1
|
Kawana S, Okazaki M, Sakaue T, Hashimoto K, Nakata K, Choshi H, Tanaka S, Miyoshi K, Ohtani S, Ohara T, Sugimoto S, Matsukawa A, Toyooka S. Loss of Nr4a1 ameliorates endothelial cell injury and vascular leakage in lung transplantation from circulatory-death donor. J Heart Lung Transplant 2024:S1053-2498(24)01878-3. [PMID: 39369968 DOI: 10.1016/j.healun.2024.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/20/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024] Open
Abstract
BACKGROUND Ischemia-reperfusion injury (IRI) stands as a major trigger for primary graft dysfunction (PGD) in lung transplantation (LTx). Especially in LTx from donation after cardiac death (DCD), effective control of IRI following warm ischemia (WIRI) is crucial to prevent PGD. This study aimed to identify the key factors affecting WIRI in LTx from DCD. METHODS Previously reported RNA-sequencing dataset of lung WIRI was reanalyzed to identify nuclear receptor subfamily 4 group A member 1 (NR4A1) as the immediate early gene for WIRI. Dynamics of NR4A1 expression were verified using a mouse hilar clamp model. To investigate the role of NR4A1 in WIRI, a mouse model of LTx from DCD was established using Nr4a1 knockout (Nr4a1-/-) mice. RESULTS NR4A1 was located around vascular cells, and its protein levels in the lungs increased rapidly and transiently during WIRI. LTx from Nr4a1-/- donors significantly improved pulmonary graft function compared to wild-type donors. Histological analysis showed decreased microvascular endothelial cell death, neutrophil infiltration, and albumin leakage. Evans blue permeability assay demonstrated maintained pulmonary microvascular barrier integrity in grafts from Nr4a1-/- donors, correlating with diminished pulmonary edema. However, NR4A1 did not significantly affect the inflammatory response during WIRI, and IRI was not suppressed when a wild-type donor lung was transplanted into the Nr4a1-/- recipient. CONCLUSIONS Donor NR4A1 plays a specialized role in the positive regulation of endothelial cell injury and microvascular hyperpermeability. These findings demonstrate the potential of targeting NR4A1 interventions to alleviate PGD and improve outcomes in LTx from DCD.
Collapse
Affiliation(s)
- Shinichi Kawana
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Mikio Okazaki
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Tomohisa Sakaue
- Department of Cardiovascular and Thoracic Surgery, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan; Department of Cell Growth and Tumor Regulation, Proteo-Science Center (PROS), Ehime University, Shitsukawa, Toon, Ehime, Japan
| | - Kohei Hashimoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kentaro Nakata
- Department of Surgery, Division of Cardiovascular and Thoracic Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Haruki Choshi
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shin Tanaka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Kentaroh Miyoshi
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinji Ohtani
- Department of Cell Growth and Tumor Regulation, Proteo-Science Center (PROS), Ehime University, Shitsukawa, Toon, Ehime, Japan
| | - Toshiaki Ohara
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Seiichiro Sugimoto
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
2
|
Wang H, Fang F, Zhang M, Xu C, Liu J, Gao L, Zhao C, Wang Z, Zhong Y, Wang X. Nuclear receptor 4A1 ameliorates renal fibrosis by inhibiting vascular endothelial growth factor A induced angiogenesis in UUO rats. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119813. [PMID: 39142522 DOI: 10.1016/j.bbamcr.2024.119813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024]
Abstract
