1
|
Huang Y, Zhou J, Deng Y, Li G, He S, Li H, Liu L. MiR-363: A potential biomarker of kidney diseases. Clin Chim Acta 2024; 567:120049. [PMID: 39631492 DOI: 10.1016/j.cca.2024.120049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
MicroRNAs (miRNAs), a class of endogenous small RNAs with lengths of approximately 19-24 nucleotides, play important regulatory roles in cells. In recent years, miR-363 has emerged as a prominent member of the miR-92a family, participating in various biological functions, including cellular proliferation, cycle, migration, and apoptosis. In particular, miR-363 plays a critical role in acute kidney injury, renal fibrosis, and diabetic nephropathy and can serve as a biomarker for the diagnosis of renal cell carcinoma. Ongoing research is exploring its potential as a biomarker of other kidney diseases. This review focuses on the role of miR-363 in kidney diseases, elucidating its regulatory mechanisms and exploring its possible value as a biomarker of kidney diseases.
Collapse
Affiliation(s)
- Yiqi Huang
- Institute of Toxicology, Guangdong Provincial Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510310, China; School of Public Health, Guangzhou Medical University, Guangzhou 511436, China
| | - Jiazhen Zhou
- Institute of Toxicology, Guangdong Provincial Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510310, China
| | - Yaotang Deng
- Institute of Toxicology, Guangdong Provincial Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510310, China
| | - Guoliang Li
- Institute of Toxicology, Guangdong Provincial Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510310, China
| | - Shuirong He
- Institute of Toxicology, Guangdong Provincial Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510310, China; School of Public Health, Sun Yat-sen University, Guangzhou 510275, China
| | - Hecheng Li
- Institute of Toxicology, Guangdong Provincial Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510310, China; School of Public Health, Southern Medical University, Guangzhou 510145, China
| | - Lili Liu
- Institute of Toxicology, Guangdong Provincial Hospital for Occupational Disease Prevention and Treatment, Guangzhou 510310, China.
| |
Collapse
|
2
|
Lucchini S, Constantinou M, Marino S. Unravelling the mosaic: Epigenetic diversity in glioblastoma. Mol Oncol 2024; 18:2871-2889. [PMID: 39148319 PMCID: PMC11619803 DOI: 10.1002/1878-0261.13706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/21/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024] Open
Abstract
Glioblastoma is the most common primary malignant brain tumour. Despite decades of intensive research in the disease, its prognosis remains poor, with an average survival of only 14 months after diagnosis. The remarkable level of intra- and interpatient heterogeneity is certainly contributing to the lack of progress in tackling this tumour. Epigenetic dysregulation plays an important role in glioblastoma biology and significantly contributes to intratumour heterogeneity. However, it is becoming increasingly clear that it also contributes to intertumour heterogeneity, which historically had mainly been linked to diverse genetic events occurring in different patients. In this review, we explore how DNA methylation, chromatin remodelling, microRNA (miRNA) dysregulation, and long noncoding RNA (lncRNA) alterations contribute to intertumour heterogeneity in glioblastoma, including its implications for advanced tumour stratification, which is the essential first step for developing more effective patient-specific therapeutic approaches.
Collapse
Affiliation(s)
- Sara Lucchini
- Brain Tumour Research Centre, Blizard Institute, Faculty of Medicine and DentistryQueen Mary University of LondonUK
| | - Myrianni Constantinou
- Brain Tumour Research Centre, Blizard Institute, Faculty of Medicine and DentistryQueen Mary University of LondonUK
| | - Silvia Marino
- Brain Tumour Research Centre, Blizard Institute, Faculty of Medicine and DentistryQueen Mary University of LondonUK
- Barts Brain Tumour Centre, Faculty of Medicine and DentistryQueen Mary University of LondonUK
- Barts Health NHS TrustLondonUK
| |
Collapse
|
3
|
Mirzaei S, Ahangari F, Faramarzi F, Khoshnazar SM, Khormizi FZ, Aghagolzadeh M, Rostami M, Asghariazar V, Alimohammadi M, Rahimzadeh P, Farahani N. MicroRNA-146 family: Molecular insights into their role in regulation of signaling pathways in glioma progression. Pathol Res Pract 2024; 264:155707. [PMID: 39536541 DOI: 10.1016/j.prp.2024.155707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Glioma is a highly lethal brain cancer in humans. Despite advancements in treatment, the prognosis for patients remains unfavorable. Epigenetic factors, along with their interactions and non-coding RNAs (ncRNAs), are crucial in glioma cells' development and aggressive characteristics. MicroRNAs (miRNAs) are a class of small non-coding RNAs (ncRNAs) that modulate the expression of various genes by binding to target mRNA molecules. They play a critical role in regulating essential biological mechanisms such as cell proliferation and differentiation, cell cycle, and apoptosis. MiR-146a/miR-146b is a significant and prevalent miRNA whose expression alterations are linked to various pathological changes in cancer cells, as well as the modulation of several cellular signaling pathways, including NF-κB, TGF-β, PI3K/Akt, and Notch-1. Scientists may identify novel targets in clinical settings by studying the complicated link between Mir-146a/mir-146b, drug resistance, molecular pathways, and pharmacological intervention in gliomas. Additionally, its interactions with other ncRNAs, such as circular RNA and long non-coding RNA, contribute to the pathogenesis of glioma. As well as miR-146 holds potential as both a diagnostic and therapeutic biomarker for patients with this condition. In the current review, we investigate the significance of miRNAs in the context of glioma, with a particular focus on the critical role of Mir-146a/mir-146b in glioma tumors. Additionally, we examined the clinical relevance of this miRNA, highlighting its potential implications for diagnosis and treatment.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Fatemeh Ahangari
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Faramarzi
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyedeh Mahdieh Khoshnazar
- Gastroenterology and Hepatology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Mahboobeh Aghagolzadeh
- Department of Biology, Faculty of Basic Sciences, University of Shahid Chamran of Ahvaz, Ahvaz, Iran
| | - Mohammadreza Rostami
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Food Science and Nutrition Group (FSAN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Vahid Asghariazar
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
4
|
Jamali E, Harsij A, Yarahmadi M, Bidari-Zerehpoush F, Gholinezhad Y, Eslami S, Farahzadi H, Agahi F, Fathi M, Ghafouri-Fard S, Samadian M. Impact of GRM7 gene variations on glioblastoma risk in the Iranian population. Mol Cell Probes 2024; 78:101996. [PMID: 39643066 DOI: 10.1016/j.mcp.2024.101996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
AIM The metabotropic glutamate receptor, GRM7 is a gene in the neurotransmitters prognostic signatures. Downregulation of this gene is associated with the progression of glioma tumors and has a negative impact on the immune response. METHODS In the present study, we aim to assess the associations between rs6782011 and rs779867 SNPs within this gene and risk of glioblastoma multiforme (GBM) in Iranian population. RESULTS There was a noteworthy difference in distribution of genotypes (P value = 0.001) and alleles (P value = 0.0002) of rs779867 between total GBM cases (n = 299) and total normal controls (n = 302). In addition, the significant difference in genotypes and alleles distribution was observed for both male and female GBM cases vs. respective normal controls. For rs6782011 variant, the significant difference in genotypes distribution was observed between male GBM cases (n = 187) vs. respective normal controls (n = 156) (P value = 0.004) and between total GBM cases (n = 299) vs. total normal controls (n = 302) (P value = 0.02). However, there was no significant difference in genotypes distribution between female GBM cases and respective normal controls (P value = 0.1). Distribution of rs6782011 alleles was not different between total GBM cases and normal controls; and between male GBM cases and male normal controls. However, there was a significant difference in alleles distribution between female GBM cases and female normal controls. CONCLUSION Taken together, the mentioned polymorphisms might affect risk of GBM in Iranian population. Future studies are needed to elaborate the underlying mechanism.
