1
|
Gonçales NG, Gonçalves BÔP, Silva LM, da Silva Filho AL, da Conceição Braga L. TNFRSF10D expression as a potential biomarker for cisplatin-induced damage and ovarian tumor relapse prediction. Pathol Res Pract 2024; 263:155592. [PMID: 39255671 DOI: 10.1016/j.prp.2024.155592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
Among gynecological malignancies, ovarian cancer (OC) presents the most challenging diagnostic scenario. Despite exhaustive efforts, up to 90 % of patients treated with taxane/platinum-based chemotherapy experience relapse, leading to poor survival rates. Identifying new molecular markers that can characterize disease aggressiveness, chemoresistance, recurrence risk, and metastasis is crucial. This study aimed to assess the susceptibility of three ovarian tumor cell lines (TOV-21G, SKOV-3, and OV-90) to cisplatin and paclitaxel, and to investigate the influence of these treatments on the mRNA expression of TANK, RIPK1, NFKB1, TNFRSF10D, and TRAF2. Among the cell lines, SKOV-3 ovarian adenocarcinoma cells demonstrated the highest resistance to cisplatin treatment (0.125 mg/mL), followed by TOV-21G (0.076 mg/mL) and OV-90 cells (0.028 mg/mL). Regarding paclitaxel treatment, the SKOV-3 cell line exhibited the highest resistance (1.4 µg/mL), followed by OV-90 (1.3 µg/mL) and TOV-21G cells (0.9 µg/mL). Gene expression analysis after paclitaxel treatment remained unchanged; however, after cisplatin treatment, TNFRSF10D was observed to be upregulated nearly 100-fold in SKOV-3 compared to all other cell lines studied. SKOV-3 is described as cisplatin and tumor necrosis factor-resistant. Despite the defective signaling of the TNFRSF10D receptor for apoptosis, it can activate the NFKB transcription factor through non-canonical TRAIL signaling, contributing to a pro-inflammatory immune response. In light of this, damage associated with cisplatin increases TNFRSF10D expression and may promote cell survival through non-canonical NFKB pathway activation. This suggests that resistance to TRAIL-induced apoptosis in these cells could serve as a promising chemoresistance biomarker in OC.
Collapse
Affiliation(s)
- Nikole Gontijo Gonçales
- Cellular Biology, Research and Development Department, Ezequiel Dias Foundation, Belo Horizonte, Minas Gerais 30510-010, Brazil; Department of General Biology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Bryan Ôrtero Perez Gonçalves
- Cellular Biology, Research and Development Department, Ezequiel Dias Foundation, Belo Horizonte, Minas Gerais 30510-010, Brazil; Translational Research Laboratory in Oncology, Mário Penna Institute, Belo Horizonte, MG, Brazil
| | - Luciana Maria Silva
- Cellular Biology, Research and Development Department, Ezequiel Dias Foundation, Belo Horizonte, Minas Gerais 30510-010, Brazil
| | - Agnaldo Lopes da Silva Filho
- Department of Gynecology and Obstetrics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Letícia da Conceição Braga
- Cellular Biology, Research and Development Department, Ezequiel Dias Foundation, Belo Horizonte, Minas Gerais 30510-010, Brazil; Translational Research Laboratory in Oncology, Mário Penna Institute, Belo Horizonte, MG, Brazil.