INTRODUCTION Angiogenesis is closely related to renal fibrosis; however, its basic mechanism remains unclear. In our study, we found that nuclear receptor 4A1 (NR4A1) inhibits vascular endothelial growth factor A (VEGFA)-induced angiogenesis, ameliorating renal fibrosis. METHODS We prepared a renal fibrosis animal model with unilateral ureteral obstruction (UUO) and NR4A1 knockdown UUO mice model, Using Human umbilical vein endothelial cells (HUVECs) to conduct all in vitro experiments. We then detected and analyzed the expression levels of NR4A1 and other genes related to angiogenesis and fibrosis. RESULTS The angiogenesis related genes, such as VEGFA, vascular endothelial growth factor receptor-2 (VEGFR-2), endoglin (CD105), as well as the expression of fibrosis related genes that included, α-smooth muscle actin (α-SMA), Vimentin, and Collagen I are all significantly increased in the UUO rat model. In addition, the expression of NR4A1 of the kidney tissue of UUO rats was significantly reduced. Therefore, according to the above results, we speculated that angiogenesis may exacerbate renal fibrosis and NR4A1 may repress renal fibrosis by inhibiting angiogenesis. To further verify the above results, we used VEGFA to stimulate HUVECs with (or without) overexpression or knockdown of NR4A1. The results showed that with prolonged stimulation using VEGFA, the expression of NR4A1 decreases. Overexpression of NR4A1 significantly inhibits the expression of related indicators of angiogenesis and renal fibrosis. Furthermore, knockdown of NR4A1 induces endothelial cell proliferation and migration; therefore, exacerbating angiogenesis and fibrosis. Finally, the results of NR4A1 knockdown UUO mice showed that knockdown of NR4A1 can aggravating kidney damage and induce the expression of angiogenesis and renal fibrosis related indicators, while UUO can significantly induce kidney damage, angiogenesis and renal fibrosis. When knockdown of NR4A1, renal kidney damage, angiogenesis and fibrosis becomes more severe than UUO. Thus, all of these results indicate that NR4A1 can ameliorate renal fibrosis by inhibiting angiogenesis. CONCLUSIONS NR4A1 can inhibit angiogenesis to ameliorate renal fibrosis.
Collapse
Affiliation(s)
- Hongshuang Wang
- Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Fang Fang
- Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Mengjuan Zhang
- Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Chang Xu
- Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Jiazhi Liu
- Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Lanjun Gao
- Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Chenchen Zhao
- Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Zheng Wang
- Hebei University of Chinese Medicine, Shijiazhuang 050091, China; Hebei Key Laboratory of Integrative Medicine on Liver-kidney Patterns, Shijiazhuang 050091, China; Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yan Zhong
- Hebei University of Chinese Medicine, Shijiazhuang 050091, China; Hebei Key Laboratory of Integrative Medicine on Liver-kidney Patterns, Shijiazhuang 050091, China; Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China.
| | - Xiangting Wang
- Hebei University of Chinese Medicine, Shijiazhuang 050091, China.
| |
Collapse
|
3
|
Jiang S, Su H. Exploration of the shared gene signatures and biological mechanisms between ischemia-reperfusion injury and antibody-mediated rejection in renal transplantation. Transpl Immunol 2024; 83:102001. [PMID: 38266883 DOI: 10.1016/j.trim.2024.102001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 12/22/2023] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Antibody-mediated rejection (ABMR) plays a crucial role in graft loss during allogeneic renal transplantation. In renal transplantation, ischemia-reperfusion injury (IRI) is unavoidable, serves as a major contributor to acute rejection, and is linked to graft loss. However, the mechanisms underlying IRI and ABMR are unclear. Therefore, this study aimed to investigate the shared genetic characteristics and biological mechanisms between IRI and ABMR. METHODS Gene expressions for IRI (GSE43974) and ABMR (GSE129166 and GSE36059) were retrieved from the Gene Expression Omnibus database. The shared differentially expressed genes (DEGs) of