Collapse
Affiliation(s)
- Elena Jamali
- Department of Pathology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefeh Harsij
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Farahnaz Bidari-Zerehpoush
- Department of Pathology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yasaman Gholinezhad
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Solat Eslami
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Hossein Farahzadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Agahi
- Student Research Committee, Department of Occupational Therapy, School of Rehabilitation, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Fathi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Samadian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Zhang Y, Liu S, Wu C, Gao X, Zhao H, Li O, Gao F. Inhibition of circular JUN prevents the proliferation and invasion of glioblastoma via miR-3064-IGFBP5 axis. J Cell Mol Med 2024; 28:e70098. [PMID: 39307884 PMCID: PMC11416905 DOI: 10.1111/jcmm.70098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/16/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Glioblastoma (GBM) remains one of the most aggressive and lethal brain tumours, characterized by rapid progression and limited treatment options. This study investigated the regulatory roles of circular RNA circJUN, and its functional interaction with microRNA miR-3064 in GBM pathogenesis. We employed bioinformatic analyses and clinical sample validation to identify circJUN as a potential target in GBM. Subsequently, we engineered GBM cell lines with stable circJUN knockout or overexpression, and transfected them with miR-3064 mimic/inhibitor or IGFBP5 small interfering RNA (siRNA)/expression vector to elucidate the molecular mechanisms governing GBM proliferation and invasion. To investigate the in vivo effects, xenograft tumour models were established in nude mice using engineered cells to assess the roles of circJUN in tumour growth regulation. Our analyses revealed significant overexpression of circJUN in GBM tissues compared to healthy controls, which strongly correlated with poor patient prognosis. In vitro and in vivo experiments demonstrated that circJUN overexpression could enhance GBM cell proliferation and invasion. Mechanistic investigations uncovered EIF4A3 as an interacting factor of circJUN which promotes circJUN expression, and circJUN modulates miR-3064 activity to regulate the malignancy of GBM cells. Furthermore, we identified IGFBP5, a crucial regulator of cell growth, as a direct target of miR-3064, thereby establishing an additional layer of control over GBM proliferation and invasion. Our study unveils a complex regulatory network involving circJUN, miR-3064 and IGFBP5 in GBM pathogenesis, underscoring their potential as novel therapeutic targets for improving patient outcomes. Our findings not only contribute to the understanding of GBM biology but also pave the way for innovative therapeutic approaches in the management of this malignancy.
Collapse
Affiliation(s)
- Yuhao Zhang
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Shiming Liu
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Cheng Wu
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Xin Gao
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Hongtao Zhao
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Ou Li
- General Surgery, Cancer Center, Department of Gastrointestinal and Pancreatic Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
| | - Faliang Gao
- Cancer Center, Department of Neurosurgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital)Hangzhou Medical CollegeHangzhouZhejiangChina
| |
Collapse
|
6
|
Seyhan AA. Circulating Liquid Biopsy Biomarkers in Glioblastoma: Advances and Challenges. Int J Mol Sci 2024; 25:7974. [PMID: 39063215 PMCID: PMC11277426 DOI: 10.3390/ijms25147974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Gliomas, particularly glioblastoma (GBM), represent the most prevalent and aggressive tumors of the central nervous system (CNS). Despite recent treatment advancements, patient survival rates remain low. The diagnosis of GBM traditionally relies on neuroimaging methods such as magnetic resonance imaging (MRI) or computed tomography (CT) scans and postoperative confirmation via histopathological and molecular analysis. Imaging techniques struggle to differentiate between tumor progression and treatment-related changes, leading to potential misinterpretation and treatment delays. Similarly, tissue biopsies, while informative, are invasive and not suitable for monitoring ongoing treatments. These challenges have led to the emergence of liquid biopsy, particularly through blood samples, as a promising alternative for GBM diagnosis and monitoring. Presently, blood and cerebrospinal fluid (CSF) sampling offers a minimally invasive means of obtaining tumor-related information to guide therapy. The idea that blood or any biofluid tests can be used to screen many cancer types has huge potential. Tumors release various components into the bloodstream or other biofluids, including cell-free nucleic acids such as microRNAs (miRNAs), circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), proteins, extracellular vesicles (EVs) or exosomes, metabolites, and other factors. These factors have been shown to cross the blood-brain barrier (BBB), presenting an opportunity for the minimally invasive monitoring of GBM as well as for the real-time assessment of distinct genetic, epigenetic, transcriptomic, proteomic, and metabolomic changes associated with brain tumors. Despite their potential, the clinical utility of liquid biopsy-based circulating biomarkers is somewhat constrained by limitations such as the absence of standardized methodologies for blood or CSF collection, analyte extraction, analysis methods, and small cohort sizes. Additionally, tissue biopsies offer more precise insights into tumor morphology and the microenvironment. Therefore, the objective of a liquid biopsy should be to complement and enhance the diagnostic accuracy and monitoring of GBM patients by providing additional information alongside traditional tissue biopsies. Moreover, utilizing a combination of diverse biomarker types may enhance clinical effectiveness compared to solely relying on one biomarker category, potentially improving diagnostic sensitivity and specificity and addressing some of the existing limitations associated with liquid biomarkers for GBM. This review presents an overview of the latest research on circulating biomarkers found in GBM blood or CSF samples, discusses their potential as diagnostic, predictive, and prognostic indicators, and discusses associated challenges and future perspectives.
Collapse
Affiliation(s)
- Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA;
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI 02912, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| |
Collapse
|
7
|
Lovino M, Ficarra E, Martignetti L. Integrated microRNA and proteome analysis of cancer datasets with MoPC. PLoS One 2024; 19:e0289699. [PMID: 38512819 PMCID: PMC10956802 DOI: 10.1371/journal.pone.0289699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 07/25/2023] [Indexed: 03/23/2024] Open
Abstract
MicroRNAs (miRNAs) are small molecules that play an essential role in regulating gene expression by post-transcriptional gene silencing. Their study is crucial in revealing the fundamental processes underlying pathologies and, in particular, cancer. To date, most studies on miRNA regulation consider the effect of specific miRNAs on specific target mRNAs, providing wet-lab validation. However, few tools have been developed to explain the miRNA-mediated regulation at the protein level. In this paper, the MoPC computational tool is presented, that relies on the partial correlation between mRNAs and proteins conditioned on the miRNA expression to predict miRNA-target interactions in multi-omic datasets. MoPC returns the list of significant miRNA-target interactions and plot the significant correlations on the heatmap in which the miRNAs and targets are ordered by the chromosomal location. The software was applied on three TCGA/CPTAC datasets (breast, glioblastoma, and lung cancer), returning enriched results in three independent targets databases.
