1
|
Wang L, Huang Q, Li H, Li H, Wang X, Tan X. Mechanism of LncRNA FTX regulates nephroblastoma progression through MiR-215-5p/PI3K/AKT axis. J Pediatr Urol 2024; 20:491.e1-491.e8. [PMID: 38365477 DOI: 10.1016/j.jpurol.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/09/2024] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND Nephroblastoma, also more commonly known as Wilms tumor (WT), is a common childhood malignancy that connects tumorigenesis and organ development in the kidney. OBJECTIVE The current study focused on the effect of lncRNA FTX in nephroblastoma. STUDY DESIGN Expression of lncRNA FTX in nephroblastoma tissues and cells was determined. The expression location of lncRNA FTX was detected by FISH. The binding of lncRNA FTX and miR-215-5p with Ago2 was verified by RIP. Following gain- and loss-of-function approaches, the crucial role of lncRNA FTX and miR-215-5p in nephroblastoma cell functions was measured with the involvement of the PI3K/AKT pathway. RESULTS LncRNA FTX was elevated and miR-215-5p was declined in nephroblastoma. Silencing of lncRNA FTX or mimic of miR-215-5p inhibited the malignant properties of nephroblastoma cells. LncRNA FTX was localized in the cytoplasm and might bind miR-215-5p. LncRNA FTX promoted the malignant features of nephroblastoma cells by inhibiting miR-215-5p through activating of the PI3K/AKT pathway. CONCLUSIONS LncRNA FTX is capable of accelerating nephroblastoma development in vitro by reducing miR-215-5p through activating of the PI3K/AKT pathway, indicating LncRNA FTX may possibly a future target for the diagnosis and treatment of nephroblastoma. SUMMARY FIGURE.
Collapse
Affiliation(s)
- Li Wang
- Pediatric Department of The Affiliated Changsha Hospital of Xiangya, School of Medicine, Central South University, Changsha, Hunan 410005, PR China
| | - Qin Huang
- Pediatric Department of The Affiliated Changsha Hospital of Xiangya, School of Medicine, Central South University, Changsha, Hunan 410005, PR China
| | - Hui Li
- Pediatric Department of The Affiliated Changsha Hospital of Xiangya, School of Medicine, Central South University, Changsha, Hunan 410005, PR China
| | - Haisha Li
- Pediatric Department of The Affiliated Changsha Hospital of Xiangya, School of Medicine, Central South University, Changsha, Hunan 410005, PR China
| | - Xiangyun Wang
- Pediatric Department of The Affiliated Changsha Hospital of Xiangya, School of Medicine, Central South University, Changsha, Hunan 410005, PR China.
| | - Xin Tan
- Pediatric Department of The Affiliated Changsha Hospital of Xiangya, School of Medicine, Central South University, Changsha, Hunan 410005, PR China.
| |
Collapse
|
2
|
Khan A, Khan A, Khan MA, Malik Z, Massey S, Parveen R, Mustafa S, Shamsi A, Husain SA. Phytocompounds targeting epigenetic modulations: an assessment in cancer. Front Pharmacol 2024; 14:1273993. [PMID: 38596245 PMCID: PMC11002180 DOI: 10.3389/fphar.2023.1273993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/09/2023] [Indexed: 04/11/2024] Open
Abstract
For centuries, plants have been serving as sources of potential therapeutic agents. In recent years, there has been a growing interest in investigating the effects of plant-derived compounds on epigenetic processes, a novel and captivating Frontier in the field of epigenetics research. Epigenetic changes encompass modifications to DNA, histones, and microRNAs that can influence gene expression. Aberrant epigenetic changes can perturb key cellular processes, including cell cycle control, intercellular communication, DNA repair, inflammation, stress response, and apoptosis. Such disruptions can contribute to cancer development by altering the expression of genes involved in tumorigenesis. However, these modifications are reversible, offering a unique avenue for therapeutic intervention. Plant secondary compounds, including terpenes, phenolics, terpenoids, and sulfur-containing compounds are widely found in grains, vegetables, spices, fruits, and medicinal plants. Numerous plant-derived compounds have demonstrated the potential to target these abnormal epigenetic modifications, including apigenin (histone acetylation), berberine (DNA methylation), curcumin (histone acetylation and epi-miRs), genistein (histone acetylation and DNA methylation), lycopene (epi-miRs), quercetin (DNA methylation and epi-miRs), etc. This comprehensive review highlights these abnormal epigenetic alterations and discusses the promising efficacy of plant-derived compounds in mitigating these deleterious epigenetic signatures in human cancer. Furthermore, it addresses ongoing clinical investigations to evaluate the therapeutic potential of these phytocompounds in cancer treatment, along with their limitations and challenges.