IRI and ABMR were identified, and subsequent functional enrichment analysis was performed. Immune cell infiltration in ABMR and its relationship with the shared DEGs were investigated using the CIBERSORT method. Random forest analysis, a protein-protein interaction network, and Cytoscape were used to screen hub genes, which were subsequently subjected to gene set enrichment analysis, miRNA prediction, and transcription factors analysis. The survival analysis was performed through Kaplan-Meier curves. Finally, drug compound prediction was performed on the shared DEGs using the Drug Signature Database. RESULTS Overall, 27 shared DEGs were identified between the renal IRI and ABMR groups. Among these, 24 genes exhibited increased co-expression, whereas none showed decreased co-expression. The shared DEGs were primarily enriched in the inflammation signaling pathways. Notably, CD4 memory T cells were identified as potential critical mediators of IRI, leading to ABMR. Tumor necrosis factor alpha-induced protein 3 (TNFAIP3), interferon regulatory factor 1 (IRF1), and early growth response 2 (EGR2) were identified as key components in the potential mechanism that link IRI and ABMR. Patients undergoing renal transplantation with higher expression levels of TNFAIP3, IRF1, and EGR2 exhibited decreased survival rates compared to those with lower expression levels. CONCLUSION Inflammation is a key mechanism that links IRI and ABMR, with a potential role played by CD4 memory T cells. Furthermore, TNFAIP3, IRF1, and EGR2 are implicated in the underlying mechanism between IRI and ABMR.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hua Su
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
4
|
Lin G, Jiang H, Zhang Z, Ning L, Zhang W, Peng L, Xu S, Sun W, Tao S, Zhang T, Tang L. Molecular mechanism of NR4A1/MDM2/P53 signaling pathway regulation inducing ferroptosis in renal tubular epithelial cells involved in the progression of renal ischemia-reperfusion injury. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166968. [PMID: 38008232 DOI: 10.1016/j.bbadis.2023.166968] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/26/2023] [Accepted: 11/20/2023] [Indexed: 11/28/2023]
Abstract
Revealing the possible molecular mechanism of the NR4A1 (nuclear receptor subfamily 4 group A member 1)-MDM2 (MDM2 proto-oncogene)-P53 (tumor protein p53) signaling pathway that induces ferroptosis in renal tubular epithelial cells. Renal ischemia-reperfusion injury (RIRI) -related datasets were obtained from the GEO database. Differentially expressed genes in RIRI were analyzed using R language, intersected with RIRI-related genes in the GeneCard database, and retrieved from the literature to finally obtain differential ferroptosis-related genes. An in vitro cell model of RIRI was constructed using mouse renal cortical proximal tubule epithelial cells (mRTEC cells) treated with hypoxia-reoxygenation (H/R). Bioinformatic analysis showed that NR4A1 may be involved in RIRI through the induction of ferroptosis; in addition, we predicted through online databases that the downstream target gene of NR4A1, MDM2, could be targeted and regulated by ChIP and dual luciferase assays, and that NR4A1 could prevent MDM2 by inhibiting it, and NR4A1 was able to promote ferroptosis by inhibiting the ubiquitinated degradation of P53. NR4A1 expression was significantly increased in mRTEC cells in the hypoxia/reoxygenation model, and the expression of ferroptosis-related genes was increased in vitro experiments. NR4A1 reduces the ubiquitinated degradation of P53 by targeting the inhibition of MDM2 expression, thereby inducing ferroptosis and ultimately exacerbating RIRI by affecting the oxidative respiration process in mitochondria and producing oxidized lipids. This study presents a novel therapeutic approach for the clinical treatment of renal ischemia-reperfusion injury by developing drugs that inhibit NR4A1 to alleviate kidney damage caused by renal ischemia-reperfusion.