Collapse
Affiliation(s)
- Marta Lovino
- Dipartimento di Ingegneria Enzo Ferrari, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisa Ficarra
- Dipartimento di Ingegneria Enzo Ferrari, University of Modena and Reggio Emilia, Modena, Italy
| | - Loredana Martignetti
- Institut Curie, INSERM U900, MINES ParisTech, PSL Research University, Paris, France
| |
Collapse
|
8
|
Boewe AS, Wrublewsky S, Hoppstädter J, Götz C, Kiemer AK, Menger MD, Laschke MW, Ampofo E. C-Myc/H19/miR-29b axis downregulates nerve/glial (NG)2 expression in glioblastoma multiforme. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102120. [PMID: 38318212 PMCID: PMC10839451 DOI: 10.1016/j.omtn.2024.102120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/09/2024] [Indexed: 02/07/2024]
Abstract
Nerve/glial antigen (NG)2 is highly expressed in glioblastoma multiforme (GBM). However, the underlying mechanisms of its upregulated expression are largely unknown. In silico analyses reveal that the tumor-suppressive miR-29b targets NG2. We used GBM-based data from The Cancer Genome Atals databases to analyze the expression pattern of miR-29b and different target genes, including NG2. Moreover, we investigated the regulatory function of miR-29b on NG2 expression and NG2-related signaling pathways. We further studied upstream mechanisms affecting miR-29b-dependent NG2 expression. We found that miR-29b downregulates NG2 expression directly and indirectly via the transcription factor Sp1. Furthermore, we identified the NG2 coreceptor platelet-derived growth factor receptor (PDGFR)α as an additional miR-29b target. As shown by a panel of functional cell assays, a reduced miR-29b-dependent NG2 expression suppresses tumor cell proliferation and migration. Signaling pathway analyses revealed that this is associated with a decreased ERK1/2 activity. In addition, we found that the long noncoding RNA H19 and c-Myc act as upstream repressors of miR-29b in GBM cells, resulting in an increased NG2 expression. These findings indicate that the c-Myc/H19/miR-29b axis crucially regulates NG2 expression in GBM and, thus, represents a target for the development of future GBM therapies.
Collapse
Affiliation(s)
- Anne S. Boewe
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Selina Wrublewsky
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Jessica Hoppstädter
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123 Saarbruecken, Germany
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany
| | - Alexandra K. Kiemer
- Department of Pharmacy, Pharmaceutical Biology, Saarland University, 66123 Saarbruecken, Germany
| | - Michael D. Menger
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Matthias W. Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| | - Emmanuel Ampofo
- Institute for Clinical and Experimental Surgery, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
9
|
Jegathesan Y, Stephen PP, Sati ISEE, Narayanan P, Monif M, Kamarudin MNA. MicroRNAs in adult high-grade gliomas: Mechanisms of chemotherapeutic resistance and their clinical relevance. Biomed Pharmacother 2024; 172:116277. [PMID: 38377734 DOI: 10.1016/j.biopha.2024.116277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024] Open
Abstract
Notorious for its high mortality rate, the current standard treatment for high-grade gliomas remains a challenge. This is largely due to the complex heterogeneity of the tumour coupled with dysregulated molecular mechanisms leading to the development of drug resistance. In recent years, microRNAs (miRNAs) have been considered to provide important information about the pathogenesis and prognostication of gliomas. miRNAs have been shown to play a specific role in promoting oncogenesis and regulating resistance to anti-glioma therapeutic agents through diverse cellular mechanisms. These include regulation of apoptosis, alterations in drug efflux pathways, enhanced activation of oncogenic signalling pathways, Epithelial-Mesenchymal Transition-like process (EMT-like) and a few others. With this knowledge, upregulation or inhibition of selected miRNAs can be used to directly affect drug resistance in glioma cells. Moreover, the clinical use of miRNAs in glioma management is becoming increasingly valuable. This comprehensive review delves into the role of miRNAs in drug resistance in high-grade gliomas and underscores their clinical significance. Our analysis has identified a distinct cluster of oncogenic miRNAs (miR-9, miR-21, miR-26a, miR-125b, and miR-221/222) and tumour suppressive miRNAs (miR-29, miR-23, miR-34a-5p, miR 181b-5p, miR-16-5p, and miR-20a) that consistently emerge as key players in regulating drug resistance across various studies. These miRNAs have demonstrated significant clinical relevance in the context of resistance to anti-glioma therapies. Additionally, the clinical significance of miRNA analysis is emphasised, including their potential to serve as clinical biomarkers for diagnosing, staging, evaluating prognosis, and assessing treatment response in gliomas.
Collapse
Affiliation(s)
- Yugendran Jegathesan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia; Taiping Hospital, Jalan Taming Sari, Perak, Taiping 34000, Malaysia
| | - Pashaun Paveen Stephen
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia; Coffs Harbour Health Campus, Coffs Harbour, NSW 2450, Australia
| | - Isra Saif Eldin Eisa Sati
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia
| | - Prakrithi Narayanan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia
| | - Mastura Monif
- Department of Neuroscience, Central Clinical School, Monash University, VIC, Melbourne, Australia; Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia; Department of Neurology, The Royal Melbourne Hospital, Melbourne, VIC, Australia; Department of Neurology, The Alfred, Melbourne, VIC, Australia
| | - Muhamad Noor Alfarizal Kamarudin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia.
| |
Collapse
|
10
|
Valle-Garcia D, Pérez de la Cruz V, Flores I, Salazar A, Pineda B, Meza-Sosa KF. Use of microRNAs as Diagnostic, Prognostic, and Therapeutic Tools for Glioblastoma. Int J Mol Sci 2024; 25:2464. [PMID: 38473710 DOI: 10.3390/ijms25052464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma (GB) is the most aggressive and common type of cancer within the central nervous system (CNS). Despite the vast knowledge of its physiopathology and histology, its etiology at the molecular level has not been completely understood. Thus, attaining a cure has not been possible yet and it remains one of the deadliest types of cancer. Usually, GB is diagnosed when some symptoms have already been presented by the patient. This diagnosis is commonly based on a physical exam and imaging studies, such as computed tomography (CT) and magnetic resonance imaging (MRI), together with or followed by a surgical biopsy. As these diagnostic procedures are very invasive and often result only in the confirmation of GB presence, it is necessary to develop less invasive diagnostic and prognostic tools that lead to earlier treatment to increase GB patients' quality of life. Therefore, blood-based biomarkers (BBBs) represent excellent candidates in this context. microRNAs (miRNAs) are small, non-coding RNAs that have been demonstrated to be very stable in almost all body fluids, including saliva, serum, plasma, urine, cerebrospinal fluid (CFS), semen, and breast milk. In addition, serum-circulating and exosome-contained miRNAs have been successfully used to better classify subtypes of cancer at the molecular level and make better choices regarding the best treatment for specific cases. Moreover, as miRNAs regulate multiple target genes and can also act as tumor suppressors and oncogenes, they are involved in the appearance, progression, and even chemoresistance of most tumors. Thus, in this review, we discuss how dysregulated miRNAs in GB can be used as early diagnosis and prognosis biomarkers as well as molecular markers to subclassify GB cases and provide more personalized treatments, which may have a better response against GB. In addition, we discuss the therapeutic potential of miRNAs, the current challenges to their clinical application, and future directions in the field.