| |
Collapse
|
2
|
Ahmad F, Sudesh R, Ahmed AT, Arumugam M, Mathkor DM, Haque S. The multifaceted functions of long non-coding RNA HOTAIR in neuropathologies and its potential as a prognostic marker and therapeutic biotarget. Expert Rev Mol Med 2024; 26:e11. [PMID: 38682637 PMCID: PMC11140545 DOI: 10.1017/erm.2024.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/21/2023] [Accepted: 03/08/2024] [Indexed: 05/01/2024]
Abstract
Long non-coding RNAs (lncRNAs) are progressively being perceived as prominent molecular agents controlling multiple aspects of neuronal (patho)physiology. Amongst these is the HOX transcript antisense intergenic RNA, often abbreviated as HOTAIR. HOTAIR epigenetically regulates its target genes via its interaction with two different chromatin-modifying agents; histone methyltransferase polycomb-repressive complex 2 and histone demethylase lysine-specific demethylase 1. Parenthetically, HOTAIR elicits trans-acting sponging function against multiple micro-RNA species. Oncological research studies have confirmed the pathogenic functions of HOTAIR in multiple cancer types, such as gliomas and proposed it as a pro-oncological lncRNA. In fact, its expression has been suggested to be a predictor of the severity/grade of gliomas, and as a prognostic biomarker. Moreover, a propound influence of HOTAIR in other aspects of brain heath and disease states is just beginning to be unravelled. The objective of this review is to recapitulate all the relevant data pertaining to the regulatory roles of HOTAIR in neuronal (patho)physiology. To this end, we discuss the pathogenic mechanisms of HOTAIR in multiple neuronal diseases, such as neurodegeneration, traumatic brain injury and neuropsychiatric disorders. Finally, we also summarize the results from the studies incriminating HOTAIR in the pathogeneses of gliomas and other brain cancers. Implications of HOTAIR serving as a suitable therapeutic target in neuropathologies are also discussed.
Collapse
Affiliation(s)
- Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences (SBST), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Ravi Sudesh
- Department of Biomedical Sciences, School of Bio Sciences (SBST), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Atheeq Toufeeq Ahmed
- Department of Biotechnology, School of Bio Sciences (SBST), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Mohanapriya Arumugam
- Department of Biotechnology, School of Bio Sciences (SBST), Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Darin Mansor Mathkor
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan 45142, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| |
Collapse
|
3
|
Ahmad F, Sudesh R, Ahmed AT, Haque S. Roles of HOTAIR Long Non-coding RNA in Gliomas and Other CNS Disorders. Cell Mol Neurobiol 2024; 44:23. [PMID: 38366205 PMCID: PMC10873238 DOI: 10.1007/s10571-024-01455-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 01/18/2024] [Indexed: 02/18/2024]
Abstract
HOX transcript antisense intergenic RNA (HOTAIR) is a long non-coding RNA (lncRNA) which is increasingly being perceived as a tremendous molecular mediator of brain pathophysiology at multiple levels. Epigenetic regulation of target gene expression carried out by HOTAIR is thorough modulation of chromatin modifiers; histone methyltransferase polycomb repressive complex 2 (PRC2) and histone demethylase lysine-specific demethylase 1 (LSD1). Incidentally, HOTAIR was the first lncRNA shown to elicit sponging of specific microRNA (miRNA or miR) species in a trans-acting manner. It has been extensively studied in various cancers, including gliomas and is regarded as a prominent pro-tumorigenic and pro-oncogenic lncRNA. Indeed, the expression of HOTAIR may serve as glioma grade predictor and prognostic biomarker. The objective of this timely review is not only to outline the multifaceted pathogenic roles of HOTAIR in the development and pathophysiology of gliomas and brain cancers, but also to delineate the research findings implicating it as a critical regulator of overall brain pathophysiology. While the major focus is on neuro-oncology, wherein HOTAIR represents a particularly potent underlying pathogenic player and a suitable therapeutic target, mechanisms underlying the regulatory actions of HOTAIR in neurodegeneration, traumatic, hypoxic and ischemic brain injuries, and neuropsychiatric disorders are also presented.
Collapse
Affiliation(s)
- Faraz Ahmad
- Department of Biotechnology, School of Bio Sciences (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India.
