytometry. Protein levels were examined by western blot analysis. RNA interaction was confirmed by dual-luciferase reporter assay and RIP assay. Our data showed that propofol repressed OSCC cell proliferation, invasion, migration, angiogenesis, and promoted apoptosis. circ_0008898 was highly expressed in OSCC, and its expression could be decreased by propofol. circ_0008898 silencing aggravated the suppressive effect of propofol on OSCC progression. In the mechanism, circ_0008898 could target miR-545-3p to positively regulate CRKL. MiR-545-3p inhibitor abolished the regulation of circ_0008898 silencing on propofol-mediated OSCC cell progression. MiR-545-3p inhibited the progression of propofol-treated OSCC cells, and this effect was reversed by CRKL overexpression. Also, circ_0008898 knockdown reduced OSCC tumor growth by regulating miR-545-3p/CRKL. In conclusion, propofol suppressed OSCC progression, which was achieved through regulating the circ_0008898/miR-545-3p/CRKL axis.
Collapse
Affiliation(s)
- Hui Dong
- Department of Stomatology, The Third Hospital Affiliated to Qiqihar Medical College, Qiqihar City, China
| | - Weifu Zhou
- Department of Anesthesiology, People's Hospital of Zhangqiu District, Jinan City, China
| | - Long Han
- Department of Stomatology, The Third Hospital Affiliated to Qiqihar Medical College, Qiqihar City, China
| | - Qingjun Zhao
- Department of Anesthesiology, People's Hospital of Zhangqiu District, Jinan City, China
| |
Collapse
|
3
|
Liu X, Wei W, Wu YZ, Wang Y, Zhang WW, Wang YP, Dong XP, Shi Q. Emodin treatment of papillary thyroid cancer cell lines in vitro inhibits proliferation and enhances apoptosis via downregulation of NF‑κB and its upstream TLR4 signaling. Oncol Lett 2023; 26:514. [PMID: 37927413 PMCID: PMC10623093 DOI: 10.3892/ol.2023.14101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/15/2023] [Indexed: 11/07/2023] Open
Abstract
Thyroid cancer is one of the most common types of endocrine malignancy. In addition to surgical treatment, it is very important to find new treatment methods. The aim of the present study was to evaluate the effect of 1,3,8-trihydroxy-6-methylanthraquinone (emodin) on cellular NF-κB components and the upstream regulatory pathway of toll-like receptor 4 (TLR4) signaling, as well as the invasion and migration of papillary thyroid carcinoma (PTC) cells. The protein expression of NF-κB components p65 and p50 and their phosphorylated (p-) forms in the sections of PTC tissues was measured by individual immunohistochemical assays. PTC cell lines TPC-1 and IHH4 were exposed to 20 and 40 µM emodin for 24 h. The levels of the NF-κB components p65, p50, c-Rel, p-p65 and p-p50, elements in TLR4 signaling, including TLR4, MYD88 innate immune signal transduction adaptor (MyD88), interferon regulatory factor 3, AKT and MEK, and proliferative and apoptotic biomarkers, including c-Myc, cyclin D1, proliferating cell nuclear antigen, Bcl-2 and Bax, were evaluated by western blotting and immunofluorescent assays. The invasion and migration of PTC cell lines exposed to emodin were tested by plate colony and wound healing assay. Compared with hyperplasia tissue, the expression levels of NF-κB components p65 and p50, and p-p65 and p-p50 in PTC tissue were significantly increased. Treatment of PTC cell lines with emodin lead to significantly reduced levels of the aforementioned NF-κB components, accompanied by markedly downregulated TLR4 signaling. MYD 88-dependent and -independent pathways, are also significantly down-regulated. Downregulation of proliferative factors and activation of apoptotic factors were observed in the cell lines following treatment with emodin. Consequently, inhibition of the invasion and migration activities were observed in the emodin-treated PTC cells. Emodin could inhibit proliferation and promote apoptosis of PTC cells, which is dependent on the downregulation of cellular NF-κB and the TLR4 signaling pathway.
Collapse
Affiliation(s)
- Xin Liu
- Basic Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, P.R. China
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Wei Wei
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Head and Neck Surgery, Peking University Cancer Hospital and Institute, Beijing 100142, P.R. China
| | - Yue-Zhang Wu
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Yuan Wang
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
- Basic Medical College, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Wei-Wei Zhang
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
- Basic Medical College, North China University of Science and Technology, Tangshan, Hebei 063210, P.R. China
| | - Yong-Ping Wang
- Basic Medical College, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, P.R. China
| | - Xiao-Ping Dong
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| | - Qi Shi
- National Key-Laboratory of Intelligent Tracing and Forecasting for Infectious Disease, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, P.R. China
| |
Collapse
|
4
|
Gu L, Pan X, Wang C, Wang L. The benefits of propofol on cancer treatment: Decipher its modulation code to immunocytes. Front Pharmacol 2022; 13:919636. [PMID: 36408275 PMCID: PMC9672338 DOI: 10.3389/fphar.2022.919636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2023] Open
Abstract
Anesthetics are essential for cancer surgery, but accumulated research have proven that some anesthetics promote the occurrence of certain cancers, leading to adverse effects in the lives of patients. Although anesthetic technology is mature, there is no golden drug selection standard for surgical cancer treatment. To afford the responsibility of human health, a more specific regimen for cancer resection is indeed necessary. Immunosuppression in oncologic surgery has an adverse influence on the outcomes of patients. The choice of anesthetic strategies influences perioperative immunity. Among anesthetics, propofol has shown positive effects on immunity. Apart from that, propofol's anticancer effect has been generally reported, which makes it more significant in oncologic surgery. However, the immunoregulative function of propofol is not reorganized well. Herein, we have summarized the impact of propofol on different immunocytes, proposed its potential mechanism for the positive effect on cancer immunity, and offered a conceivable hypothesis on its regulation to postoperative inflammation. We conclude that the priority of propofol is high in oncologic surgery and propofol may be a promising immunomodulatory drug for tumor therapy.