Collapse
Affiliation(s)
- David Valle-Garcia
- Laboratorio de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Mexico City 14269, Mexico
| | - Verónica Pérez de la Cruz
- Laboratorio de Neurobioquímica y Conducta, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Mexico City 14269, Mexico
| | - Itamar Flores
- Laboratorio de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Mexico City 14269, Mexico
| | - Aleli Salazar
- Laboratorio de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Mexico City 14269, Mexico
| | - Benjamín Pineda
- Laboratorio de Neuroinmunología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Mexico City 14269, Mexico
| | - Karla F Meza-Sosa
- Laboratorio de Neurobioquímica y Conducta, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Mexico City 14269, Mexico
| |
Collapse
|
11
|
Subaiea GM, Syed RU, Afsar S, Alhaidan TMS, Alzammay SA, Alrashidi AA, Alrowaili SF, Alshelaly DA, Alenezi AMSRA. Non-coding RNAs (ncRNAs) and multidrug resistance in glioblastoma: Therapeutic challenges and opportunities. Pathol Res Pract 2024; 253:155022. [PMID: 38086292 DOI: 10.1016/j.prp.2023.155022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024]
Abstract
Non-coding RNAs (ncRNAs) have been recognized as pivotal regulators of transcriptional and post-transcriptional gene modulation, exerting a profound influence on a diverse array of biological and pathological cascades, including the intricate mechanisms underlying tumorigenesis and the acquisition of drug resistance in neoplastic cells. Glioblastoma (GBM), recognized as the foremost and most aggressive neoplasm originating in the brain, is distinguished by its formidable resistance to the cytotoxic effects of chemotherapeutic agents and ionizing radiation. Recent years have witnessed an escalating interest in comprehending the involvement of ncRNAs, particularly lncRNAs, in GBM chemoresistance. LncRNAs, a subclass of ncRNAs, have been demonstrated as dynamic modulators of gene expression at the epigenetic, transcriptional, and post-transcriptional levels. Disruption in the regulation of lncRNAs has been observed across various human malignancies, including GBM, and has been linked with developing multidrug resistance (MDR) against standard chemotherapeutic agents. The potential of targeting specific ncRNAs or their downstream effectors to surmount chemoresistance is also critically evaluated, specifically focusing on ongoing preclinical and clinical investigations exploring ncRNA-based therapeutic strategies for glioblastoma. Nonetheless, targeting lncRNAs for therapeutic objectives presents hurdles, including overcoming the blood-brain barrier and the brief lifespan of oligonucleotide RNA molecules. Understanding the complex relationship between ncRNAs and the chemoresistance characteristic in glioblastoma provides valuable insights into the fundamental molecular mechanisms. It opens the path for the progression of innovative and effective therapeutic approaches to counter the therapeutic challenges posed by this aggressive brain tumor. This comprehensive review highlights the complex functions of diverse ncRNAs, including miRNAs, circRNAs, and lncRNAs, in mediating glioblastoma's chemoresistance.
Collapse
Affiliation(s)
- Gehad Mohammed Subaiea
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
| | - Rahamat Unissa Syed
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia.
| | - S Afsar
- Department of Virology, Sri Venkateswara University, Tirupathi, Andhra Pradesh 517502, India.
| | | | - Seham Ahmed Alzammay
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | | | | | | |
Collapse
|
12
|
Tluli O, Al-Maadhadi M, Al-Khulaifi AA, Akomolafe AF, Al-Kuwari SY, Al-Khayarin R, Maccalli C, Pedersen S. Exploring the Role of microRNAs in Glioma Progression, Prognosis, and Therapeutic Strategies. Cancers (Basel) 2023; 15:4213. [PMID: 37686489 PMCID: PMC10486509 DOI: 10.3390/cancers15174213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 09/10/2023] Open
Abstract
Gliomas, which arise from glial cells in the brain, remain a significant challenge due to their location and resistance to traditional treatments. Despite research efforts and advancements in healthcare, the incidence of gliomas has risen dramatically over the past two decades. The dysregulation of microRNAs (miRNAs) has prompted the creation of therapeutic agents that specially target them. However, it has been reported that they are involved in complex signaling pathways that contribute to the loss of expression of tumor suppressor genes and the upregulation of the expression of oncogenes. In addition, numerous miRNAs promote the development, progression, and recurrence of gliomas by targeting crucial proteins and enzymes involved in metabolic pathways such as glycolysis and oxidative phosphorylation. However, the complex interplay among these pathways along with other obstacles hinders the ability to apply miRNA targeting in clinical practice. This highlights the importance of identifying specific miRNAs to be targeted for therapy and having a complete understanding of the diverse pathways they are involved in. Therefore, the aim of this review is to provide an overview of the role of miRNAs in the progression and prognosis of gliomas, emphasizing the different pathways involved and identifying potential therapeutic targets.
Collapse
Affiliation(s)
- Omar Tluli
- College of Medicine, Qatar University, Doha P.O. Box 2713, Qatar; (O.T.); (M.A.-M.); (A.A.A.-K.); (A.F.A.); (R.A.-K.)
| | - Mazyona Al-Maadhadi
- College of Medicine, Qatar University, Doha P.O. Box 2713, Qatar; (O.T.); (M.A.-M.); (A.A.A.-K.); (A.F.A.); (R.A.-K.)
| | - Aisha Abdulla Al-Khulaifi
- College of Medicine, Qatar University, Doha P.O. Box 2713, Qatar; (O.T.); (M.A.-M.); (A.A.A.-K.); (A.F.A.); (R.A.-K.)
| | - Aishat F. Akomolafe
- College of Medicine, Qatar University, Doha P.O. Box 2713, Qatar; (O.T.); (M.A.-M.); (A.A.A.-K.); (A.F.A.); (R.A.-K.)
| | - Shaikha Y. Al-Kuwari
- College of Medicine, Qatar University, Doha P.O. Box 2713, Qatar; (O.T.); (M.A.-M.); (A.A.A.-K.); (A.F.A.); (R.A.-K.)
| | - Roudha Al-Khayarin
- College of Medicine, Qatar University, Doha P.O. Box 2713, Qatar; (O.T.); (M.A.-M.); (A.A.A.-K.); (A.F.A.); (R.A.-K.)
| | | | - Shona Pedersen
- College of Medicine, Qatar University, Doha P.O. Box 2713, Qatar; (O.T.); (M.A.-M.); (A.A.A.-K.); (A.F.A.); (R.A.-K.)