| | - Ravi Sudesh
- Department of Biomedical Sciences, School of Bio Sciences (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - A Toufeeq Ahmed
- Department of Biotechnology, School of Bio Sciences (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, 1102 2801, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, 13306, United Arab Emirates
| |
Collapse
|
4
|
Liu C, Yang T, Cheng C, Huo J, Peng X, Zhang Y. Dauricine attenuates Oct4/sonic hedgehog co-activated stemness and induces reactive oxygen species-mediated mitochondrial apoptosis via AKT/β-catenin signaling in human neuroblastoma and glioblastoma stem-like cells. Phytother Res 2024; 38:131-146. [PMID: 37821355 DOI: 10.1002/ptr.8029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 09/02/2023] [Accepted: 09/22/2023] [Indexed: 10/13/2023]
Abstract
Neuroblastoma and glioblastoma are primary malignant tumors of the nervous system, with frequent relapse and limited clinical therapeutic drugs. The failure of their treatment is due to the tumor cells exhibiting cancer stem-like cells (CSLCs) properties. Octamer binding transcription factor 4 (Oct4) is involved in mediating CSLCs, our previous work found that Oct4-driven reprogramming of astrocytes into induced neural stem cells was potentiated with continuous sonic hedgehog (Shh) stimulation. In this study, we aimed to study the importance of Oct4 and Shh combination in the stemness properties induction of neuroblastoma and glioblastoma cells, and evaluate the anti-stemness effect of dauricine (DAU), a natural product of bis-benzylisoquinoline alkaloid. The effect of Oct4 and Shh co-activation on cancer stemness was evaluated by tumor spheres formation model and flow cytometry analysis. Then the effects of DAU on SH-SY5Y and T98-G cells were assessed by the MTT, colony formation, and tumor spheres formation model. DAU acts on Oct4 were verified using the Western blotting, MTT, and so on. Mechanistic studies were explored by siRNA transfection assay, Western blotting, and flow cytometry analysis. We identified that Shh effectively improved Oct4-mediated generation of stemness in SH-SY5Y and T98-G cells, and Oct4 and Shh co-activation promoted cell growth, the resistance of apoptosis. In addition, DAU, a natural product, was found to be able to attenuate Oct4/Shh co-activated stemness and induce cell cycle arrest and apoptosis via blocking AKT/β-catenin signaling in neuroblastoma and glioblastoma, which contributed to the neuroblastoma and glioblastoma cells growth inhibition by DAU. In summary, our results indicated that the treatment of DAU may be served as a potential therapeutic method in neuroblastoma and glioblastoma.
Collapse
Affiliation(s)
- Cuicui Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
- Department of Science and Education, Hong Hui Hospital, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Tianfeng Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, People's Republic of China
| | - Cheng Cheng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, People's Republic of China
| | - Jian Huo
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, People's Republic of China
| | - Xiuhong Peng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, People's Republic of China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
- State Key Laboratory of Shaanxi for Natural Medicines Research and Engineering, Xi'an, People's Republic of China
| |
Collapse
|
5
|
Jain D, Somasundaram DB, Aravindan S, Yu Z, Baker A, Esmaeili A, Aravindan N. Prognostic significance of NT5E/CD73 in neuroblastoma and its function in CSC stemness maintenance. Cell Biol Toxicol 2023; 39:967-989. [PMID: 34773529 DOI: 10.1007/s10565-021-09658-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/10/2021] [Indexed: 12/22/2022]
Abstract
Cluster of differentiation 73 (CD73), a cell surface enzyme that catalyzes adenosine monophosphate (AMP) breakdown to adenosine, is differentially expressed in cancers and has prognostic significance. We investigated its expression profile in neuroblastoma (NB), its association with NB clinical outcomes, and its influence in the regulation of cancer stem cells' (CSCs) stemness maintenance. RNA-Seq data mining (22 independent study cohorts, total n = 3836) indicated that high CD73 can predict good NB prognosis. CD73 expression (immunohistochemistry) gauged in an NB patient cohort (n = 87) showed a positive correlation with longer overall survival (OS, P = 0.0239) and relapse-free survival (RFS, P = 0.0242). Similarly, high CD73 correlated with longer OS and RFS in advanced disease stages, MYCN non-amplified (MYCN-na), and Stage-4-MYCN-na subsets. Despite no definite association in children < 2 years old (2Y), high CD73 correlated with longer OS (P = 0.0294) and RFS (P = 0.0315) in children > 2Y. Consistently, high CD73 was associated with better OS in MYCN-na, high-risk, and stage-4 subsets of children > 2Y. Multivariate analysis identified CD73 as an independent (P = 0.001) prognostic factor for NB. Silencing CD73 in patient-derived (stage 4, progressive disease) CHLA-171 and CHLA-172 cells revealed cell-line-independent activation of 58 CSC stemness maintenance molecules (QPCR profiling). Overexpressing CD73 in CHLA-20 and CHLA-90 cells with low CD73 and silencing in CHLA-171 and CHLA-172 cells with high CD73 showed that CD73 regulates epithelial to mesenchymal transition (E-Cadherin, N-Cadherin, Vimentin), stemness maintenance (Sox2, Nanog, Oct3/4), self-renewal capacity (Notch), and differentiation inhibition (leukemia inhibitory factor, LIF) proteins (confocal-immunofluorescence). These results demonstrate that high CD73 can predict good prognosis in NB, and further suggest that CD73 regulates stemness maintenance in cells that defy clinical therapy.