Collapse
Affiliation(s)
- Long Gu
- First Operating Room, First Hospital of Jilin University, Changchun, China
| | - Xueqi Pan
- Intensive Care Unit, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, China
| | - Chongcheng Wang
- Trauma Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lei Wang
- Department of Pediatric Neurology, First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
5
|
Xie W, Chu M, Song G, Zuo Z, Han Z, Chen C, Li Y, Wang ZW. Emerging roles of long noncoding RNAs in chemoresistance of pancreatic cancer. Semin Cancer Biol 2022; 83:303-318. [PMID: 33207266 DOI: 10.1016/j.semcancer.2020.11.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/08/2023]
Abstract
Pancreatic cancer is one of the most common causes of cancer death in the world due to the lack of early symptoms, metastasis occurrence and chemoresistance. Therefore, early diagnosis by detection of biomarkers, blockade of metastasis, and overcoming chemoresistance are the effective strategies to improve the survival of pancreatic cancer patients. Accumulating evidence has revealed that long noncoding RNA (lncRNA) and circular RNAs (circRNAs) play essential roles in modulating chemosensitivity in pancreatic cancer. In this review article, we will summarize the role of lncRNAs in drug resistance of pancreatic cancer cells, including HOTTIP, HOTAIR, PVT1, linc-ROR, GAS5, UCA1, DYNC2H1-4, MEG3, TUG1, HOST2, HCP5, SLC7A11-AS1 and CASC2. We also highlight the function of circRNAs, such as circHIPK3 and circ_0000284, in regulation of drug sensitivity of pancreatic cancer cells. Moreover, we describe a number of compounds, including curcumin, genistein, resveratrol, quercetin, and salinomycin, which may modulate the expression of lncRNAs and enhance chemosensitivity in pancreatic cancers. Therefore, targeting specific lncRNAs and cicrRNAs could contribute to reverse chemoresistance of pancreatic cancer cells. We hope this review might stimulate the studies of lncRNAs and cicrRNAs, and develop the new therapeutic strategy via modulating these noncoding RNAs to promote chemosensitivity of pancreatic cancer cells.
Collapse
Affiliation(s)
- Wangkai Xie
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Man Chu
- Center of Scientific Research, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Gendi Song
- Center of Scientific Research, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Ziyi Zuo
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Zheng Han
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Chenbin Chen
- Department of Gastrointestinal Surgery, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yuyun Li
- Bengbu Medical College Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, School of Laboratory Medicine, Bengbu Medical College, Anhui, 233030, China.
| | - Zhi-Wei Wang
- Center of Scientific Research, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
6
|
Saha P, Das A, Chatterjee N, Chakrabarti D, Sinha D. Impact of anesthetics on oncogenic signaling network: a review on propofol and isoflurane. Fundam Clin Pharmacol 2021; 36:49-71. [PMID: 34655261 DOI: 10.1111/fcp.12732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/05/2021] [Accepted: 10/14/2021] [Indexed: 12/26/2022]
Abstract
Propofol as an intravenous anesthetic and isoflurane as an inhalational/volatile anesthetic continue to be an important part of surgical anesthetic interventions worldwide. The impact of these anesthetics on tumor progression, immune modulation, and survival rates of cancer patients has been widely investigated. Although most of the preclinical studies have provided a beneficial effect of propofol over isoflurane or other volatile anesthetics, several investigations have shown contradictory results, which warrant more preclinical and clinical studies. Propofol mostly exhibits antitumor properties, whereas isoflurane being a cost-effective anesthetic is frequently used. However, isoflurane has been also reported with protumorigenic activity. This review provides an overall perspective on the network of signaling pathways that may modulate several steps of tumor progression from inflammation, immunomodulation, epithelial-mesenchymal transition (EMT) to invasion, metastasis, angiogenesis, and cancer stemness and extracellular vesicles along with chemotherapeutic applications and clinical status of these anesthetics. A clear understanding of the mechanistic viewpoints of these anesthetics may pave the way for more prospective clinical trials with the ultimate goal of obtaining a safe and optimal anesthetic intervention that would prevent cancer recurrence and may influence better postoperative survival.