| |
Collapse
|
13
|
Hasan H, Afzal M, Castresana JS, Shahi MH. A Comprehensive Review of miRNAs and Their Epigenetic Effects in Glioblastoma. Cells 2023; 12:1578. [PMID: 37371047 DOI: 10.3390/cells12121578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Glioblastoma is the most aggressive form of brain tumor originating from glial cells with a maximum life expectancy of 14.6 months. Despite the establishment of multiple promising therapies, the clinical outcome of glioblastoma patients is abysmal. Drug resistance has been identified as a major factor contributing to the failure of current multimodal therapy. Epigenetic modification, especially DNA methylation has been identified as a major regulatory mechanism behind glioblastoma progression. In addition, miRNAs, a class of non-coding RNA, have been found to play a role in the regulation as well as in the diagnosis of glioblastoma. The relationship between epigenetics, drug resistance, and glioblastoma progression has been clearly demonstrated. MGMT hypermethylation, leading to a lack of MGMT expression, is associated with a cytotoxic effect of TMZ in GBM, while resistance to TMZ frequently appears in MGMT non-methylated GBM. In this review, we will elaborate on known miRNAs linked to glioblastoma; their distinctive oncogenic or tumor suppressor roles; and how epigenetic modification of miRNAs, particularly via methylation, leads to their upregulation or downregulation in glioblastoma. Moreover, we will try to identify those miRNAs that might be potential regulators of MGMT expression and their role as predictors of tumor response to temozolomide treatment. Although we do not impact clinical data and survival, we open possible experimental approaches to treat GBM, although they should be further validated with clinically oriented studies.
Collapse
Affiliation(s)
- Hera Hasan
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, India
| | - Mohammad Afzal
- Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Javier S Castresana
- Department of Biochemistry and Genetics, University of Navarra School of Sciences, 31008 Pamplona, Spain
| | - Mehdi H Shahi
- Interdisciplinary Brain Research Centre, Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
14
|
Makowska M, Smolarz B, Romanowicz H. microRNAs (miRNAs) in Glioblastoma Multiforme (GBM)-Recent Literature Review. Int J Mol Sci 2023; 24:3521. [PMID: 36834933 PMCID: PMC9965735 DOI: 10.3390/ijms24043521] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/25/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most common, malignant, poorly promising primary brain tumor. GBM is characterized by an infiltrating growth nature, abundant vascularization, and a rapid and aggressive clinical course. For many years, the standard treatment of gliomas has invariably been surgical treatment supported by radio- and chemotherapy. Due to the location and significant resistance of gliomas to conventional therapies, the prognosis of glioblastoma patients is very poor and the cure rate is low. The search for new therapy targets and effective therapeutic tools for cancer treatment is a current challenge for medicine and science. microRNAs (miRNAs) play a key role in many cellular processes, such as growth, differentiation, cell division, apoptosis, and cell signaling. Their discovery was a breakthrough in the diagnosis and prognosis of many diseases. Understanding the structure of miRNAs may contribute to the understanding of the mechanisms of cellular regulation dependent on miRNA and the pathogenesis of diseases underlying these short non-coding RNAs, including glial brain tumors. This paper provides a detailed review of the latest reports on the relationship between changes in the expression of individual microRNAs and the formation and development of gliomas. The use of miRNAs in the treatment of this cancer is also discussed.
Collapse
Affiliation(s)
- Marianna Makowska
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Beata Smolarz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Poland
| | - Hanna Romanowicz
- Laboratory of Cancer Genetics, Department of Pathology, Polish Mother’s Memorial Hospital Research Institute, Rzgowska 281/289, 93-338 Lodz, Poland
| |
Collapse
|
15
|
Meta-Analysis of RNA-Seq Datasets Identifies Novel Players in Glioblastoma. Cancers (Basel) 2022; 14:cancers14235788. [PMID: 36497269 PMCID: PMC9737249 DOI: 10.3390/cancers14235788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Glioblastoma is a devastating grade IV glioma with poor prognosis. Identification of predictive molecular biomarkers of disease progression would substantially contribute to better disease management. In the current study, we performed a meta-analysis of different RNA-seq datasets to identify differentially expressed protein-coding genes (PCGs) and long non-coding RNAs (lncRNAs). This meta-analysis aimed to improve power and reproducibility of the individual studies while identifying overlapping disease-relevant pathways. We supplemented the meta-analysis with small RNA-seq on glioblastoma tissue samples to provide an overall transcriptomic view of glioblastoma. Co-expression correlation of filtered differentially expressed PCGs and lncRNAs identified a functionally relevant sub-cluster containing DANCR and SNHG6, with two novel lncRNAs and two novel PCGs. Small RNA-seq of glioblastoma tissues identified five differentially expressed microRNAs of which three interacted with the functionally relevant sub-cluster. Pathway analysis of this sub-cluster identified several glioblastoma-linked pathways, which were also previously associated with the novel cell death pathway, ferroptosis. In conclusion, the current meta-analysis strengthens evidence of an overarching involvement of ferroptosis in glioblastoma pathogenesis and also suggests some candidates for further analyses.
Collapse
|
16
|
MicroRNA and mRNA Expression Changes in Glioblastoma Cells Cultivated under Conditions of Neurosphere Formation. Curr Issues Mol Biol 2022; 44:5294-5311. [PMID: 36354672 PMCID: PMC9688839 DOI: 10.3390/cimb44110360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most highly metastatic cancers. The study of the pathogenesis of GBM, as well as the development of targeted oncolytic drugs, require the use of actual cell models, in particular, the use of 3D cultures or neurospheres (NS). During the formation of NS, the adaptive molecular landscape of the transcriptome, which includes various regulatory RNAs, changes. The aim of this study was to reveal changes in the expression of microRNAs (miRNAs) and their target mRNAs in GBM cells under conditions of NS formation. Neurospheres were obtained from both immortalized U87 MG and patient-derived BR3 GBM cell cultures. Next generation sequencing analysis of small and long RNAs of adherent and NS cultures of GBM cells was carried out. It was found that the formation of NS proceeds with an increase in the level of seven and a decrease in the level of 11 miRNAs common to U87 MG and BR3, as well as an increase in the level of 38 and a decrease in the level of 12 mRNA/lncRNA. Upregulation of miRNAs hsa-miR: -139-5p; -148a-3p; -192-5p; -218-5p; -34a-5p; and -381-3p are accompanied by decreased levels of their target mRNAs: RTN4, FLNA, SH3BP4, DNPEP, ETS2, MICALL1, and GREM1. Downregulation of hsa-miR: -130b-5p, -25-5p, -335-3p and -339-5p occurs with increased levels of mRNA-targets BDKRB2, SPRY4, ERRFI1 and TGM2. The involvement of SPRY4, ERRFI1, and MICALL1 mRNAs in the regulation of EGFR/FGFR signaling highlights the role of hsa-miR: -130b-5p, -25-5p, -335-3p, and -34a-5p not only in the formation of NS, but also in the regulation of malignant growth and invasion of GBM. Our data provide the basis for the development of new approaches to the diagnosis and treatment of GBM.