Collapse
Affiliation(s)
- Drishti Jain
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Dinesh Babu Somasundaram
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Zhongxin Yu
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ashley Baker
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Azadeh Esmaeili
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Natarajan Aravindan
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
- Stephenson Cancer Center, Oklahoma City, OK, USA.
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
6
|
Mansur AAP, Paiva MRB, Cotta OAL, Silva LM, Carvalho IC, Capanema NSV, Carvalho SM, Costa ÉA, Martin NR, Ecco R, Santos BS, Fialho SL, Lobato ZIP, Mansur HS. Carboxymethylcellulose biofunctionalized ternary quantum dots for subcellular-targeted brain cancer nanotheranostics. Int J Biol Macromol 2022; 210:530-544. [PMID: 35513094 DOI: 10.1016/j.ijbiomac.2022.04.207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 11/29/2022]
Abstract
Among the most lethal forms of cancer, malignant brain tumors persist as one of the greatest challenges faced by oncologists, where nanotechnology-driven theranostics can play a critical role in developing novel polymer-based supramolecular nanoarchitectures with multifunctional and multi-modal characteristics to fight cancer. However, it is virtually a consensus that, besides the complexity of active delivering anticancer drugs by the nanocarriers to the tumor site, the current evaluation methods primarily relying on in vitro assays and in vivo animal models have been accounted for the low translational effectiveness to clinical applications. In this view, the chick chorioallantoic membrane (CAM) assay has been increasingly recognized as one of the best preclinical models to study the effects of anticancer drugs on the tumor microenvironment (TME). Thus, in this study, we designed, characterized, and developed novel hybrid nanostructures encompassing chemically functionalized carboxymethylcellulose (CMC) with mitochondria-targeting pro-apoptotic peptide (KLA) and cell-penetrating moiety (cysteine, CYS) with fluorescent inorganic semiconductor (Ag-In-S, AIS) for simultaneously bioimaging and inducing glioblastoma cancer cell (U-87 MG, GBM) death. The results demonstrated that the CMC-peptide macromolecules produced supramolecular vesicle-like nanostructures with aqueous colloidal stability suitable as nanocarriers for passive and active targeting of cancer tumors. The optical properties and physicochemical features of the nanoconjugates confirmed their suitability as photoluminescent nanoprobes for cell bioimaging and intracellular tracking. Moreover, the results in vitro demonstrated a notable killing activity towards GBM cells of cysteine-bearing CMC conjugates coupled with pro-apoptotic KLA peptides. More importantly, compared to doxorubicin (DOX), a model anticancer drug in chemotherapy that is highly toxic, these innovative nanohybrids nanoconjugates displayed higher lethality against U-87 MG cancer cells. In vivo CAM assays validated these findings where the nanohybrids demonstrated a significant reduction of GBM tumor progression (41% area) and evidenced an antiangiogenic activity. These results pave the way for developing polymer-based hybrid nanoarchitectonics applied as targeted multifunctional theranostics for simultaneous imaging and therapy against glioblastoma while possibly reducing the systemic toxicity and side-effects of conventional anticancer chemotherapeutic agents.