Collapse
Affiliation(s)
- Priyanka Saha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| | - Ananya Das
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| | - Nabanita Chatterjee
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| | - Deepa Chakrabarti
- Department of Anesthesiology, Chittaranjan National Cancer Institute, Kolkata, India
| | - Dona Sinha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata, India
| |
Collapse
|
7
|
Regulation of Nuclear Factor-KappaB (NF-κB) signaling pathway by non-coding RNAs in cancer: Inhibiting or promoting carcinogenesis? Cancer Lett 2021; 509:63-80. [PMID: 33838282 DOI: 10.1016/j.canlet.2021.03.025] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/18/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
The nuclear factor-kappaB (NF-κB) signaling pathway is considered as a potential therapeutic target in cancer therapy. It has been well established that transcription factor NF-κB is involved in regulating physiological and pathological events including inflammation, immune response and differentiation. Increasing evidences suggest that deregulated NF-κB signaling can enhance cancer cell proliferation, metastasis and also mediate radio-as well as chemo-resistance. On the contrary, non-coding RNAs (ncRNAs) have been found to modulate NF-κB signaling pathway under different settings. MicroRNAs (miRNAs) can dually inhibit/induce NF-κB signaling thereby affecting the growth and migration of cancer cells. Furthermore, the response of cancer cells to radiotherapy and chemotherapy may also be regulated by miRNAs. Regulation of NF-κB by miRNAs may be mediated via binding to 3/-UTR region. Interestingly, anti-tumor compounds can increase the expression of tumor-suppressor miRNAs in inhibiting NF-κB activation and the progression of cancers. Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) can also effectively modulate NF-κB signaling thus affecting tumorigenesis. It is noteworthy that several studies have demonstrated that lncRNAs and circRNAs can affect miRNAs in targeting NF-κB activation. They can act as competing endogenous RNA (ceRNA) thereby reducing miRNA expression to induce NF-κB activation that can in turn promote cancer progression and malignancy.
Collapse
|
8
|
Sun N, Zhang W, Liu J, Yang X, Chu Q. Propofol Inhibits the Progression of Cervical Cancer by Regulating HOTAIR/miR-129-5p/RPL14 Axis. Onco Targets Ther 2021; 14:551-564. [PMID: 33505161 PMCID: PMC7829600 DOI: 10.2147/ott.s279942] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/10/2020] [Indexed: 12/23/2022] Open
Abstract
Background Propofol has been proposed to function as a tumor suppressor in various human cancers. In this study, we aimed to investigate the anti-tumor effect of propofol on cervical cancer (CC). Methods Cell Counting Kit-8 (CCK-8) assay, colony formation assay, flow cytometry analysis, transwell assay and wound healing assay were conducted for cell viability, colony formation, apoptosis, invasion and migration, respectively. Western blot assay was used for protein levels. Quantitative real-time polymerase chain reaction (qRT-PCR) was used for HOX antisense intergenic RNA (HOTAIR), miR-129-5p and RPL14 levels. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were executed to verify the interaction between miR-129-5p and HOTAIR or RPL14. Murine xenograft model assay was used for the role of propofol in tumor progression in vivo. Results Propofol treatment suppressed CC cell viability, colony formation, invasion and migration and facilitated apoptosis. Propofol treatment led to a marked reduction in HOTAIR level in CC cells. HOTAIR overexpression promoted cell colony formation, invasion and migration and repressed apoptosis in CC cells and propofol-treated CC cells. For mechanism analysis, HOTAIR positively regulated RPL14 expression via acting as the sponge of miR-129-5p. MiR-129-5p overexpression reversed the impacts of HOTAIR on the malignant behaviors of propofol-treated CC cells. Furthermore, miR-129-5p inhibition accelerated the progression of CC cells, while RPL14 interference rescued the effect. In addition, propofol treatment restrained tumor growth of CC in vivo. Conclusion Propofol inhibited CC development by modulation of HOTAIR/miR-129-5p/RPL14 axis.
Collapse
Affiliation(s)
- Nai Sun
- Department of Anesthesiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
| | - Wei Zhang
- Department of Anesthesiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
| | - Jiaying Liu
- Department of Anesthesiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
| | - Xiaochen Yang
- Department of Anesthesiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
| | - Qinjun Chu
- Department of Anesthesiology, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou City, Henan Province, People's Republic of China
| |
Collapse
|
9
|
Lou N, Liu G, Pan Y. Long noncoding RNA ANRIL as a novel biomarker in human cancer. Future Oncol 2020; 16:2981-2995. [PMID: 32986472 DOI: 10.2217/fon-2020-0470] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The long noncoding RNA ANRIL, located in the human chromosome 9p21 region, has been reported to be involved in tumor progression. ANRIL regulates gene expression via recruiting PRC2 or titrating miRNA; it also participates in signaling pathways. Evidence has indicated that ANRIL is overexpressed in many cancer types and is capable of enhancing cell proliferation and cell cycle progression and inhibiting apoptosis and senescence. ANRIL has the potential to serve as a biomarker for diagnosis and prognosis in cancer. In this article we focus on recent advances in studies of the oncogenic role of ANRIL and its potential role in cancer medicine.