Collapse
|
17
|
Wu S, Ren K, Zhao J, Li J, Jia B, Wu X, Dou Y, Fei X, Huan Y, He X, Wang T, Lv W, Wang L, Wang Y, Zhao J, Fei Z, Li S. LncRNA GAS5 represses stemness and malignancy of gliomas via elevating the SPACA6-miR-125a/let-7e Axis. Front Oncol 2022; 12:803652. [PMID: 36106122 PMCID: PMC9465381 DOI: 10.3389/fonc.2022.803652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Glioblastoma (GBM) is a highly invasive neurological malignancy with poor prognosis. LncRNA-GAS5 (growth arrest-specific transcript 5) is a tumor suppressor involved in multiple cancers. In this study, we explored the clinical significance, biological function, and underlying mechanisms of GAS5 in GBM. We showed that lncRNA-GAS5 expression decreased in high-grade glioma tissues and cells, which might be associated with poor prognosis. GAS5 overexpression lowered cell viability, suppressed GBM cell migration and invasion, and impaired the stemness and proliferation of glioma stem cells (GSCs). We further discovered that GAS5 inhibited the viability of glioma cells through miR-let-7e and miR-125a by protecting SPACA6 from degradation. Moreover, GAS5 played an anti-oncogenic role in GBM through the combined involvement of let-7e and miR-125a in vivo and in vitro. Notably, these two miRNAs block the IL-6/STAT3 pathway in tumor tissues extracted from a xenograft model. Taken together, our study provides evidence for an important role of GAS5 in GBM by affecting the proliferation and migration of GSCs, thus providing a new potential prognostic biomarker and treatment strategy for GBM.
Collapse
Affiliation(s)
- Shuang Wu
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Kaixi Ren
- Department of Neurology, Tangdu Hospital, Air Force Military Medical University, Xi’an, China
| | - Jing Zhao
- Department of Anesthesiology, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Juan Li
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Bo Jia
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Xiuquan Wu
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Yanan Dou
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Xiaowei Fei
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Yu Huan
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Xin He
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Tingting Wang
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Weihao Lv
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Li Wang
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Yan’gang Wang
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
| | - Junlong Zhao
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Air Force Military Medical University, Xi’an, China
- *Correspondence: Sanzhong Li, ; Zhou Fei, ; Junlong Zhao,
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
- *Correspondence: Sanzhong Li, ; Zhou Fei, ; Junlong Zhao,
| | - Sanzhong Li
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi’an, China
- *Correspondence: Sanzhong Li, ; Zhou Fei, ; Junlong Zhao,
| |
Collapse
|
18
|
miR-133a-5p Inhibits Glioma Cell Proliferation by Regulating IGFBP3. JOURNAL OF ONCOLOGY 2022; 2022:8697676. [PMID: 35966888 PMCID: PMC9363926 DOI: 10.1155/2022/8697676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022]
Abstract
Objective This research aims to investigate the expression of miR-133a-5p in glioma tissues and its impact on glioma cell proliferation. Methods Fluorescence-quantitative PCR was used to detect the expression of miR-133a-5p in 25 cases of glioma and adjuncent tissues. CCK-8 and colony formation analyses were used to evaluate the impact of transfection with miR-133a-5p inhibitors or mimics on glioma cell growth and colony formation. The IGFBP3 (insulin-like growth factor-binding protein-3) and miR-133a-5p binding sites were predicted using Starbase, and the miR-133a-5p binding capacity with 3'UTR of IGFBP3 gene was determined using a luciferase gene reporter system. Following transfection with miR-133a-5p mimics or inhibitors, the IGFBP3 protein expression in glioma cells was determined by western blotting. The colony formation assay was applied to evaluate the influence of IGFBP3 overexpression on the miR-133a-5p in glioma cell proliferation. For assessment of the IGFBP3 expression in glioma tissues and prognosis, TCGA database was employed. Results The expression of miR-133a-5p was considerably reduced in glioma tissue compared to adjuncent control tissue. In addition, miR-133a-5p expression decreased with increasing glioma malignancy. Glioma cell growth and colony formation were reduced after miR-133a-5p mimics were transfected, while transfection of miR-133a-5p inhibitors had a reverse impact. The expression of IGFBP3 was affected by miR-133a-5p by binding to its 3'UTR region. Additional study demonstrated that the overall survival (OS) of subjects with increased IGFBP3 expression was considerably lower compared to patients with decreased IGFBP3 expression. The IGFBP3 overexpression effectively counteracts the glioma cell proliferation-inhibiting impact of miR-133a-5p. Conclusion miR-133a-5p acts as a glioma tumor suppressor gene. It reduces glioma cell proliferation by modulating IGFBP3 and could be a target for glioma therapy.
Collapse
|
19
|
The Use of Pro-Angiogenic and/or Pro-Hypoxic miRNAs as Tools to Monitor Patients with Diffuse Gliomas. Int J Mol Sci 2022; 23:ijms23116042. [PMID: 35682718 PMCID: PMC9181142 DOI: 10.3390/ijms23116042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/28/2022] Open
Abstract
IDH (isocitrate dehydrogenase) mutation, hypoxia, and neo-angiogenesis, three hallmarks of diffuse gliomas, modulate the expression of small non-coding RNAs (miRNA). In this paper, we tested whether pro-angiogenic and/or pro-hypoxic miRNAs could be used to monitor patients with glioma. The miRNAs were extracted from tumoral surgical specimens embedded in the paraffin of 97 patients with diffuse gliomas and, for 7 patients, from a blood sample too. The expression of 10 pro-angiogenic and/or pro-hypoxic miRNAs was assayed by qRT-PCR and normalized to the miRNA expression of non-tumoral brain tissues. We confirmed in vitro that IDH in hypoxia (1% O2, 24 h) alters pro-angiogenic and/or pro-hypoxic miRNA expression in HBT-14 (U-87 MG) cells. Then, we reported that the expression of these miRNAs is (i) strongly affected in patients with glioma compared to that in a non-tumoral brain; (ii) correlated with the histology/grade of glioma according to the 2016 WHO classification; and (iii) predicts the overall and/or progression-free survival of patients with glioma in univariate but not in a multivariate analysis after adjusting for sex, age at diagnosis, and WHO classification. Finally, the expression of miRNAs was found to be the same between the plasma and glial tumor of the same patient. This study highlights a panel of seven pro-angiogenic and/or pro-hypoxic miRNAs as a potential tool for monitoring patients with glioma.
Collapse
|
20
|
Machine learning and bioinformatics approaches for classification and clinical detection of bevacizumab responsive glioblastoma subtypes based on miRNA expression. Sci Rep 2022; 12:8685. [PMID: 35606527 PMCID: PMC9126877 DOI: 10.1038/s41598-022-12566-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/03/2022] [Indexed: 11/29/2022] Open
Abstract
For the precise treatment of patients with glioblastoma multiforme (GBM), we classified and detected bevacizumab (BVZ)-responsive subtypes of GBM and found their differential expression (DE) of miRNAs and mRNAs, clinical characteristics, and related functional pathways. Based on miR-21 and miR-10b expression z-scores, approximately 30% of GBM patients were classified as having the GBM BVZ-responsive subtype. For this subtype, GBM patients had a significantly shorter survival time than other GBM patients (p = 0.014), and vascular endothelial growth factor A (VEGF) methylation was significantly lower than that in other GBM patients (p = 0.005). It also revealed 14 DE miRNAs and 7 DE mRNAs and revealed functional characteristics between GBM BVZ subgroups. After comparing several machine learning algorithms, the construction and cross-validation of the SVM classifier were performed. For clinical use, miR-197 was optimized and added to the miRNA panel for better classification. Afterwards, we validated the classifier with several GBM datasets and discovered some key related issues. According to this study, GBM BVZ subtypes can be classified and detected by a combination of SVM classifiers and miRNA panels in existing tissue GBM datasets. With certain modifications, the classifier may be used for the classification and detection of GBM BVZ subtypes for future clinical use.
