1
|
Arshi A, Mahmoudi E, Raeisi F, Dehghan Tezerjani M, Bahramian E, Ahmed Y, Peng C. Exploring potential roles of long non-coding RNAs in cancer immunotherapy: a comprehensive review. Front Immunol 2024; 15:1446937. [PMID: 39257589 PMCID: PMC11384988 DOI: 10.3389/fimmu.2024.1446937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/05/2024] [Indexed: 09/12/2024] Open
Abstract
Cancer treatment has long been fraught with challenges, including drug resistance, metastasis, and recurrence, making it one of the most difficult diseases to treat effectively. Traditional therapeutic approaches often fall short due to their inability to target cancer stem cells and the complex genetic and epigenetic landscape of tumors. In recent years, cancer immunotherapy has revolutionized the field, offering new hope and viable alternatives to conventional treatments. A particularly promising area of research focuses on non-coding RNAs (ncRNAs), especially long non-coding RNAs (lncRNAs), and their role in cancer resistance and the modulation of signaling pathways. To address these challenges, we performed a comprehensive review of recent studies on lncRNAs and their impact on cancer immunotherapy. Our review highlights the crucial roles that lncRNAs play in affecting both innate and adaptive immunity, thereby influencing the outcomes of cancer treatments. Key observations from our review indicate that lncRNAs can modify the tumor immune microenvironment, enhance immune cell infiltration, and regulate cytokine production, all of which contribute to tumor growth and resistance to therapies. These insights suggest that lncRNAs could serve as potential targets for precision medicine, opening up new avenues for developing more effective cancer immunotherapies. By compiling recent research on lncRNAs across various cancers, this review aims to shed light on their mechanisms within the tumor immune microenvironment.
Collapse
Affiliation(s)
- Asghar Arshi
- Department of Biology, York University, Toronto, ON, Canada
| | - Esmaeil Mahmoudi
- Young Researchers and Elite Club, Islamic Azad University, Shahrekord, Iran
| | | | - Masoud Dehghan Tezerjani
- Department of bioinformatics, School of Advanced Medical Technologies, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elham Bahramian
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Yeasin Ahmed
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, United States
| | - Chun Peng
- Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
2
|
Li L, Yu S, Dou N, Wang X, Gao Y, Li Y. A new tandem repeat-enriched lncRNA XLOC_008672 promotes gastric carcinogenesis by regulating G3BP1 expression. Cancer Sci 2024; 115:1851-1865. [PMID: 38581120 PMCID: PMC11145122 DOI: 10.1111/cas.16172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 04/08/2024] Open
Abstract
Aberrant expression of forkhead box transcription factor 1 (FOXM1) plays critical roles in a variety of human malignancies and predicts poor prognosis. However, little is known about the crosstalk between FOXM1 and long noncoding RNAs (lncRNAs) in tumorigenesis. The present study identifies a previously uncharacterized lncRNA XLOC_008672 in gastric cancer (GC), which is regulated by FOXM1 and possesses multiple copies of tandem repetitive sequences. LncRNA microarrays are used to screen differentially expressed lncRNAs in FOXM1 knockdown GC cells, and then the highest fold downregulation lncRNA XLOC_008672 is screened out. Sequence analysis reveals that the new lncRNA contains 62 copies of 37-bp tandem repeats. It is transcriptionally activated by FOXM1 and functions as a downstream effector of FOXM1 in GC cells through in vitro and in vivo functional assays. Elevated expression of XLOC_008672 is found in GC tissues and indicates worse prognosis. Mechanistically, XLOC_008672 can bind to small nuclear ribonucleoprotein polypeptide A (SNRPA), thereby enhancing mRNA stability of Ras-GTPase-activating protein SH3 domain-binding protein 1 (G3BP1) and, consequently, facilitating GC cell proliferation and migration. Our study discovers a new uncharacterized lncRNA XLOC_008672 involved in GC carcinogenesis and progression. Targeting FOXM1/XLOC_008672/SNRPA/G3BP1 signaling axis might be a promising therapeutic strategy for GC.