Collapse
Affiliation(s)
- Alexandra A P Mansur
- Center of Nanoscience, Nanotechnology, and Innovation-CeNano(2)I, Federal University of Minas Gerais/UFMG, Belo Horizonte, MG, Brazil
| | - Mayara R B Paiva
- Pharmaceutical Research and Development, Ezequiel Dias Foundation, Belo Horizonte, MG, Brazil
| | - Oliver A L Cotta
- Pharmaceutical Research and Development, Ezequiel Dias Foundation, Belo Horizonte, MG, Brazil
| | - Luciana M Silva
- Pharmaceutical Research and Development, Ezequiel Dias Foundation, Belo Horizonte, MG, Brazil
| | - Isadora C Carvalho
- Center of Nanoscience, Nanotechnology, and Innovation-CeNano(2)I, Federal University of Minas Gerais/UFMG, Belo Horizonte, MG, Brazil
| | - Nádia S V Capanema
- Center of Nanoscience, Nanotechnology, and Innovation-CeNano(2)I, Federal University of Minas Gerais/UFMG, Belo Horizonte, MG, Brazil
| | - Sandhra M Carvalho
- Center of Nanoscience, Nanotechnology, and Innovation-CeNano(2)I, Federal University of Minas Gerais/UFMG, Belo Horizonte, MG, Brazil
| | - Érica A Costa
- Veterinary School, Universidade Federal de Minas Gerais-UFMG, Brazil
| | - Nelson R Martin
- Veterinary School, Universidade Federal de Minas Gerais-UFMG, Brazil
| | - Roselene Ecco
- Veterinary School, Universidade Federal de Minas Gerais-UFMG, Brazil
| | - Beatriz S Santos
- Veterinary School, Universidade Federal de Minas Gerais-UFMG, Brazil
| | - Silvia L Fialho
- Pharmaceutical Research and Development, Ezequiel Dias Foundation, Belo Horizonte, MG, Brazil.
| | - Zélia I P Lobato
- Veterinary School, Universidade Federal de Minas Gerais-UFMG, Brazil
| | - Herman S Mansur
- Center of Nanoscience, Nanotechnology, and Innovation-CeNano(2)I, Federal University of Minas Gerais/UFMG, Belo Horizonte, MG, Brazil.
| |
Collapse
|
7
|
Gonçalves BÔP, de Andrade WP, Fialho SL, Silva LM. Markers to sensibility and relapse on IMR-32 neuroblastoma cell line cultured in monolayer (2D) and neurosphere (3D) models cisplatin-treated. Acta Histochem 2022; 124:151849. [PMID: 35033934 DOI: 10.1016/j.acthis.2022.151849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 11/01/2022]
Abstract
The complexity of different components of tumor stroma poses huge challenges for therapies targeting the neuroblastoma (NB) microenvironment. The present study aimed to evaluate platinum-based response in IMR-32 neuroblastoma cell line cultured in monolayer (2D) and neurosphere (3D) models. For this, we evaluated mRNA expression of heat shock proteins HSPA1A, HSPB1, TRAP1, HSPA1AL, HSPD1, and DNA damage repair gene ERCC1. After treatment, residual cells were grafted on CAM (chicken chorioallantoic membrane) to evaluate the growth capability and histological paraffin sections were made to assess Ki-67 and HER-2 proteins by immunofluorescence. Our results showed that cisplatin induces mRNA downregulation of Heat Shock Proteins and ERCC1 in IMR-32 cells cultured in 2D or 3D models. In addition, the cisplatin-treatment approach increased HER-2 expression in residual IMR-32 cells grafted on the CAM. Therefore, these insights provide many advances in neuroendocrine tumor biology and knowledge about cisplatin-response in neuroblastoma.