Collapse
|
21
|
Wu J, Al-Zahrani A, Beylerli O, Sufianov R, Talybov R, Meshcheryakova S, Sufianova G, Gareev I, Sufianov A. Circulating miRNAs as Diagnostic and Prognostic Biomarkers in High-Grade Gliomas. Front Oncol 2022; 12:898537. [PMID: 35646622 PMCID: PMC9133847 DOI: 10.3389/fonc.2022.898537] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/07/2022] [Indexed: 12/26/2022] Open
Abstract
Objectives miR-181a/b and miR-410 downregulation and miR-155 upregulation has been shown to play important roles in the oncogenesis and progression of gliomas including high-grade gliomas. However, the potential role of plasma miR-181a/b, miR-410 and miR-155 in the diagnosis and prognosis of high-grade gliomas remains poorly known. Methods We retrieved published articles from the PubMed, the Cochrane Central Register of Controlled Trials, and Web of Science database and obtained different sets of data on microRNAs (miRNAs) expression profiling in glioma and highlighted the most frequently dysregulated miRNAs and their gene-targets (PDCD4, WNT5A, MET, and EGFR) in high-grade gliomas. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) was carried out to measure the pre- and postoperative plasma levels of miR-181a/b, miR-410 and miR-155 in 114 Grade 3-4 glioma patients, 77 Grade 1-2 glioma patients and 85 healthy volunteers as control group. The diagnostic and prognostic value of circulating miR-181a/b, miR-410 and miR-155 as biomarker was estimated by the Receiver Operating Characteristic (ROC) curve and the area under the curve (AUC) and Kaplan–Meier analysis. Results We found a plasma miRNA signature including three downexpressed miRNAs and one overexpressed (miR-181a, miR-181b and miR-410; miR-155) in high-grade glioma patients in comparison with low-grade glioma patients control group. The ROC curve AUC of these four circulating miRNAs were ≥ 0.75 for high-grade glioma patients in before and after surgery. Higher circulating miR-155 and lower miR-181a/b and miR-410 expression is associated with clinical data, clinic pathological variables, worse overall survival (OS) of patients and negative correlated with potential gene-targets expression. Moreover, Kaplan–Meier analysis showed that miR-181a/b, miR-410 and miR-155 were independent predictors of OS in high-grade glioma patients. Conclusions Our data, for the first time, demonstrated that circulating miR-181a/b, miR-410 and miR-155 could be a useful diagnostic and prognostic non-invasive biomarkers in high-grade gliomas.
Collapse
Affiliation(s)
- Jianing Wu
- Department of Neurosurgery, Shenzhen University General Hospital, Guangdong, China
| | - Abdulrahman Al-Zahrani
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Neurosurgery, King Saud Medical City (KSMC), Riyadh, Saudi Arabia
| | - Ozal Beylerli
- Department of Neurosurgery, Federal Center of Neurosurgery, Tyumen, Russia
| | - Rinat Sufianov
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Rustam Talybov
- Department of Radiology, Federal Center of Neurosurgery, Tyumen, Russia
| | | | - Galina Sufianova
- Department of Pharmacology, Tyumen State Medical University, Tyumen, Russia
| | - Ilgiz Gareev
- Department of Neurosurgery, Federal Center of Neurosurgery, Tyumen, Russia
- *Correspondence: Albert Sufianov, ; Ilgiz Gareev,
| | - Albert Sufianov
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Neurosurgery, Federal Center of Neurosurgery, Tyumen, Russia
- *Correspondence: Albert Sufianov, ; Ilgiz Gareev,
| |
Collapse
|
22
|
Yan Z, Zhang X, Hua L, Huang L. Melatonin inhibits the malignant progression of glioblastoma via regulating miR-16-5p/PIM1. Curr Neurovasc Res 2022; 19:92-99. [PMID: 35388757 DOI: 10.2174/1567202619666220406084947] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Melatonin (MT) is a pineal hormone with antineoplastic potential. This study aims to explore the therapeutic potential and mechanism of MT on glioblastoma (GBM). METHODS A human GBM cell line, LN229 was used for evaluating the function of MT. Cell viability, apoptosis, and migration were detected by CCK-8, flow cytometry, and transwell assays, respectively. The mRNA and protein expression of specific genes were measured by qRT-PCR and western blot, respectively. The regulatory relationship between miR-16-5p and PIM1 was validated by dual luciferase reporter gene assay. A mouse xenograft model was established to prove the anti-tumor effect and related mechanisms of MT in vivo. RESULTS MT inhibited the viability and migration, and promoted the apoptosis of LN229 cells in a dose-dependent manner. MiR-16-5p was dose-dependently up-regulated by MT in LN229 cells, which negatively regulated its target PIM1. MiR-16-5p inhibitor eliminated the anti-tumor effect of MT in LN229 cells, while si-PIM1 reversed the effect of miR-16-5p inhibitor in MT-treated cells. MT inhibited the tumor growth in vivo and MT-induced PIM1 down-regulation was reversed by miR-16-5p inhibition in tumor tissues. CONCLUSIONS MT inhibits the malignant progression of GBM via regulating miR-16-5p-midiated PIM1.
Collapse
Affiliation(s)
- Zhaoxian Yan
- First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Lin Hua
- Department of Neurosurgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Lifa Huang
- Department of Neurosurgery, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
23
|
Su XJ, Shen BD, Wang K, Song QX, Yang X, Wu DS, Shen HX, Zhu C. Roles of the Neuron-Restrictive Silencer Factor in the Pathophysiological Process of the Central Nervous System. Front Cell Dev Biol 2022; 10:834620. [PMID: 35300407 PMCID: PMC8921553 DOI: 10.3389/fcell.2022.834620] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 11/29/2022] Open
Abstract
The neuron-restrictive silencer factor (NRSF), also known as repressor element 1 (RE-1) silencing transcription factor (REST) or X2 box repressor (XBR), is a zinc finger transcription factor that is widely expressed in neuronal and non-neuronal cells. It is a master regulator of the nervous system, and the function of NRSF is the basis of neuronal differentiation, diversity, plasticity, and survival. NRSF can bind to the neuron-restrictive silencer element (NRSE), recruit some co-repressors, and then inhibit transcription of NRSE downstream genes through epigenetic mechanisms. In neurogenesis, NRSF functions not only as a transcriptional silencer that can mediate the transcriptional inhibition of neuron-specific genes in non-neuronal cells and thus give neuron cells specificity, but also as a transcriptional activator to induce neuronal differentiation. Many studies have confirmed the association between NRSF and brain disorders, such as brain injury and neurodegenerative diseases. Overexpression, underexpression, or mutation may lead to neurological disorders. In tumorigenesis, NRSF functions as an oncogene in neuronal tumors, such as neuroblastomas, medulloblastomas, and pheochromocytomas, stimulating their proliferation, which results in poor prognosis. Additionally, NRSF-mediated selective targets gene repression plays an important role in the development and maintenance of neuropathic pain caused by nerve injury, cancer, and diabetes. At present, several compounds that target NRSF or its co-repressors, such as REST-VP16 and X5050, have been shown to be clinically effective against many brain diseases, such as seizures, implying that NRSF and its co-repressors may be potential and promising therapeutic targets for neural disorders. In the present review, we introduced the biological characteristics of NRSF; reviewed the progress to date in understanding the roles of NRSF in the pathophysiological processes of the nervous system, such as neurogenesis, brain disorders, neural tumorigenesis, and neuropathic pain; and suggested new therapeutic approaches to such brain diseases.