Collapse
Affiliation(s)
- Ning Lou
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430071, PR China
| | - Guohong Liu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430071, PR China
| | - Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, 430071, PR China
| |
Collapse
|
10
|
Song F, Liu J, Feng Y, Jin Y. Propofol‑induced HOXA11‑AS promotes proliferation, migration and invasion, but inhibits apoptosis in hepatocellular carcinoma cells by targeting miR‑4458. Int J Mol Med 2020; 46:1135-1145. [PMID: 32705160 PMCID: PMC7387087 DOI: 10.3892/ijmm.2020.4667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
Propofol is a commonly used drug for the induction and maintenance of anesthesia. Previous studies have reported that propofol is involved in the progression of numerous human cancer types, including hepatocellular carcinoma (HCC). However, the underlying molecular mechanisms in HCC are yet to be elucidated. The present study aimed to investigate the potential mechanism of propofol in HCC development. MTT assay, flow cytometry analysis and Transwell assays were conducted to examine cell proliferation, apoptosis, migration and invasion, respectively. Western blotting was also performed to determine the protein expression levels of Bcl‑2 and cleaved‑caspase 3. An in vivo experiment was performed to assess the effect of propofol on tumor growth. Moreover, reverse transcription‑quantitative PCR was conducted to measure the mRNA expression levels of HOMEOBOX A11 (HOXA11) antisense RNA (HOXA11‑AS) and microRNA (miR)‑4458. Dual‑luciferase reporter and RNA pull‑down assays were performed to evaluate the target relationship between HOXA11‑AS and miR‑4458. It was demonstrated that propofol inhibited HCC cell proliferation, migration and invasion, and promoted cell apoptosis in vitro. Furthermore, propofol could suppress tumor growth in vivo. Propofol suppressed the expression of HOXA11‑AS in HCC cells, while HOXA11‑AS overexpression reversed the inhibitory effect of propofol treatment on cell progression in HCC. In addition, miR‑4458 was identified as a target of HOXA11‑AS, and miR‑4458 inhibition reversed the effect of HOXA11‑AS knockdown on HCC cell progression. The results also indicated that propofol promoted the expression of miR‑4458, while HOXA11‑AS restored this effect in HCC. Thus, it was suggested that propofol suppressed cell progression by modulating the HOXA11‑AS/miR‑4458 axis in HCC.
Collapse
Affiliation(s)
- Furong Song
- Department of Anesthesiology
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Jun Liu
- Department of Anesthesiology
| | | | - Yi Jin
- Department of Pathology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510630, P.R. China
| |
Collapse
|
11
|
Chew D, Green V, Riley A, England RJ, Greenman J. The Changing Face of in vitro Culture Models for Thyroid Cancer Research: A Systematic Literature Review. Front Surg 2020; 7:43. [PMID: 32766274 PMCID: PMC7378741 DOI: 10.3389/fsurg.2020.00043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Thyroid cancer is the most common endocrine malignancy worldwide. Primary treatment with surgery and radioactive iodine is usually successful, however, there remains a small proportion of thyroid cancers that are resistant to these treatments, and often represent aggressive forms of the disease. Since the 1950s, in vitro thyroid culture systems have been used in thyroid cancer research. In vitro culture models have evolved from 2-dimensional thyrocyte monolayers into physiologically functional 3-dimensional organoids. Recently, research groups have utilized in vitro thyroid cancer models to identify numerous genetic and epigenetic factors that are involved with tumorigenesis as well as test the efficacy of cytotoxic drugs on thyroid cancer cells and identify cancer stem cells within thyroid tumors. Objective of Review: The objective of this literature review is to summarize how thyroid in vitro culture models have evolved and highlight how in vitro models have been fundamental to thyroid cancer research. Type of Review: Systematic literature review. Search Strategy: The National Institute for Health and Care Excellence (NICE) Healthcare and Databases Advanced Search (HDAS) tool was used to search EMBASE, Medline and PubMed databases. The following terms were included in the search: “in vitro” AND “thyroid cancer”. The search period was confined from January 2008 until June 2019. A manual search of the references of review articles and other key articles was also performed using Google Scholar. Evaluation Method: All experimental studies and review articles that explicitly mentioned the use of in vitro models for thyroid cancer research in the title and/or abstract were considered. Full-text versions of all selected articles were evaluated. Experimental studies were reviewed and grouped according to topic: genetics/epigenetics, drug testing/cancer treatment, and side populations (SP)/tumor microenvironment (TME). Results: Three thousand three hundred and seventy three articles were identified through database and manual searches. One thousand two hundred and sixteen articles remained after duplicates were removed. Five hundred and eighty nine articles were excluded based on title and/or abstract. Of the remaining 627 full-text articles: 24 were review articles, 332 related to genetic/epigenetics, 240 related to drug testing/treatments, and 31 related to SP/TME. Conclusion:In vitro cell culture models have been fundamental in thyroid cancer research. There have been many advances in culture techniques- developing complex cellular architecture that more closely resemble tumors in vivo. Genetic and epigenetic factors that have been identified using in vitro culture models can be used as targets for novel drug therapies. In the future, in vitro systems will facilitate personalized medicine, offering bespoke treatments to patients.