Collapse
Affiliation(s)
- Li Li
- Department of Oncology, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Shijun Yu
- Department of Oncology, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Ning Dou
- Department of Oncology, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Xiao Wang
- Department of Medical Oncology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Yong Gao
- Department of Oncology, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Yandong Li
- Department of Oncology, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| |
Collapse
|
3
|
Xing X, Liu M, Wang X, Guo Q, Wang H, Wang W. FKBP3 aggravates the malignant phenotype of diffuse large B-cell lymphoma by PARK7-mediated activation of Wnt/β-catenin signalling. J Cell Mol Med 2024; 28:e18041. [PMID: 37987202 PMCID: PMC10805489 DOI: 10.1111/jcmm.18041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 10/15/2023] [Accepted: 10/19/2023] [Indexed: 11/22/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is difficult to treat due to the high recurrence rate and therapy intolerance, so finding potential therapeutic targets for DLBCL is critical. FK506-binding protein 3 (FKBP3) contributes to the progression of various cancers and is highly expressed in DLBCL, but the role of FKBP3 in DLBCL and its mechanism are not clear. Our study demonstrated that FKBP3 aggravated the proliferation and stemness of DLBCL cells, and tumour growth in a xenograft mouse model. The interaction between FKBP3 and parkinsonism associated deglycase (PARK7) in DB cells was found using co-immunoprecipitation assay. Knockdown of FKBP3 enhanced the degradation of PARK7 through increasing its ubiquitination modification. Forkhead Box O3 (FOXO3) belongs to the forkhead family of transcription factors and inhibits DLBCL, but the underlying mechanism has not been reported. We found that FOXO3 bound the promoter of FKBP3 and then suppressed its transcription, eventually weakening DLBCL. Mechanically, FKBP3 activated Wnt/β-catenin signalling pathway mediated by PARK7. Together, FKBP3 increased PARK7 and then facilitated the malignant phenotype of DLBCL through activating Wnt/β-catenin pathway. These results indicated that FKBP3 might be a potential therapeutic target for the treatment of DLBCL.
Collapse
Affiliation(s)
- Xiaojing Xing
- Department of Hematology and Breast CancerCancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute)ShenyangChina
| | - Meichen Liu
- Department of Hematology and Breast CancerCancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute)ShenyangChina
| | - Xuguang Wang
- Department of PathologyShenyang Medical CollegeShenyangChina
| | - Qianxue Guo
- Department of Hematology and Breast CancerCancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute)ShenyangChina
| | - Hongyue Wang
- Department of Scientific Research and AcademicCancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute)ShenyangChina
| | - Wenxue Wang
- State Key Laboratory of Robotics, Shenyang Institute of AutomationChinese Academy of SciencesShenyangChina
- Institutes for Robotics and Intelligent ManufacturingChinese Academy of SciencesShenyangChina
| |
Collapse
|
4
|
Yang L, Li JN. E3 ubiquitin ligase neural precursor cell-expressed developmentally downregulated gene 4 motivates FOXA1 ubiquitination and restrains proliferation of diffuse large B-cell lymphoma cells via the Wnt/β-Catenin pathway. Cell Biol Int 2023; 47:1688-1701. [PMID: 37415495 DOI: 10.1002/cbin.12061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 05/11/2023] [Accepted: 06/10/2023] [Indexed: 07/08/2023]
Abstract
Neural precursor cell-expressed developmentally downregulated gene 4 (NEDD4) is an E3 ubiquitin ligase that recognizes substrates via protein-protein interactions and takes part in tumor development. This study aims to clarify NEDD4's functions in diffuse large B-cell lymphoma (DLBCL) and its downstream mechanisms. Collection of 53 DLBCL tissues and adjacent normal lymphoid tissues, and detection of NEDD4 and Forkhead box protein A1 (FOXA1) in the tissues were conducted. The selection of DLBCL cells was for FARAGE, and test of cells' advancement was after transfection. Analysis of NEDD4 and FOXA1's link, and test of Wnt/β-catenin pathway were implemented. In vivo tumor xenograft experiments were put into effect. Detection of the pathological conditions of tumor tissues and the positive Ki67 in the family was implemented. It came out NEDD4 was reduced in DLBCL tissues and cell lines, and FOXA1 was elevated; Enhancing NEDD4 or repressing FOXA1 refrained DLBCL cells' advancement; NEDD4 could combine with FOXA1 and trigger its ubiquitination and degradation; NEDD4 inactivates the Wnt/β-catenin pathway by motivating FOXA1 ubiquitination; NEDD4 enhancement refrained DLBCL growth in vivo. In conclusion, the E3 ubiquitin ligase NEDD4 accelerates FOXA1 ubiquitination but refrains DLBCL cell proliferation via the Wnt/β-Catenin pathway.