Collapse
Affiliation(s)
- Guangzheng Lin
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Heng Jiang
- Department of General Surgery, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Zhihui Zhang
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Ling Ning
- Department of Infectious Diseases, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei 230000, PR China
| | - Wenbo Zhang
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Longfei Peng
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Shen Xu
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Wei Sun
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Sha Tao
- Second School of Clinical Medicine, Anhui Medical University, Hefei 230601, PR China
| | - Tao Zhang
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| | - Liang Tang
- Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| |
Collapse
|
5
|
Li M, Hu Y, Zhou H, Chen Y. NR4A1 Aggravates Myocardial Ischaemia-Reperfusion Injury by Inhibiting OPA1-Mediated Mitochondrial Fusion. J Cardiovasc Transl Res 2023; 16:1050-1063. [PMID: 37249897 DOI: 10.1007/s12265-023-10396-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 05/03/2023] [Indexed: 05/31/2023]
Abstract
Mitochondrial fusion is an important process that protects the myocardium. However, mitochondrial fusion is often inhibited in myocardial ischaemia-reperfusion injury (IR). The upstream mechanism of this effect is unclear. Nuclear receptor subfamily 4 group A member 1 (NR4A1) can aggravate myocardial IR and increase the level of oxidative stress, thereby affecting mitochondrial function and morphology. Inhibiting NR4A1 can improve oxidative stress levels and mitochondrial function and morphology, thereby reducing IR. Downregulating NR4A1 increases the expression level of the mitochondrial fusion-related protein optic atrophy 1 (OPA1), which is associated with these benefits. Inhibiting OPA1 expression with MYLS22 abrogates the effects of NR4A1 downregulation on IR. Furthermore, NR4A1 disrupts mitochondrial dynamics and activates the STING and NF-κB pathways. Insufficient mitochondrial fusion and increased apoptosis and inflammatory reactions worsen irreversible damage to cardiomyocytes. In conclusion, NR4A1 can exacerbate IR by inhibiting OPA1, causing mitochondrial damage.
Collapse
Affiliation(s)
- Muding Li
- Chinese PLA Medical School, Chinese PLA General Hospital, Beijing, China
| | - Yingyun Hu
- School of Medicine, Nankai University, Tianjin, China
| | - Hao Zhou
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Yundai Chen
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
6
|
Tao Y, Tang C, Wei J, Shan Y, Fang X, Li Y. Nr4a1 promotes renal interstitial fibrosis by regulating the p38 MAPK phosphorylation. Mol Med 2023; 29:63. [PMID: 37161357 PMCID: PMC10169452 DOI: 10.1186/s10020-023-00657-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 04/18/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Renal interstitial fibrosis (RIF) is a common pathway to end-stage renal disease regardless of the initial etiology. Currently, the molecular mechanisms for RIF remains not fully elucidated. Nuclear receptor subfamily 4 group A member 1(Nr4a1), a member of the NR4A subfamily of nuclear receptors, is a ligand-activated transcription factor. The role of Nr4a1 in RIF remains largely unknown. METHODS In this study, we determined the role and action mechanism of Nr4a1 in RIF. We used unilateral ureteral obstruction (UUO) mice and transforming growth factor (TGF)-β1-treated human renal proximal tubular epithelial cells (HK-2 cells) as in vivo and in vitro models of RIF. A specific Nr4a1 agonist Cytosporone B (Csn-B) was applied to activate Nr4a1 both in vivo and in vitro, and Nr4a1 small interfering RNA was applied in vitro. Renal pathological changes were evaluated by hematoxylin and eosin and Masson staining, and the expression of fibrotic proteins including fibronectin (Fn) and collagen-I (Col-I), and phosphorylated p38 MAPK was measure by immunohistochemical staining and western blot analysis. RESULTS The results showed that Nr4a1 was upregulated in UUO mouse kidneys, and was positively correlated with the degree of interstitial kidney injury and the levels of fibrotic proteins. Csn-B treatment aggravated UUO-induced renal interstitial fibrosis, and induced p38 MAPK phosphorylation. In vitro, TGF-β induced Nr4a1 expression, and Nr4a1 downregulation prevented TGF-β1-induced expression of Fn and Col-I and the activation of p38 MAPK. Csn-B induced fibrotic proteins expression and p38 MAPK phosphorylation, and moreover Csn-B induced fibrotic proteins expression was abrogated by treatment with p38 MAPK inhibitor SB203580. We provided further evidence that Csn-B treatment promoted cytoplasmic accumulation of Nr4a1. CONCLUSION The findings in the present study indicate that Nr4a1 promotes renal fibrosis potentially through activating p38 MAPK kinase.