Collapse
Affiliation(s)
- Dylan Chew
- Department of ENT, Hull University Teaching Hospitals NHS Trust, Castle Hill Hospital, London, United Kingdom
| | - Victoria Green
- Department of Biomedical Sciences, University of Hull, Hull, United Kingdom
| | - Andrew Riley
- Department of Biomedical Sciences, University of Hull, Hull, United Kingdom
| | - Richard James England
- Department of ENT, Hull University Teaching Hospitals NHS Trust, Castle Hill Hospital, London, United Kingdom.,Department of Biomedical Sciences, University of Hull, Hull, United Kingdom
| | - John Greenman
- Department of Biomedical Sciences, University of Hull, Hull, United Kingdom
| |
Collapse
|
12
|
Gao M, Guo R, Lu X, Xu G, Luo S. Propofol suppresses hypoxia-induced esophageal cancer cell migration, invasion, and EMT through regulating lncRNA TMPO-AS1/miR-498 axis. Thorac Cancer 2020; 11:2398-2405. [PMID: 32643321 PMCID: PMC7471028 DOI: 10.1111/1759-7714.13534] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022] Open
Abstract
Background Propofol has been reported to be related to the migration, invasion, and epithelial‐mesenchymal transition (EMT) of esophageal cancer (EC) cells. However, the detailed mechanism has not yet been fully reported. The purpose of this research was to elucidate the function of long non‐coding RNA TMPO antisense RNA 1 (lncRNA TMPO‐AS1) and microRNA‐498 (miR‐498) in propofol‐regulated EC. Methods Transwell assay was performed to assess cell migratory and invasive abilities. Western blot assay was employed to determine the levels of EMT markers and hypoxia inducible factor‐1 (HIF‐1α). Quantitative real‐time polymerase chain reaction (qRT‐PCR) was carried out to detect the levels of TMPO‐AS1 and miR‐498. Moreover, the interaction between TMPO‐AS1 and miR‐498 was predicted by starBase, and then confirmed by the dual‐luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Results Propofol suppressed hypoxia‐induced EC cell migration, invasion, and EMT. Both TMPO‐AS1 overexpression and miR‐498 knockdown weakened the effect of propofol on hypoxia‐induced EC cell progression. Interestingly, TMPO‐AS1 targeted miR‐498 and suppressed miR‐498 expression. TMPO‐AS1 regulated EC cell progression via downregulating miR‐498 expression. Conclusions Collectively, our findings demonstrated that propofol inhibited hypoxia‐induced EC cell mobility through modulation of the TMPO‐AS1/miR‐498 axis, providing a theoretical basis for the treatment of EC.
Collapse
Affiliation(s)
- Meng Gao
- Department of Anesthesiology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Rui Guo
- Department of Clinical Laboratory, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University Zhengzhou, Zhengzhou, China
| | - Xihua Lu
- Department of Anesthesiology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Gang Xu
- Department of Anesthesiology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Suxia Luo
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
13
|
Xu Y, Pan S, Jiang W, Xue F, Zhu X. Effects of propofol on the development of cancer in humans. Cell Prolif 2020; 53:e12867. [PMID: 32596964 PMCID: PMC7445405 DOI: 10.1111/cpr.12867] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer is one of most the significant threats to human health worldwide, and the primary method of treating solid tumours is surgery. Propofol, one of the most widely used intravenous anaesthetics in surgery, was found to be involved in many cancer‐related pathophysiology processes, mainly including anti‐tumour and minor cancer‐promoting effects in various types of cancer. An increasing number of studies have identified that propofol plays a role in cancer by regulating the expression of multiple signalling pathways, downstream molecules, microRNAs and long non‐coding RNAs. Emerging evidence has indicated that propofol can enhance the anti‐tumour effect of chemotherapeutic drugs or some small molecular compounds. Additionally, in vivo animal models have shown that propofol inhibits tumour growth and metastasis. Furthermore, most clinical trials indicate that propofol is associated with better survival outcomes in cancer patients after surgery. Propofol use is encouraged in cancers that appear to have a better prognosis after its use during surgery. We hope that future large and prospective multicenter studies will provide more precise answers to guide the choice of anaesthetics during cancer surgery.
Collapse
Affiliation(s)
- Yichi Xu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shuya Pan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenxiao Jiang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fang Xue
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
14
|
LncRNA ANRIL acts as a modular scaffold of WDR5 and HDAC3 complexes and promotes alteration of the vascular smooth muscle cell phenotype. Cell Death Dis 2020; 11:435. [PMID: 32513988 PMCID: PMC7280314 DOI: 10.1038/s41419-020-2645-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 12/11/2022]
Abstract
Many studies have shown that long-noncoding RNA (lncRNA) is associated with cardiovascular disease, but its molecular mechanism is still unclear. In this study, we explored the role of lncRNA ANRIL in ox-LDL-induced phenotypic transition of human aortic smooth muscle cells (HASMC). The results of quantitative fluorescence PCR showed that the expression of ANRIL in patients with coronary atherosclerotic heart disease (CAD) was significantly higher than that in normal subjects. RNA-FISH detection showed that the ANRIL expression increased in HASMC treated by ox-LDL. Ox-LDL could upregulate the expression of ANRIL and ROS and promote the phenotypic transition of HASMC. After downregulation of ANRIL by siRNA, ROS level decreased and HASMC phenotypic transition alleviated. ANRIL could act as a molecular scaffold to promote the binding of WDR5 and HDAC3 to form WDR5 and HDAC3 complexes, they regulated target genes such as NOX1 expression by histone modification, upregulated ROS level and promote HASMC phenotype transition. Therefore, we found a new epigenetic regulatory mechanism for phenotype transition of VSMC, ANRIL was a treatment target of occlusive vascular diseases.