Collapse
Affiliation(s)
- Li Yang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing City, China
| | - Jun Nan Li
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing City, China
| |
Collapse
|
5
|
Baghdadi H, Heidari R, Zavvar M, Ahmadi N, Shakouri Khomartash M, Vahidi M, Mohammadimehr M, Bashash D, Ghorbani M. Long Non-Coding RNA Signatures in Lymphopoiesis and Lymphoid Malignancies. Noncoding RNA 2023; 9:44. [PMID: 37624036 PMCID: PMC10458434 DOI: 10.3390/ncrna9040044] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/09/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
Lymphoid cells play a critical role in the immune system, which includes three subgroups of T, B, and NK cells. Recognition of the complexity of the human genetics transcriptome in lymphopoiesis has revolutionized our understanding of the regulatory potential of RNA in normal lymphopoiesis and lymphoid malignancies. Long non-coding RNAs (lncRNAs) are a class of RNA molecules greater than 200 nucleotides in length. LncRNAs have recently attracted much attention due to their critical roles in various biological processes, including gene regulation, chromatin organization, and cell cycle control. LncRNAs can also be used for cell differentiation and cell fate, as their expression patterns are often specific to particular cell types or developmental stages. Additionally, lncRNAs have been implicated in lymphoid differentiation, such as regulating T-cell and B-cell development, and their expression has been linked to immune-associated diseases such as leukemia and lymphoma. In addition, lncRNAs have been investigated as potential biomarkers for diagnosis, prognosis, and therapeutic response to disease management. In this review, we provide an overview of the current knowledge about the regulatory role of lncRNAs in physiopathology processes during normal lymphopoiesis and lymphoid leukemia.
Collapse
Affiliation(s)
- Hamed Baghdadi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, AJA University of Medical Sciences, Tehran 1411718541, Iran; (H.B.); (M.V.); (M.M.)
| | - Reza Heidari
- Research Center for Cancer Screening and Epidemiology, AJA University of Medical Sciences, Tehran 1411718541, Iran;
- Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran 1411718541, Iran;
| | - Mahdi Zavvar
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran 443614177, Iran;
| | - Nazanin Ahmadi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
| | | | - Mahmoud Vahidi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, AJA University of Medical Sciences, Tehran 1411718541, Iran; (H.B.); (M.V.); (M.M.)
- Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran 1411718541, Iran;
| | - Mojgan Mohammadimehr
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, AJA University of Medical Sciences, Tehran 1411718541, Iran; (H.B.); (M.V.); (M.M.)
- Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran 1411718541, Iran;
| | - Davood Bashash
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
| | - Mahdi Ghorbani
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, AJA University of Medical Sciences, Tehran 1411718541, Iran; (H.B.); (M.V.); (M.M.)
- Medical Biotechnology Research Center, AJA University of Medical Sciences, Tehran 1411718541, Iran;
| |
Collapse
|
6
|
Yu S, Han R, Gan R. The Wnt/β-catenin signalling pathway in Haematological Neoplasms. Biomark Res 2022; 10:74. [PMID: 36224652 PMCID: PMC9558365 DOI: 10.1186/s40364-022-00418-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 11/10/2022] Open
Abstract
Leukaemia and lymphoma are common malignancies. The Wnt pathway is a complex network of proteins regulating cell proliferation and differentiation, as well as cancer development, and is divided into the Wnt/β-catenin signalling pathway (the canonical Wnt signalling pathway) and the noncanonical Wnt signalling pathway. The Wnt/β-catenin signalling pathway is highly conserved evolutionarily, and activation or inhibition of either of the pathways may lead to cancer development and progression. The aim of this review is to analyse the mechanisms of action of related molecules in the Wnt/β-catenin pathway in haematologic malignancies and their feasibility as therapeutic targets.