Collapse
|
8
|
Perez Gonçalves BÔ, Dos Santos GSP, de Andrade WP, Fialho SL, Gomes DA, Silva LM. Phenotypic changes on central nervous system (CNS) tumor cell lines cultured in vitro 2D and 3D models and treated with cisplatin. Acta Histochem 2021; 123:151768. [PMID: 34403847 DOI: 10.1016/j.acthis.2021.151768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/19/2022]
Abstract
Despite aggressive therapy, most patients with brain tumors present disease relapse due to the cellular and molecular nature of these tumors. One of the models that best explains the heterogeneity observed in CNS tumors is the presence of cancer stem cells (CSCs). In this paper, we evaluated platinum-based response in brain tumor U-87 MG, LN-18, and KELLY cell lines cultured in monolayer (2D) and neurosphere (CSC enrichment- 3D) models. We evaluated mRNA expression of heat shock proteins (HSPA1A, HSPB1, HSPA1AL, TRAP1, and HSPD1), and DNA repair gene ERCC1. Changes in cell cycle and glycosylation profile were assessed by flow cytometry. After treatment with cisplatin, we found that the mRNA expression of HSPs markedly increased in the U-87 MG and LN-18 neurosphere cells. In KELLY monolayer cells, cisplatin induced upregulation of all genes. In KELLY neurosphere cells, only the HSPA1A, HSPB1, TRAP1, and HSPD1 genes were upregulated. The proportion of cells in the G0/G1 phase was significantly higher in U-87 MG neurosphere cisplatin-treated cells. A trend towards a greater proportion of cells in the S phase of U-87 MG monolayer cisplatin-treated cells was also observed. On the other hand, a significant decrease in the number of cells in the S phase and an increase in G2/M was observed in LN-18 monolayer cisplatin-treated cells. Glycosylation analysis using lectins showed a higher surface binding for PNA in the U-87 MG treated monolayer and a lower binding for Concanavalin A in the treated neurospheres. The binding of Isolectin GS-IB4, GSII, and SBA in KELLY monolayer cisplatin-treated cells was lower whereas the proportion of cells labeled with Concanavalin A was higher. In the KELLY neurosphere cisplatin-treated cells, the binding of Concanavalin A was lower than nontreated cells. Thus, our findings strongly supported the idea that definitions of phenotypic characteristics may help to establish better therapeutic strategies for brain tumors.
Collapse
Affiliation(s)
- Bryan Ôrtero Perez Gonçalves
- Cellular Biology, Research and Development Department, Ezequiel Dias Foundation, Belo Horizonte, Minas Gerais 30510-010, Brazil; Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil.
| | | | | | - Sílvia Ligório Fialho
- Pharmaceutical Research and Development, Ezequiel Dias Foundation, Belo Horizonte, MinasGerais 30510-010, Brazil
| | - Dawidson Assis Gomes
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Luciana Maria Silva
- Cellular Biology, Research and Development Department, Ezequiel Dias Foundation, Belo Horizonte, Minas Gerais 30510-010, Brazil.
| |
Collapse
|
9
|
Abou-Mrad Z, Bou Gharios J, Moubarak MM, Chalhoub A, Moussalem C, Bahmad HF, Abou-Kheir W. Central nervous system tumors and three-dimensional cell biology: Current and future perspectives in modeling. World J Stem Cells 2021; 13:1112-1126. [PMID: 34567429 PMCID: PMC8422930 DOI: 10.4252/wjsc.v13.i8.1112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/02/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
Central nervous system (CNS) tumors are a variety of distinct neoplasms that present multiple challenges in terms of treatment and prognosis. Glioblastoma, the most common primary tumor in adults, is associated with poor survival and remains one of the least treatable neoplasms. These tumors are highly heterogenous and complex in their nature. Due to this complexity, traditional cell culturing techniques and methods do not provide an ideal recapitulating model for the study of these tumors’ behavior in vivo. Two-dimensional models lack the spatial arrangement, the heterogeneity in cell types, and the microenvironment that play a large role in tumor cell behavior and response to treatment. Recently, scientists have turned towards three-dimensional culturing methods, namely spheroids and organoids, as they have been shown to recapitulate tumors in a more faithful manner to their in vivo counterparts. Moreover, tumor-on-a-chip systems have lately been employed in CNS tumor modeling and have shown great potential in both studying the pathophysiology and therapeutic testing. In this review, we will discuss the current available literature on in vitro three-dimensional culturing models in CNS tumors, in addition to presenting their advantages and current limitations. We will also elaborate on the future implications of these models and their benefit in the clinical setting.