Collapse
|
15
|
Gao X, Mi Y, Guo N, Luan J, Xu H, Hu Z, Wang N, Zhang D, Gou X, Xu L. The mechanism of propofol in cancer development: An updated review. Asia Pac J Clin Oncol 2020; 16:e3-e11. [DOI: 10.1111/ajco.13301] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Xingchun Gao
- Institute of Basic Medical Sciences & Shaanxi Key Laboratory of Brain DisordersShaanxi Key Laboratory of Ischemic Cardiovascular DiseaseXi'an Medical University Xi'an China
- State Key Laboratory of Military StomatologyDepartment of AnesthesiologySchool of StomatologyThe Fourth Military Medical University Xi'an China
| | - Yajing Mi
- Institute of Basic Medical Sciences & Shaanxi Key Laboratory of Brain DisordersShaanxi Key Laboratory of Ischemic Cardiovascular DiseaseXi'an Medical University Xi'an China
- State Key Laboratory of Military StomatologyDepartment of AnesthesiologySchool of StomatologyThe Fourth Military Medical University Xi'an China
| | - Na Guo
- Institute of Basic Medical Sciences & Shaanxi Key Laboratory of Brain DisordersShaanxi Key Laboratory of Ischemic Cardiovascular DiseaseXi'an Medical University Xi'an China
| | - Jing Luan
- Institute of Basic Medical Sciences & Shaanxi Key Laboratory of Brain DisordersShaanxi Key Laboratory of Ischemic Cardiovascular DiseaseXi'an Medical University Xi'an China
- State Key Laboratory of Military StomatologyDepartment of AnesthesiologySchool of StomatologyThe Fourth Military Medical University Xi'an China
| | - Hao Xu
- Institute of Basic Medical Sciences & Shaanxi Key Laboratory of Brain DisordersShaanxi Key Laboratory of Ischemic Cardiovascular DiseaseXi'an Medical University Xi'an China
- State Key Laboratory of Military StomatologyDepartment of AnesthesiologySchool of StomatologyThe Fourth Military Medical University Xi'an China
| | - Zhifang Hu
- Institute of Basic Medical Sciences & Shaanxi Key Laboratory of Brain DisordersShaanxi Key Laboratory of Ischemic Cardiovascular DiseaseXi'an Medical University Xi'an China
| | - Ning Wang
- Institute of Basic Medical Sciences & Shaanxi Key Laboratory of Brain DisordersShaanxi Key Laboratory of Ischemic Cardiovascular DiseaseXi'an Medical University Xi'an China
| | - Dian Zhang
- Institute of Basic Medical Sciences & Shaanxi Key Laboratory of Brain DisordersShaanxi Key Laboratory of Ischemic Cardiovascular DiseaseXi'an Medical University Xi'an China
| | - Xingchun Gou
- Institute of Basic Medical Sciences & Shaanxi Key Laboratory of Brain DisordersShaanxi Key Laboratory of Ischemic Cardiovascular DiseaseXi'an Medical University Xi'an China
| | - Lixian Xu
- Institute of Basic Medical Sciences & Shaanxi Key Laboratory of Brain DisordersShaanxi Key Laboratory of Ischemic Cardiovascular DiseaseXi'an Medical University Xi'an China
- State Key Laboratory of Military StomatologyDepartment of AnesthesiologySchool of StomatologyThe Fourth Military Medical University Xi'an China
| |
Collapse
|
16
|
Huang Y, Lei L, Liu Y. Propofol Improves Sensitivity of Lung Cancer Cells to Cisplatin and Its Mechanism. Med Sci Monit 2020; 26:e919786. [PMID: 32225124 PMCID: PMC7142322 DOI: 10.12659/msm.919786] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Cisplatin (cis-diamminedichloroplatinum, DDP) resistance is identified as the primary obstacle during lung cancer treatment, while DDP resistance is exist extensively. This report was to investigate the roles of propofol in lung cancer cells tolerance to DDP and the potential mechanisms. MATERIAL AND METHODS A549 and A549/DDP cells were treated with DDP for 48 hours, and cell proliferation suppression rate was detected by MTT (thiazolyl blue tetrazolium bromide) assay and half maximal inhibitory concentration (IC₅₀) of DDP to lung cancer cells was calculated. Besides, cell proliferation and apoptosis were determined by MTT assay and flow cytometry assay respectively in propofol-treated A549/DDP and A549 cells. Furthermore, we performed MTT assay to determine the influence of propofol on the sensitivity of lung cancer cells to DDP. RESULTS The results demonstrated that the IC₅₀ of DDP to A549 cells was lower than that in A549/DDP cells. Propofol dramatically inhibited cell proliferation and promoted cell apoptosis of A549/DDP and A549 cells. In addition, propofol significantly improved the anti-proliferative impact of DDP in A549/DDP and A549 cells, and the value of IC₅₀ for DDP in the A549/DDP and A549 cells were decreased after propofol treatment compare to the control group. Moreover, propofol inhibited the Wnt/ß-catenin pathway in a dose-dependent manner in both A549/DDP and A549 cells. CONCLUSIONS Our report indicated that propofol could control lung cancer cell proliferation and apoptosis, and stimulated the suppression function of DDP on lung cancer cell multiplication via the Wnt/ß-catenin signaling pathway, and also provided a new treatment for DDP tolerance to cure lung cancer in clinical.