Collapse
Affiliation(s)
- Siwei Yu
- Cancer Research Institute, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, P. R. China
| | - Ruyue Han
- Cancer Research Institute, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, P. R. China
| | - Runliang Gan
- Cancer Research Institute, Key Laboratory of Cancer Cellular and Molecular Pathology in Hunan Province, Hengyang Medical School, University of South China, 421001, Hengyang, Hunan, P. R. China.
| |
Collapse
|
7
|
Noncoding RNAs as novel immunotherapeutic tools against cancer. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 129:135-161. [PMID: 35305717 DOI: 10.1016/bs.apcsb.2021.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Immunotherapy is implemented as an important treatment strategy in various malignancies. In cancer, immunotherapy is employed for successful killing of tumor cells with high specificity and greater efficacy, with minimum side effects. Despite various available strategies, cellular immunotherapy including innate (NK cells, macrophages, dendritic cells) and adaptive (B cells and T cells) immune cells plays a critical role in tumor microenvironment. Since past few years, many drugs targeting immune checkpoint proteins including CTLA-4 and PD-1/PD-L1 have been investigated as immunotherapy approach against cancer but complete effectiveness still remains a question, as diverse mechanisms involved in tumorigenesis may result in the development of cancer cell resistance. Number of evidences have highlighted the significant role of non-coding RNAs (ncRNAs) in regulating multiple stages of cancer initiation, progression & immunity. ncRNAs comprises 98% human transcriptome and are basically considered as dark genome. Among ncRNAs, miRNAs and lncRNAs have been extensively studied in regulating diverse processes of cancer tumorigenesis. Upregulation of oncogenic and downregulation of tumor suppressive miRNAs/lncRNAs has been reported to facilitate the cancer progression and invasiveness. This chapter summarizes how an interplay between ncRNAs and immune cells in cancer pathogenesis can be therapeutically targeted to improve current treatment regimen. Strategies should be employed to improve the efficacy and reduce off-target effects of ncRNA based immunotherapy. Henceforth, combination of ncRNAs and available immunotherapy can be argued to enhance the efficacy of existing immunotherapeutic approaches against cancer to improve patient's survival.
Collapse
|
8
|
Lift the curtain on long non-coding RNAs in hematological malignancies: Pathogenic elements and potential targets. Cancer Lett 2022; 536:215645. [DOI: 10.1016/j.canlet.2022.215645] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/01/2022] [Accepted: 03/12/2022] [Indexed: 12/19/2022]
|
9
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Jamali E. The emerging role non-coding RNAs in B cell-related disorders. Cancer Cell Int 2022; 22:91. [PMID: 35193592 PMCID: PMC8862212 DOI: 10.1186/s12935-022-02521-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/10/2022] [Indexed: 12/17/2022] Open
Abstract
Long non-coding RNAs and microRNAs have recently attained much attention regarding their role in the development of B cell lineage as well as participation in the lymphomagenesis. These transcripts have a highly cell type specific signature which endows them the potential to be used as biomarkers for clinical situations. Aberrant expression of several non-coding RNAs has been linked with B cell malignancies and immune related disorders such as rheumatoid arthritis, systemic lupus erythematous, asthma and graft-versus-host disease. Moreover, these transcripts can alter response of immune system to infectious conditions. miR-7, miR-16-1, miR-15a, miR-150, miR-146a, miR-155, miR-212 and miR-132 are among microRNAs whose role in the development of B cell-associated disorders has been investigated. Similarly, SNHG14, MALAT1, CRNDE, AL133346.1, NEAT1, SMAD5-AS1, OR3A4 and some other long non-coding RNAs participate in this process. In the current review, we describe the role of non-coding RNAs in B cell malignancies.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Elena Jamali
- Department of Pathology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Yang H, Wang L, Zheng Y, Hu G, Ma H, Shen L. Knockdown of zinc finger protein 267 suppresses diffuse large B-cell lymphoma progression, metastasis, and cancer stem cell properties. Bioengineered 2022; 13:1686-1701. [PMID: 35001816 PMCID: PMC8805851 DOI: 10.1080/21655979.2021.2014644] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/20/2021] [Indexed: 12/12/2022] Open
Abstract