Collapse
Affiliation(s)
- Aqsa Khan
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Asifa Khan
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Mohammad Aasif Khan
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
- Department of Radiation Oncology, The University of Texas Health Science Centre at San Antonio, San Antonio, TX, United States
| | - Zoya Malik
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Sheersh Massey
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Rabea Parveen
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Saad Mustafa
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| | - Anas Shamsi
- Center for Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Syed A. Husain
- Department of Bioscience, Faculty of Natural Sciences, Jamia Millia Islamia (A Central University), New Delhi, India
| |
Collapse
|
3
|
Novel epigenetic therapeutic strategies and targets in cancer. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166552. [PMID: 36126898 DOI: 10.1016/j.bbadis.2022.166552] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022]
Abstract
The critical role of dysregulated epigenetic pathways in cancer genesis, development, and therapy has typically been established as a result of scientific and technical innovations in next generation sequencing. RNA interference, histone modification, DNA methylation and chromatin remodelling are epigenetic processes that control gene expression without causing mutations in the DNA. Although epigenetic abnormalities are thought to be a symptom of cell tumorigenesis and malignant events that impact tumor growth and drug resistance, physicians believe that related processes might be a key therapeutic target for cancer treatment and prevention due to the reversible nature of these processes. A plethora of novel strategies for addressing epigenetics in cancer therapy for immuno-oncological complications are currently available - ranging from basic treatment to epigenetic editing. - and they will be the subject of this comprehensive review. In this review, we cover most of the advancements made in the field of targeting epigenetics with special emphasis on microbiology, plasma science, biophysics, pharmacology, molecular biology, phytochemistry, and nanoscience.
Collapse
|
4
|
Yang S, Yang G, Wu H, Kang L, Xiang J, Zheng P, Qiu S, Liang Z, Lu Y, Jia L. MicroRNA-193b impairs muscle growth in mouse models of type 2 diabetes by targeting the PDK1/Akt signalling pathway. Diabetologia 2022; 65:563-581. [PMID: 34913989 PMCID: PMC8803817 DOI: 10.1007/s00125-021-05616-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/03/2021] [Indexed: 12/18/2022]
Abstract
AIMS/HYPOTHESIS Type 2 diabetes is associated with a reduction in skeletal muscle mass; however, how the progression of sarcopenia is induced and regulated remains largely unknown. We aimed to find out whether a specific microRNA (miR) may contribute to skeletal muscle atrophy in type 2 diabetes. METHODS Adeno-associated virus (AAV)-mediated skeletal muscle miR-193b overexpression in C57BLKS/J mice, and skeletal muscle miR-193b deficiency in db/db mice were used to explore the function of miR-193b in muscle loss. In C57BL/6 J mice, tibialis anterior-specific deletion of 3-phosphoinositide-dependent protein kinase-1 (PDK1), mediated by in situ AAV injection, was used to confirm whether miR-193b regulates muscle growth through PDK1. Serum miR-193b levels were also analysed in healthy individuals (n = 20) and those with type 2 diabetes (n = 20), and correlations of miR-193b levels with HbA1c, fasting blood glucose (FBG), body composition, triacylglycerols and C-peptide were assessed. RESULTS In this study, we found that serum miR-193b levels increased in individuals with type 2 diabetes and negatively correlated with muscle mass in these participants. Functional studies further showed that AAV-mediated overexpression of miR-193b induced muscle loss and dysfunction in healthy mice. In contrast, suppression of miR-193b attenuated muscle loss and dysfunction in db/db mice. Mechanistic analysis revealed that miR-193b could target Pdk1 expression to inactivate the Akt/mammalian target of rapamycin (mTOR)/p70S6 kinase (S6K) pathway, thereby inhibiting protein synthesis. Therefore, knockdown of PDK1 in healthy mice blocked miR-193b-induced inactivation of the Akt/mTOR/S6K pathway and impairment of muscle growth. CONCLUSIONS/INTERPRETATION Our results identified a previously unrecognised role of miR-193b in muscle function and mass that could be a potential therapeutic target for treating sarcopenia.