Collapse
Affiliation(s)
- Yunfeng Huang
- Department of Anesthesia, Hubei Cancer Hospital, Wuhan, Hubei, China (mainland)
| | - Lirong Lei
- Department of Anesthesia, Hubei Cancer Hospital, Wuhan, Hubei, China (mainland)
| | - Yishu Liu
- Department of Anesthesia, Hubei Cancer Hospital, Wuhan, Hubei, China (mainland)
| |
Collapse
|
17
|
Li K, Zhao B, Wei D, Cui Y, Qian L, Wang W, Liu G. Long non-coding RNA ANRIL enhances mitochondrial function of hepatocellular carcinoma by regulating the MiR-199a-5p/ARL2 axis. ENVIRONMENTAL TOXICOLOGY 2020; 35:313-321. [PMID: 31670868 DOI: 10.1002/tox.22867] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/11/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
Abstract
Although the roles of long non-coding RNA (lncRNA) ANRIL (Antisense non-coding RNA in the INK4A locus) have been established in various tumors, its roles in mitochondrial metabolic reprogramming of hepatocellular carcinoma (HCC) cells are still unclear. This work aims to explore lncRNA ANRIL roles in regulating the mitochondrial metabolic reprogramming of liver cancer cells. First, we found that lncRAN ANRIL expression was significantly increased in HCC tissues or cells compared with the normal adjacent tissues and normal tissues or cells. Functional experiment showed that overexpression of lncRNA ANRIL promoted mitochondrial function in HCC cells, evident by the increased mitochondrial DNA copy numbers, ATP (Adenosine triphosphate) level, mitochondrial membrane potential, and the expression levels of mitochondrial markers, while ANRIL knockdown exerted the opposite effects. Mechanistically, lncRNA ANRIL acted as a competing endogenous RNA to increase ARL2 (ADP-ribosylationfactor-like 2) expression via sponging miR-199a-5p. Notably, the miR-199a-5p/ARL2 axis is necessary for ANRIL-mediated promoting effects on HCC cell mitochondrial function. This work reveals a novel ANRIL-miR-199a-5p-ARL2 axis in HCC cell progression, which might provide potential targets for HCC treatment.
Collapse
Affiliation(s)
- Kun Li
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, China
| | - Bao Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Diandian Wei
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, China
| | - Yixuan Cui
- Department of Otorhinolaryngology Head and Neck Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lisheng Qian
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, China
| | - Wenrui Wang
- School of Life Science and Technology, Bengbu Medical College, Bengbu, China
| | - Guodong Liu
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, China
| |
Collapse
|
18
|
Li M, Qu L, Chen F, Zhu X. Propofol upregulates miR-320a and reduces HMGB1 by downregulating ANRIL to inhibit PTC cell malignant behaviors. Pathol Res Pract 2020; 216:152856. [PMID: 32098696 DOI: 10.1016/j.prp.2020.152856] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/10/2020] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Our previous study states that propofol suppresses proliferation and migration of papillary thyroid cancer (PTC) cells by downregulation of lncRNA ANRIL. This study intended to probe the downstream mechanism of ANRIL in PTC with potential microRNAs (miR) and genes. METHODS ANRIL expression was detected in normal thyroid epithelial cells (Nthy-ori 3-1) and PTC cells (TPC-1, FTC-133, K1 and BCPAP). ANRIL expression was inhibited in TPC-1 and BCPAP cells to explore the effects of si-ANRIL in PTC malignant behaviors. The gain-and loss-of functions of ANRIL/miR-320a were performed to measure their roles in PTC. Levels of ANRIL, miR-320a, HMGB1, apoptosis- and Wnt/β-catenin and NF-κB pathways-related proteins were measured. Dual-luciferase reporter gene assay and RNA pull-down assay were applied to verify ANRIL/miR-320a/HMGB1 relation. si-ANRIL was transplanted into xenograft tumors in nude mice. RESULTS ANRIL was upregulated in TPC-1 and BCPAP cells. miR-320a targeted HMGB1, and ANRIL bound to miR-320a. In TPC-1 and BCPAP cells, si-ANRIL prevented PTC cell malignant behaviors, and inactivated the Wnt/β-catenin and NF-κB pathways; while si-ANRIL + miR-320a inhibition showed opposite trends. Overexpressing miR-320a promoted malignant behaviors of TPC-1 cells. In 6 μg/mL propofol-treated TPC-1 cells, miR-320a inhibition weakened propofol's inhibitory effects on PTC cell growth. After ANRIL inhibition, the volume and weight of xenograft tumors were decreased. CONCLUSION Propofol upregulated miR-320a and reduced HMGB1 by downregulating ANRIL and inactivating the Wnt/β-catenin and NF-κB pathways, thus preventing PTC cell malignant behaviors. This study may offer new insights in PTC prevention and treatment.
Collapse
Affiliation(s)
- Mengyuan Li
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Liangchao Qu
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Fumei Chen
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Xiaoping Zhu
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China.
| |
Collapse
|
19
|
Zhou YH, Cui YH, Wang T, Luo Y. Long non-coding RNA HOTAIR in cervical cancer: Molecular marker, mechanistic insight, and therapeutic target. Adv Clin Chem 2020; 97:117-140. [PMID: 32448431 DOI: 10.1016/bs.acc.2019.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cervical cancer is a common gynecologic malignant tumor with high mortality. HOX transcript antisense RNA (HOTAIR), a trans-acting long non-coding RNA (lncRNA) containing six exons in humans, is transcribed from the antisense strand of homeobox gene C cluster. This lncRNA serves as a modular scaffold for gene silencing and protein ubiquitination. In patients with cervical cancer, elevated HOTAIR levels are significantly associated with poor prognosis. HOTAIR plays an oncogenic role in cervical cancer by promoting cell proliferation, migration, invasion and autophagy, inhibiting cell apoptosis, stimulating angiogenesis, accelerating cell cycle progression, and inducing epithelial-mesenchymal transition. Moreover, blockade of HOTAIR by artesunate or propofol shows promise for further development of this lncRNA as a potential therapeutic target in cervical cancer. In this review, we summarized the latest advances regarding the role of HOTAIR in cervical cancer with an emphasis on its diagnostic and prognostic values.