Zinc finger protein 267 (ZNF267) is a member of the Kruppel-like transcription factor family, which regulates various biological processes such as cell proliferation and differentiation. However, the biological significance of ZNF267 and its potential role in diffuse large B-cell lymphoma (DLBCL) remain to be documented. Experiments were herein conducted to study the role of ZNF267 in DLBCL. real-time quantitative reverse transcription PCR and Western blotting assays were conducted to detect the expression of ZNF267 in tissues and cells. Tissue microarray and bioinformatics analyses of public data were also done to detect the expression status and clinical significance of ZNF267. Functional cell experiments including CCK8 assay, colony formation assay, 5-ethynyl-2'-deoxyuridine (EDU) assay, terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) assay, transwell assay, and wound healing assay were conducted to study the effects of ZNF267 knockdown and overexpression on cell proliferation and mobility. Xenograft assay was also conducted to confirm the effects of ZNF267 knockdown in vivo. In the present study, we found ZNF267 was significantly upregulated in DLBCL and predicted a poor survival outcome based on the bioinformatics analysis. Functionally, the knockdown of ZNF267 resulted in less cell proliferation and mobility, whereas the overexpression led to enhanced cell proliferation and mobility. Animal experiments also confirmed that ZNF267 silence contributed to less tumor growth and less lung metastasis. Further analysis showed that ZFN267 knockdown resulted in decreased epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) properties. Our results suggest that ZNF267 is an oncogene in DLBCL and its silence could compromise the aggression of DLBCL, which makes ZNF267 a promising therapeutic target.
Collapse
Affiliation(s)
- Hua Yang
- Department of Hematology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Linmei Wang
- Department of Resoiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingbin Zheng
- Department of General Surgery, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guiming Hu
- Department of Pathology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongyan Ma
- Department of Hematology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liyun Shen
- Department of Hematology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Fernandes M, Marques H, Teixeira AL, Medeiros R. Competitive Endogenous RNA Network Involving miRNA and lncRNA in Non-Hodgkin Lymphoma: Current Advances and Clinical Perspectives. Biomedicines 2021; 9:1934. [PMID: 34944752 PMCID: PMC8698845 DOI: 10.3390/biomedicines9121934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 11/18/2022] Open
Abstract
Non-Hodgkin lymphoma (NHL) is a heterogeneous malignancy with variable patient outcomes. There is still a lack of understanding about the different players involved in lymphomagenesis, and the identification of new diagnostic and prognostic biomarkers is urgent. MicroRNAs and long non-coding RNAs emerged as master regulators of B-cell development, and their deregulation has been associated with the initiation and progression of lymphomagenesis. They can function by acting alone or, as recently proposed, by creating competing endogenous RNA (ceRNA) networks. Most studies have focused on individual miRNAs/lncRNAs function in lymphoma, and there is still limited data regarding their interactions in lymphoma progression. The study of miRNAs' and lncRNAs' deregulation in NHL, either alone or as ceRNAs networks, offers new insights into the molecular mechanisms underlying lymphoma pathogenesis and opens a window of opportunity to identify potential diagnostic and prognostic biomarkers. In this review, we summarized the current knowledge regarding the role of miRNAs and lncRNAs in B-cell lymphoma, including their interactions and regulatory networks. Finally, we summarized the studies investigating the potential of miRNAs and lncRNAs as clinical biomarkers, with a special focus on the circulating profiles, to be applied as a non-invasive, easy-to-obtain, and reproducible liquid biopsy for dynamic management of NHL patients.
Collapse
Affiliation(s)
- Mara Fernandes
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (A.L.T.)
- Research Department of the Portuguese League against Cancer Regional Nucleus of the North (LPCC-NRN), 4200-177 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
| | - Herlander Marques
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal;
- ICVS/3B’s–PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- Department of Oncology, Hospital de Braga, 4710-243 Braga, Portugal
- CINTESIS, Center for Health Technology and Services Research, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| | - Ana Luísa Teixeira
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (A.L.T.)
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-513 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), 4200-072 Porto, Portugal; (M.F.); (A.L.T.)