Collapse
Affiliation(s)
- Zaki Abou-Mrad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Jolie Bou Gharios
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Maya M Moubarak
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Ahmad Chalhoub
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Charbel Moussalem
- Division of Neurosurgery, Department of Surgery, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon
| | - Hisham F Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, United States
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107-2020, Lebanon
| |
Collapse
|
10
|
Picoli CC, Gonçalves BÔP, Santos GSP, Rocha BGS, Costa AC, Resende RR, Birbrair A. Pericytes cross-talks within the tumor microenvironment. Biochim Biophys Acta Rev Cancer 2021; 1876:188608. [PMID: 34384850 DOI: 10.1016/j.bbcan.2021.188608] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 07/14/2021] [Accepted: 08/05/2021] [Indexed: 02/07/2023]
Abstract
Cancer cells are embedded within the tumor microenvironment and interact dynamically with its components during tumor progression. Understanding the molecular mechanisms by which the tumor microenvironment components communicate is crucial for the success of therapeutic applications. Recent studies show, by using state-of-the-art technologies, including sophisticated in vivo inducible Cre/loxP mediated systems and CRISPR-Cas9 gene editing, that pericytes communicate with cancer cells. The arising knowledge on cross-talks within the tumor microenvironment will be essential for the development of new therapies against cancer. Here, we review recent progress in our understanding of pericytes roles within tumors.
Collapse
Affiliation(s)
- Caroline C Picoli
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bryan Ô P Gonçalves
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gabryella S P Santos
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Beatriz G S Rocha
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alinne C Costa
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo R Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Alexander Birbrair
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Radiology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
11
|
Establishment and Characterization of Patient-Derived Xenografts (PDXs) of Different Histology from Malignant Pleural Mesothelioma Patients. Cancers (Basel) 2020; 12:cancers12123846. [PMID: 33419364 PMCID: PMC7766019 DOI: 10.3390/cancers12123846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Malignant pleural mesothelioma (MPM) is a rare tumor with unfavorable prognosis for which new therapeutic interventions are urgently needed. The aim of our study was to develop a preclinical model representative of the different histotypes found in human tumors that can be used as models for the discovery of new treatments and combinations. We successfully generated patient-derived xenografts (PDXs) from MPM, which strongly resembled the tumors of origin in terms of morphology and immunohistochemistry. These tumors, when growing in mice, poorly respond to cisplatin, a finding that aligned with the clinical results. From one of the PDXs, we generated 2D and 3D cultures maintaining the phenotypical characteristics of human tumors and PDXs. Altogether, these preclinical models represent a useful tool for the discovery of new targets and drug combinations. Abstract Background: Malignant pleural mesothelioma (MPM) is a very aggressive tumor originating from mesothelial cells. Although several etiological factors were reported to contribute to MPM onset, environmental exposure to asbestos is certainly a major risk factor. The latency between asbestos (or asbestos-like fibers) exposure and MPM onset is very long. MPM continues to be a tumor with poor prognosis despite the introduction of new therapies including immunotherapy. One of the major problems is the low number of preclinical models able to recapitulate the features of human tumors. This impacts the possible discovery of new treatments and combinations. Methods: In this work, we aimed to generate patient-derived xenografts (PDXs) from MPM patients covering the three major histotypes (epithelioid, sarcomatoid, and mixed) occurring in the clinic. To do this, we obtained fresh tumors from biopsies or pleurectomies, and samples were subcutaneously implanted in immunodeficient mice within 24 h. Results: We successfully isolated different PDXs and particularly concentrated our efforts on three covering the three histotypes. The tumors that grew in mice compared well histologically with the tumors of origin, and showed stable growth in mice and a low response to cisplatin, as was observed in the clinic. Conclusions: These models are helpful in testing new drugs and combinations that, if successful, could rapidly translate to the clinical setting.
Collapse
|