Collapse
Affiliation(s)
- Yan-Hui Zhou
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Yan-Hui Cui
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Ting Wang
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Yang Luo
- Xiangya Nursing School, Central South University, Changsha, Hunan, China.
| |
Collapse
|
20
|
Farooqi AA, Adylova A, Sabitaliyevich UY, Attar R, Sohail MI, Yilmaz S. Recent updates on true potential of an anesthetic agent as a regulator of cell signaling pathways and non-coding RNAs in different cancers: Focusing on the brighter side of propofol. Gene 2020; 737:144452. [PMID: 32044408 DOI: 10.1016/j.gene.2020.144452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/27/2020] [Accepted: 02/04/2020] [Indexed: 02/07/2023]
Abstract
There has always been a quest to search for synthetic and natural compounds having premium pharmacological properties and minimum off-target and/or side effects. Therefore, in accordance with this approach, scientists have given special attention to the molecules having remarkable ability to target oncogenic protein network, restore drug sensitivity and induce apoptosis in cancer cells. The mechanisms through which general anesthetics modulated wide-ranging deregulated cell signaling pathways and non-coding RNAs remained unclear. However, rapidly accumulating experimentally verified evidence has started to resolve this long-standing mystery and a knowledge about these important molecular targets has surfaced and how these drugs act at the molecular level is becoming more understandable. In this review we have given special attention to available evidence related to ability of propofol to modulate Wnt/β-catenin, JAK/STAT and mTOR-driven pathway. Excitingly, great strides have been made in sharpening our concepts related to potential of propofol to modulate non-coding RNAs in different cancers. Collectively, these latest findings offer interesting, unexplored opportunities to target deregulated signaling pathways to induce apoptosis in drug-resistant cancers.
Collapse
Affiliation(s)
- Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad, Pakistan.
| | - Aima Adylova
- Department of Postgraduate Education and Research, Kazakhstan Medical University KSPH, Almaty, Kazakhstan
| | | | - Rukset Attar
- Department of Obstetrics and Gynecology, Yeditepe University, Turkey
| | | | - Seher Yilmaz
- Department of Anatomy, Yozgat Bozok University Faculty of Medicine, Yozgat, Turkey
| |
Collapse
|
21
|
Li B, Chng WJ. EZH2 abnormalities in lymphoid malignancies: underlying mechanisms and therapeutic implications. J Hematol Oncol 2019; 12:118. [PMID: 31752930 PMCID: PMC6868783 DOI: 10.1186/s13045-019-0814-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/27/2019] [Indexed: 02/08/2023] Open
Abstract
EZH2 is the catalytic subunit of the polycomb repressive complex 2 (PRC2), which along with other PRC2 components mediates gene expression suppression via the methylation of Histone H3 at lysine 27. Recent studies have revealed a dichotomous role of EZH2 in physiology and in the pathogenesis of cancer. While it plays an essential role in the development of the lymphoid system, its deregulation, whether due to genetic or non-genetic causes, promotes B cell- and T cell-related lymphoma or leukemia. These findings triggered a boom in the development of therapeutic EZH2 inhibitors in recent years. Here, we discuss physiologic and pathogenic function of EZH2 in lymphoid context, various internal causes of EZH2 aberrance and how EZH2 modulates lymphomagenesis through epigenetic silencing, post-translational modifications (PTMs), orchestrating with surrounding tumor micro-environment and associating with RNA or viral partners. We also summarize different strategies to directly inhibit PRC2-EZH2 or to intervene EZH2 upstream signaling.
Collapse
Affiliation(s)
- Boheng Li
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Wee-Joo Chng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore. .,Department of Haematology-Oncology, National University Cancer Institute of Singapore, Singapore, Singapore. .,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
22
|
The role of long non-coding RNAs in the pathogenesis of thyroid cancer. Exp Mol Pathol 2019; 112:104332. [PMID: 31706987 DOI: 10.1016/j.yexmp.2019.104332] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 10/29/2019] [Accepted: 11/06/2019] [Indexed: 12/21/2022]
Abstract
Long noncoding RNAs (lncRNAs) as prominent regulators of gene expression are involved in different layers of expression regulation. These transcripts participate in carcinogenesis of several human malignancies including thyroid cancer. Availability of high throughput techniques such as RNA sequencing and microarray has facilitated identification of lncRNAs whose dysregulation affect tumorigenesis process. Moreover, assessment of differentially expressed lncRNAs between resistant and sensitive cells has led to recognition of biomarkers for therapeutic response. One elucidated aspect of lncRNAs functions is their role in sponging miRNAs. Several miRNA-lncRNA-mRNA triplets have been recognized till now. Any of these triplets is a putative target of interfering with the evolution of cancer. In the current study, we have summarized recent data in the fields of biology of lncRNAs, their role in thyroid cancer and their potential as biomarker or treatment target.
Collapse
|
23
|
Li P, Liu L, Wang T, Chen H. SUMO2/3 participates in regulating the protective effect of propofol on human umbilical vein endothelial cells. BIOTECHNOL BIOTEC EQ 2019. [DOI: 10.1080/13102818.2019.1693281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Peng Li
- Department of Anesthesia, Yidu Central Hospital of Weifang, Weifang, Shandong, PR China
| | - Libing Liu
- Department of Anesthesia, Yidu Central Hospital of Weifang, Weifang, Shandong, PR China
| | - Tianyu Wang
- Department of Anesthesia, Yidu Central Hospital of Weifang, Weifang, Shandong, PR China
| | - Huayong Chen
- Department of Anesthesia, Yidu Central Hospital of Weifang, Weifang, Shandong, PR China
| |
Collapse
|