Collapse
Affiliation(s)
- Shu Yang
- Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Guangyan Yang
- Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Han Wu
- Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
- Department of Endocrinology, Key Laboratory of Endocrinology, National Health Commission, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Lin Kang
- Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Jiaqing Xiang
- Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Peilin Zheng
- Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Shanhu Qiu
- Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China
| | - Zhen Liang
- Department of Geriatrics, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.
| | - Yan Lu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Lijing Jia
- Department of Endocrinology, The Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, China.
| |
Collapse
|
5
|
Xiang B, Li Y, Li J, Li J, Jiang H, Zhang Q. MiR-19 3b regulated the formation of coat colors by targeting WNT10A and GNAI2 in Cashmere goats. Anim Biotechnol 2021:1-9. [PMID: 34747678 DOI: 10.1080/10495398.2021.1998089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
MiRNAs as a series of small noncoding RNAs that play a crucial part in regulating coat color and hair follicle development. In the previous Solexa sequencing experiments, there were many miRNAs expressed differentially in alpacas with different coat color, including miR-193b.But the mechanism of miR-193b in mammalian pigmentation is still unknown. In this study, bioinformatics analysis showed that WNT10A and GNAI2 might be the target genes of miR-193b. qRT-PCR showed the expression of miR-193b in white Cashmere goats' skins was obviously lower than that in browns, and the expression of WNT10A and GNAI2 were similar with miR-193b. The protein levels of WNT10A and GNAI2 indicated the same findings. Furthermore, the expression of WNT10A and GNAI2 in keratinocytes were analyzed from mRNA and protein levels, the results manifested that the group of overexpression of miR-193b in HaCaT cells increased the expressions of target genes, and miR-193b inhibition group reduced expressions. Luciferase report assays confirmed that the targeting relationship between miR-193b and target genes (WNT10A and GNAI2), the results showed that miR-193b was positively correlated with target genes. These experimental data showed that miR-193b might participate in adjustment of coat color in skin tissue of Cashmere goat by targeting WNT10A and GNAI2.
Collapse
Affiliation(s)
- Ba Xiang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yumei Li
- College of Animal Science, Jilin University, Changchun, China
| | - Jianping Li
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China
| | - Jianyu Li
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - HuaiZhi Jiang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - QiaoLing Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
6
|
Qian C, Liu Q. FOXO3a inhibits nephroblastoma cell proliferation, migration and invasion, and induces apoptosis through downregulating the Wnt/β‑catenin signaling pathway. Mol Med Rep 2021; 24:796. [PMID: 34515328 PMCID: PMC8446726 DOI: 10.3892/mmr.2021.12436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022] Open
Abstract
Forkhead transcription factor O subfamily 3A (FOXO3a) is an important tumor suppressor gene that is expressed in renal tissue and has been reported to be downregulated in clear cell renal cell carcinoma (CCRCC). Notably, the overexpression of FOXO3a was previously discovered to inhibit the progression of CCRCC. However, the expression levels of FOXO3a in nephroblastoma cell lines remain unknown. The present study aimed to investigate the expression levels of FOXO3a in nephroblastoma cell lines and to determine the mechanism of action of the biological functions of FOXO3a. Western blotting and reverse transcription‑quantitative PCR were used to analyze the expression levels of FOXO3a in nephroblastoma cell lines. Subsequently, the effects of the overexpression of FOXO3a and the genetic knockdown of the Wnt/β‑catenin signaling protein Axin‑2 on the biological functions were determined through Cell Counting Kit‑8, cell colony formation assays, scratch and Transwell assay and flow cytometric analysis experiments. The expression levels of FOXO3a were discovered to be downregulated in nephroblastoma cell lines. The overexpression of FOXO3a inhibited the proliferation, invasion and migration of nephroblastoma cells, while inducing apoptosis. Furthermore, the overexpression of FOXO3a downregulated the expression levels of β‑catenin and Cyclin‑D1 proteins involved in the Wnt/β‑catenin signaling pathway. Cell proliferation and the migration and invasion ability of 17‑94 cells in shRNA‑Axin2‑2 group were promoted. Cell apoptosis was predominantly increased by overexpressed FOXO3a, which was reversed by shRNA‑Axin2‑1. The biological effects of overexpressing FOXO3a on nephroblastoma were reversed after activation of Wnt/β‑catenin. In conclusion, the findings of the present study suggested that FOXO3a may inhibit nephroblastoma cell proliferation, migration and invasion, while inducing apoptosis, by downregulating the Wnt/β‑catenin signaling pathway. These results may provide a novel method for the early diagnosis and precise treatment of nephroblastoma.