- Research Department of the Portuguese League against Cancer Regional Nucleus of the North (LPCC-NRN), 4200-177 Porto, Portugal
- Faculty of Medicine, University of Porto (FMUP), 4200-319 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-513 Porto, Portugal
- Biomedical Research Center (CEBIMED), Faculty of Health Sciences of Fernando Pessoa University (UFP), 4249-004 Porto, Portugal
| |
Collapse
|
12
|
Miao Y, Chen X, Qin M, Zhou W, Wang Y, Ji Y. lncRNA GAS5, as a ceRNA, inhibits the proliferation of diffuse large B‑cell lymphoma cells by regulating the miR‑18a‑5p/RUNX1 axis. Int J Oncol 2021; 59:94. [PMID: 34698360 PMCID: PMC8562389 DOI: 10.3892/ijo.2021.5274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 09/29/2021] [Indexed: 12/11/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a common and fatal malignant tumor caused by B-lymphocytes. Long non-coding RNA (lncRNA) GAS5 (growth arrest specific 5) has been reported to function as a tumor suppressor gene, and is differentially expressed in DLBCL. The present study aimed to explore the potential mechanisms of action of lncRNA GAS5 in the proliferation of DLBCL cells. The expression levels of GAS5, miR-18a-5p and Runt-related transcription factor 1 (RUNX1) in DLBCL cell lines were detected using reverse transcription-quantitative polymerase chain reaction, and their effects on cell proliferation, the cell cycle and apoptosis were determined using 5-ethynyl-2′-deoxyuridine assay and flow cytometry. Dual-luciferase reporter and RNA pull-down assays were used to evaluate the interaction between GAS5 and miR-18a-5p, or between miR-18a-5p and RUNX1. Chromatin immunoprecipitation assay was used to identify the interaction between RUNX1 and BAX. The expression levels of GAS5 and RUNX1 were downregulated; however, miR-18a-5p expression was upregulated in the DLBCL cell lines compared with the normal controls. GAS5 directly interacted with miR-18a-5p by acting as a competing endogenous RNA (ceRNA) and reversed the low expression of RUNX1 induced by miR-18a-5p. Additionally, the knockdown of RUNX1 reversed the inhibitory effects of GAS5 on the proliferation and cell cycle G1 arrest, and its promoting effects on the apoptosis of OCI-Ly3 and TMD8 cells. Moreover, RUNX1 enhanced BAX expression by directly binding to the BAX promoter. On the whole, the present study demonstrates that GAS5 functions as a ceRNA, inhibiting DLBCL cell proliferation by sponging miR-18a-5p to upregulate RUNX1 expression. These findings may provide a potential therapeutic strategy for DLBCL.
Collapse
Affiliation(s)
- Yinsha Miao
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaodong Chen
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Mengting Qin
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Wen Zhou
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Yang Wang
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Yanhong Ji
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
13
|
Decruyenaere P, Offner F, Vandesompele J. Circulating RNA biomarkers in diffuse large B-cell lymphoma: a systematic review. Exp Hematol Oncol 2021; 10:13. [PMID: 33593440 PMCID: PMC7885416 DOI: 10.1186/s40164-021-00208-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/06/2021] [Indexed: 12/31/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common histological subtype of non-Hodgkin's lymphomas (NHL). DLBCL is an aggressive malignancy that displays a great heterogeneity in terms of morphology, genetics and biological behavior. While a sustained complete remission is obtained in the majority of patients with standard immunochemotherapy, patients with refractory of relapsed disease after first-line treatment have a poor prognosis. This patient group represents an important unmet need in lymphoma treatment. In recent years, improved understanding of the underlying molecular pathogenesis had led to new classification and prognostication tools, including the development of cell-free biomarkers in liquid biopsies. Although the majority of studies have focused on the use of cell-free fragments of DNA (cfDNA), there has been an increased interest in circulating-free coding and non-coding RNA, including messenger RNA (mRNA), microRNA (miRNA), long non-coding RNA (lncRNA) and circular RNA (circRNA), as well as RNA encapsulated in extracellular vesicles or tumor-educated platelets (TEPs). We performed a systematic search in PubMed to identify articles that evaluated circulating RNA as diagnostic, subtype, treatment response or prognostic biomarkers in a human DLBCL population. A total of 35 articles met the inclusion criteria. The aim of this systematic review is to present the current understanding of circulating RNA molecules as biomarker in DLBCL and to discuss their future potential.