Collapse
Affiliation(s)
- Yilin Tao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Human, China
- Key Laboratory of Kidney Disease and Blood Purification in Human Province, Changsha, 410011, Hunan, China
| | - Chengyuan Tang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Human, China
- Key Laboratory of Kidney Disease and Blood Purification in Human Province, Changsha, 410011, Hunan, China
| | - Ju Wei
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Human, China
- Key Laboratory of Kidney Disease and Blood Purification in Human Province, Changsha, 410011, Hunan, China
| | - Yi Shan
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Human, China
- Key Laboratory of Kidney Disease and Blood Purification in Human Province, Changsha, 410011, Hunan, China
| | - Xi Fang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Human, China
- Key Laboratory of Kidney Disease and Blood Purification in Human Province, Changsha, 410011, Hunan, China
| | - Ying Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Human, China.
- Key Laboratory of Kidney Disease and Blood Purification in Human Province, Changsha, 410011, Hunan, China.
| |
Collapse
|
7
|
Wang H, Zhang M, Fang F, Xu C, Liu J, Gao L, Zhao C, Wang Z, Zhong Y, Wang X. The nuclear receptor subfamily 4 group A1 in human disease. Biochem Cell Biol 2023; 101:148-159. [PMID: 36861809 DOI: 10.1139/bcb-2022-0331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Nuclear receptor 4A1 (NR4A1), a member of the NR4A subfamily, acts as a gene regulator in a wide range of signaling pathways and responses to human diseases. Here, we provide a brief overview of the current functions of NR4A1 in human diseases and the factors involved in its function. A deeper understanding of these mechanisms can potentially improve drug development and disease therapy.
Collapse
Affiliation(s)
- Hongshuang Wang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Mengjuan Zhang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Fang Fang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Chang Xu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Jiazhi Liu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Lanjun Gao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Chenchen Zhao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050091, China
| | - Zheng Wang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns Research, Shijiazhuang 050091, China.,Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Yan Zhong
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns Research, Shijiazhuang 050091, China.,Institute of Integrative Medicine, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Xiangting Wang
- Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns Research, Shijiazhuang 050091, China
| |
Collapse
|
8
|
Zheng Y, Tao Y, Zhan X, Wu Q. Nuclear receptor 4A1 (NR4A1) silencing protects hepatocyte against hypoxia-reperfusion injury in vitro by activating liver kinase B1 (LKB1)/AMP-activated protein kinase (AMPK) signaling. Bioengineered 2022; 13:8349-8359. [PMID: 35311465 PMCID: PMC9161842 DOI: 10.1080/21655979.2022.2053804] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 02/03/2023] Open
Abstract
The nuclear receptor 4A1 (NR4A1) is widely involved in the regulation of cell survival and is related to ischemic injury in several organs. This research examined the emerging role and mechanism of NR4A1 in hepatocyte ischemia-reperfusion injury (IRI). BRL-3A cells were subjected to hypoxia-reperfusion (H/R) to simulate an IRI model in vitro. The expression of NR4A1 and liver kinase B1 (LKB1)/AMP-activated protein kinase (AMPK) pathway-related proteins (LKB1, AMPK, and ACC) was detected by western blotting or RT-qPCR under H/R condition after NR4A1 overexpression or silencing. Then, radicicol, an inhibitor of LKB1 pathway, was used to determine the role of NR4A1 in hepatocyte H/R injury by regulating LKB1. Under the help of CCK-8 assay, cell viability was assessed. The levels of ROS, MDA, and SOD were determined with corresponding kits to evaluate oxidative stress. Additionally, RT-qPCR was employed to analyze the releases of the inflammatory factors. Flow cytometry was applied to estimate the apoptosis and its related proteins, and autophagy-associated proteins were assayed by western blotting. Results indicated that NR4A1 was highly expressed, while proteins in LKB1/AMPK signaling was downregulated in BRL-3A cells exposed to H/R. The activation of LKB1/AMPK pathway could be negatively regulated by NR4A1. Moreover, NR4A1 depletion conspicuously promoted cell viability, inhibited oxidative stress as well as inflammation, and induced apoptosis and autophagy in H/R-stimulated BRL-3A cells, which were reversed after radicicol intervention. Collectively, NR4A1/LKB1/AMPK axis is a new protective pathway involved in hepatocyte IRI, shedding new insights into the improvement of hepatocyte IRI.