Collapse
Affiliation(s)
- Cheng Qian
- Department of Pediatric Surgery, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277102, P.R. China
| | - Qiang Liu
- Department of Urinary Surgery, The Second People's Hospital of Nantong, Nantong, Jiangsu 226002, P.R. China
| |
Collapse
|
7
|
Sabo AA, Dudau M, Constantin GL, Pop TC, Geilfus CM, Naccarati A, Dragomir MP. Two Worlds Colliding: The Interplay Between Natural Compounds and Non-Coding Transcripts in Cancer Therapy. Front Pharmacol 2021; 12:652074. [PMID: 34295245 PMCID: PMC8290364 DOI: 10.3389/fphar.2021.652074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022] Open
Abstract
Cancer is a devastating disease and has recently become the leading cause of death in western countries, representing an immense public health burden. When it comes to cancer treatment, chemotherapy is one of the main pillars, especially for advanced stage tumors. Over the years, natural compounds have emerged as one of the most valuable resources for new chemotherapies. It is estimated that more than half of the currently used chemotherapeutic agents are derived from natural compounds. Usually, natural compounds are discovered empirically and an important limitation of introducing new anti-cancer natural products is lack of knowledge with regard to their mechanism of action. Recent data has proven that several natural compounds may function via modulating the expression and function of non-coding RNAs (ncRNAs). NcRNAs are a heterogenous class of RNA molecules which are usually not translated into proteins but have an important role in gene expression regulation and are involved in multiple tumorigenic processes, including response/resistance to pharmacotherapy. In this review, we will discuss how natural compounds function via ncRNAs while summarizing the available data regarding their effects on over 15 types of cancer. Moreover, we will critically analyze the current advances and limitations in understanding the way natural compounds exert these health-promoting effects by acting on ncRNAs. Finally, we will propose several hypotheses that may open new avenues and perspectives regarding the interaction between natural compounds and ncRNAs, which could lead to improved natural compound-based therapeutic strategies in cancer.
Collapse
Affiliation(s)
- Alexandru A. Sabo
- Pediatrics 2 (General and Special Pediatrics), Klinikum Stuttgart, Olgahospital, Zentrum für Kinder, Jugend- und Frauenmedizin, Stuttgart, Germany
| | - Maria Dudau
- Biochemistry-Proteomics Department, Victor Babes National Institute of Pathology, Bucharest, Romania
- Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - George L. Constantin
- Division of Soil Science and Site Science, Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tudor C. Pop
- Department of Pediatrics, Marie Curie Emergency Clinical Hospital for Children, Bucharest, Romania
| | - Christoph-M. Geilfus
- Division of Controlled Environment Horticulture, Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alessio Naccarati
- IIGM Italian Institute for Genomic Medicine, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Mihnea P. Dragomir
- Department of Surgery, Fundeni Clinical Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
8
|
Zhou K, Chang Y, Han B, Li R, Wei Y. MicroRNAs as crucial mediators in the pharmacological activities of triptolide (Review). Exp Ther Med 2021; 21:499. [PMID: 33791008 PMCID: PMC8005665 DOI: 10.3892/etm.2021.9930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/18/2021] [Indexed: 12/19/2022] Open
Abstract
Triptolide is the main bioactive constituent isolated from the Chinese herb Tripterygium wilfordii Hook F., which possesses a variety of pharmacological properties. MicroRNAs (miRNAs/miRs) are short non-coding RNAs that regulate gene expression post-transcriptionally. miRNAs are implicated in several intracellular processes, whereby their dysregulation contributes to pathogenesis of various diseases. Thus, miRNAs have great potential as biomarkers and therapeutic targets for diseases, and are implicated in drug treatment. Previous studies have reported that specific miRNAs are targeted, and their expression levels can be altered following exposure to triptolide. Thus, miRNAs are emerging as crucial mediators in the pharmacological activities of triptolide. The present review summarizes current literature on miRNAs as target molecules in the pharmacological activities of triptolide, including antitumor, anti-inflammatory, immunosuppressive, renal protective, cardioprotective, antiangiogenesis activities and multiorgan toxicity effects. In addition, the diverse signaling pathways involved are discussed to provide a comprehensive understanding of the underlying molecular mechanisms of triptolide in the regulation of target miRNAs.