Collapse
Affiliation(s)
- Philippe Decruyenaere
- Department of Hematology, Ghent University Hospital, 9K12, Campus UZ Ghent, Corneel Heymanslaan 10, 9000 Ghent, Belgium
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Fritz Offner
- Department of Hematology, Ghent University Hospital, 9K12, Campus UZ Ghent, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Jo Vandesompele
- OncoRNALab, Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
14
|
Shi Y, Ding D, Qu R, Tang Y, Hao S. Non-Coding RNAs in Diffuse Large B-Cell Lymphoma. Onco Targets Ther 2020; 13:12097-12112. [PMID: 33262609 PMCID: PMC7699984 DOI: 10.2147/ott.s281810] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 11/09/2020] [Indexed: 12/19/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma worldwide. The molecular mechanisms underlying DLBCL have not been fully elucidated, and approximately 40% of patients who undergo standard chemoimmunotherapy still present with primary refractory disease or relapse. Non-coding RNAs (ncRNAs), a group of biomolecules functioning at the RNA level, are increasingly recognized as vital components of molecular biology. With the development of RNA-sequencing (RNA-Seq) technology, accumulating evidence shows that ncRNAs are important mediators of diverse biological processes such as cell proliferation, differentiation, and apoptosis. They are also considered promising biomarkers and better candidates than proteins and genes for the early recognition of disease onset, as they are associated with relative stability, specificity, and reproducibility. In this review, we provide the first comprehensive description of the current knowledge regarding three groups of ncRNAs-microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs)-focusing on their characteristics, molecular functions, as well as diagnostic and therapeutic potential in DLBCL. This review provides an exhaustive account for researchers to explore novel biomarkers for the diagnosis and prognosis of DLBCL and therapeutic targets.
Collapse
Affiliation(s)
- Yan Shi
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Daihong Ding
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Rongfeng Qu
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Yan Tang
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| | - Shuhong Hao
- Department of Hematology and Oncology, The Second Hospital of Jilin University, Changchun, Jilin, People’s Republic of China
| |
Collapse
|
15
|
Long noncoding RNA: a dazzling dancer in tumor immune microenvironment. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:231. [PMID: 33148302 PMCID: PMC7641842 DOI: 10.1186/s13046-020-01727-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) are a class of endogenous, non-protein coding RNAs that are highly linked to various cellular functions and pathological process. Emerging evidence indicates that lncRNAs participate in crosstalk between tumor and stroma, and reprogramming of tumor immune microenvironment (TIME). TIME possesses distinct populations of myeloid cells and lymphocytes to influence the immune escape of cancer, the response to immunotherapy, and the survival of patients. However, hitherto, a comprehensive review aiming at relationship between lncRNAs and TIME is missing. In this review, we focus on the functional roles and molecular mechanisms of lncRNAs within the TIME. Furthermore, we discussed the potential immunotherapeutic strategies based on lncRNAs and their limitations.
Collapse
|
16
|
Li J, Zou J, Wan X, Sun C, Peng F, Chu Z, Hu Y. The Role of Noncoding RNAs in B-Cell Lymphoma. Front Oncol 2020; 10:577890. [PMID: 33194698 PMCID: PMC7645065 DOI: 10.3389/fonc.2020.577890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/20/2020] [Indexed: 12/19/2022] Open
Abstract
In recent years, emerging evidence has suggested that noncoding RNAs (ncRNAs) participate in nearly every aspect of biological processes and play a crucial role in the genesis and progression of numerous tumors, including B-cell lymphoma. The exploration of ncRNA dysregulations and their functions in B-cell lymphoma provides new insights into lymphoma pathogenesis and is essential for indicating future clinical trials and optimizing the diagnostic and therapeutic strategies. In this review, we summarize the role of ncRNAs in B-cell lymphoma and discuss their potential in clinical applications.
Collapse
Affiliation(s)
- Jingwen Li
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zou
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyue Wan
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyan Sun
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Peng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangbo Chu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Collaborative Innovation Center of Hematology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|