Collapse
Affiliation(s)
- Yu Zheng
- Hepatobiliary Pancreatic Surgery Department, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Yingying Tao
- Emergency Intensive Care Unit, Hangzhou Ninth People’s Hospital, Hangzhou, China
| | - Xiaobo Zhan
- Hepatobiliary Pancreatic Surgery Department, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Qi Wu
- Hepatobiliary Pancreatic Surgery Department, Tongde Hospital of Zhejiang Province, Hangzhou, China
| |
Collapse
|
9
|
Cao J, Xu T, Zhou C, Wang S, Jiang B, Wu K, Ma L. NR4A1 knockdown confers hepatoprotection against ischaemia-reperfusion injury by suppressing TGFβ1 via inhibition of CYR61/NF-κB in mouse hepatocytes. J Cell Mol Med 2021; 25:5099-5112. [PMID: 33942481 PMCID: PMC8178266 DOI: 10.1111/jcmm.16493] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 11/23/2020] [Accepted: 03/16/2021] [Indexed: 12/19/2022] Open
Abstract
Nuclear receptor subfamily 4, group A, member 1 (NR4A1) can aggravate ischaemia‐reperfusion (I/R) injury in the heart, kidney and brain. Thus, the present study aimed to unravel the role of NR4A1 on hepatic I/R injury. For this purpose, the mouse hepatic I/R model and H/R‐exposed mouse hepatocytes model were established to stimulate the hepatic and hepatocellular damage. Then, the levels of ALT and AST as well as TNF‐α and IL‐1β expression were measured in the mouse serum and supernatant of hepatocyte s, respectively. Thereafter, we quantified the levels of NR4A1, CYR61, NF‐kB p65 and TGFβ1 under pathological conditions, and their interactions were analysed using ChIP and dual‐luciferase reporter gene assays. The in vivo and in vitro effects of NR4A1, CYR61, NF‐kB p65 and TGFβ1 on I/R‐induced hepatic and H/R‐induced hepatocellular damage were evaluated using gain‐ and loss‐of‐function approaches. NR4A1 was up‐regulated in the hepatic tissues of I/R‐operated mice and in H/R‐treated hepatocytes. Silencing NR4A1 relieved the I/R‐induced hepatic injury, as supported by suppression of ALT and AST as well as TNF‐α and IL‐1β. Meanwhile, NR4A1 knockdown attenuated the H/R‐induced hepatocellular damage by inhibiting the apoptosis of hepatocyte s. Moreover, we also found that NR4A1 up‐regulated the expression of CYR61 which resulted in the activation of the NF‐κB signalling pathway, thereby enhancing the transcription of TGFβ1, which was validated to be the mechanism underlying the contributory role of NR4A1 in hepatic I/R injury. Taken together, NR4A1 silencing reduced the expression of CYR61/NF‐κB/TGFβ1, thereby relieving the hepatic I/R injury.
Collapse
Affiliation(s)
- Jun Cao
- Department of hepatic and Laparoscopic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ting Xu
- The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China.,The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Chengming Zhou
- Department of hepatic and Laparoscopic Surgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Shaochuang Wang
- Department of Hepatobiliary Surgery, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Baofei Jiang
- Department of General surgery, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Kun Wu
- Department of General surgery, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Long Ma
- Department of Intensive Care Unit, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|