Collapse
Affiliation(s)
- Kun Zhou
- Shanxi Institute of Energy, Taiyuan, Shanxi 030600, P.R. China
| | - Yinxia Chang
- College of Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, Shanxi 030619, P.R. China
| | - Bo Han
- College of Basic Medicine, Shanxi University of Chinese Medicine, Jinzhong, Shanxi 030619, P.R. China
| | - Rui Li
- College of Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, Shanxi 030619, P.R. China
| | - Yanming Wei
- College of Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, Shanxi 030619, P.R. China
| |
Collapse
|
9
|
Natural products in the reprogramming of cancer epigenetics. Toxicol Appl Pharmacol 2021; 417:115467. [PMID: 33631231 DOI: 10.1016/j.taap.2021.115467] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
Owing to the technological advancements, including next generation sequencing, the significance of deregulated epigenetic mechanisms in cancer initiation, progression and treatment has become evident. The accumulating knowledge relating to the epigenetic markers viz. DNA methylation, Histone modifications and non-coding RNAs make them one of the most interesting candidates for developing anti-cancer therapies. The reversibility of deregulated epigenetic mechanisms through environmental and dietary factors opens numerous avenues in the field of chemoprevention and drug development. Recent studies have proven that plant-derived natural products encompass a great potential in targeting epigenetic signatures in cancer and numerous natural products are being explored for their possibility to be considered as "epi-drug". This review intends to highlight the major aberrant epigenetic mechanisms and summarizes the essential functions of natural products like Resveratrol, Quercetin, Genistein, EGCG, Curcumin, Sulforaphane, Apigenin, Parthenolide and Berberine in modulating these aberrations. This knowledge along with the challenges and limitations in this field has potential and wider implications in developing novel and successful therapeutic strategies. The increased focus in the area will possibly provide a better understanding for the development of dietary supplements and/or drugs either alone or in combination. The interaction of epigenetics with different hallmarks of cancer and how natural products can be utilized to target them will also be interesting in the future therapeutic approaches.
Collapse
|
10
|
Participation of MicroRNAs in the Treatment of Cancer with Phytochemicals. Molecules 2020; 25:molecules25204701. [PMID: 33066509 PMCID: PMC7587345 DOI: 10.3390/molecules25204701] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/08/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer is a global health concern and one of the main causes of disease-related death. Even with considerable progress in investigations on cancer therapy, effective anti-cancer agents and regimens have thus far been insufficient. There has been compelling evidence that natural phytochemicals and their derivatives have potent anti-cancer activities. Plant-based anti-cancer agents, such as etoposide, irinotecan, paclitaxel, and vincristine, are currently being applied in medical treatments for patients with cancer. Further, the efficacy of plenty of phytochemicals has been evaluated to discover a promising candidate for cancer therapy. For developing more effective cancer therapy, it is required to apprehend the molecular mechanism deployed by natural compounds. MicroRNAs (miRNAs) have been realized to play a pivotal role in regulating cellular signaling pathways, affecting the efficacy of therapeutic agents in cancer. This review presents a feature of phytochemicals with anti-cancer activity, focusing mainly on the relationship between phytochemicals and miRNAs, with insights into the role of miRNAs as the mediators and the regulators of anti-cancer effects of phytochemicals.
Collapse
|
11
|
|