Collapse
Affiliation(s)
- Xin-Jin Su
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Bei-Duo Shen
- Department of Spine Surgery, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Kun Wang
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Qing-Xin Song
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xue Yang
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - De-Sheng Wu
- Department of Spine Surgery, School of Medicine, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Hong-Xing Shen
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chao Zhu
- Department of Spine Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
24
|
Mitre AO, Florian AI, Buruiana A, Boer A, Moldovan I, Soritau O, Florian SI, Susman S. Ferroptosis Involvement in Glioblastoma Treatment. Medicina (B Aires) 2022; 58:medicina58020319. [PMID: 35208642 PMCID: PMC8876121 DOI: 10.3390/medicina58020319] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the deadliest brain tumors. Current standard therapy includes tumor resection surgery followed by radiotherapy and chemotherapy. Due to the tumors invasive nature, recurrences are almost a certainty, giving the patients after diagnosis only a 12–15 months average survival time. Therefore, there is a dire need of finding new therapies that could potentially improve patient outcomes. Ferroptosis is a newly described form of cell death with several implications in cancer, among which GBM. Agents that target different molecules involved in ferroptosis and that stimulate this process have been described as potentially adjuvant anti-cancer treatment options. In GBM, ferroptosis stimulation inhibits tumor growth, improves patient survival, and increases the efficacy of radiation and chemotherapy. This review provides an overview of the current knowledge regarding ferroptosis modulation in GBM.
Collapse
Affiliation(s)
- Andrei-Otto Mitre
- Department of Morphological Sciences, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (A.-O.M.); (A.B.); (I.M.); (S.S.)
| | - Alexandru Ioan Florian
- Department of Neurosurgery, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania;
- Department, of Neurosurgery, Emergency County Hospital, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Romania
- Correspondence:
| | - Andrei Buruiana
- Department of Medical Oncology, Prof. Dr. I. Chiricuta Oncology Institute, 400015 Cluj-Napoca, Romania;
| | - Armand Boer
- Department of Morphological Sciences, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (A.-O.M.); (A.B.); (I.M.); (S.S.)
| | - Ioana Moldovan
- Department of Morphological Sciences, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (A.-O.M.); (A.B.); (I.M.); (S.S.)
| | - Olga Soritau
- Research Department, Prof. Dr. I. Chiricuta Oncology Institute, 400015 Cluj-Napoca, Romania;
| | - Stefan Ioan Florian
- Department of Neurosurgery, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania;
- Department, of Neurosurgery, Emergency County Hospital, 3-5 Clinicilor Street, 400006 Cluj-Napoca, Romania
| | - Sergiu Susman
- Department of Morphological Sciences, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania; (A.-O.M.); (A.B.); (I.M.); (S.S.)
- Department of Pathology, IMOGEN Research Center, Louis Pasteur Street, 400349 Cluj-Napoca, Romania
| |
Collapse
|
25
|
Deciphering specific miRNAs in brain tumors: a 5-miRNA signature in glioblastoma. Mol Genet Genomics 2022; 297:507-521. [PMID: 35175428 DOI: 10.1007/s00438-022-01866-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/26/2022] [Indexed: 12/20/2022]
Abstract
MicroRNAs are endogenous non-coding RNAs with a marked impact on the development and progression of brain tumors. However, they commonly share different expression patterns in other types of tumors, thereby exhibiting lack of tissue specificity. Here, an integrative holistic analysis of microarray data is established for deciphering dysregulated miRNAs in glioblastoma, distinguishing them from eight other CNS tumors. The identification of dysregulated miRNAs was performed in a pool of 176 patients, 118 of which diagnosed with glioblastoma. Dysregulated miRNAs commonly expressed in glioblastoma were then discriminated from those co-expressed in other CNS tumors and further characterized. Overall, 21 miRNAs were found to be commonly dysregulated in glioblastoma. Notwithstanding, 16 miRNAs also exhibited a differential expression in at least one other CNS tumor. The remaining 5, specifically, hsa-miR-21-3p, hsa-miR-338-5p, hsa-miR-485-5p, hsa-miR-491-5p and hsa-miR-1290, were solely associated to glioblastoma. This signature is in-depth characterized, with the spotlight on tumor progression, invasion and patient survival. These five endogenous molecules, differentially expressed in glioblastoma, are thus suggested as potential therapeutic targets, modulating several genes involved in major signalling pathways, including MAPK/ERK, calcium, PI3K/AKT, mTOR and Wnt. In summary, these findings lay a foundation for further research on the expression and function of specific patterns of miRNAs expression in glioblastoma, providing reference for potential novel targets.
Collapse
|
26
|
Wang C, Jia Q, Guo X, Li K, Chen W, Shen Q, Xu C, Fu Y. microRNA-34 Family: From Mechanism to Potential Applications. Int J Biochem Cell Biol 2022; 144:106168. [DOI: 10.1016/j.biocel.2022.106168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/04/2022] [Accepted: 01/21/2022] [Indexed: 02/06/2023]
|
27
|
Wang S, Zhou H, Zhang R, Zhang Y. Integrated Analysis of Mutations, miRNA and mRNA Expression in Glioblastoma. Int J Gen Med 2021; 14:8281-8292. [PMID: 34815700 PMCID: PMC8605868 DOI: 10.2147/ijgm.s336421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/02/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is a common, malignant brain tumor in adults, with a median survival of only 15-23 months. Organisms respond to disease stress through sophisticated mechanisms at the physiological, transcriptional and metabolic levels. However, the molecular regulatory networks responsible for occurrence, progression and recurrence of glioma have yet to be elucidated. METHODS In this study, we sought to determine the cause of gliomas by developing an RNA-seq technique that analyzes mRNA and small RNA (sRNA) with the aim of discovering potential methods for precisely blocking key signaling pathways in occurrence, progression, and recurrence. The explication of mechanisms leading to GBM formation has become a feasible and promising new therapeutic method. RESULTS GBM-associated genes were identified based on their expression during the disease stress response. Analysis of the inverse correlations between microRNAs (miRNAs) and target mRNAs revealed 43 mRNA-miRNA interactions during disease progression. BOC-SMO and BOC-RAS were found to promote the malignant progression of glioma. A total of 3088 differentially expressed genes were identified as involved in several biological processes, such as amino acid metabolism, protein transport associated with immune response, cell proliferation, and cell apoptosis. Fifteen miRNAs were also identified as being differentially expressed in GBM and control groups. CONCLUSION The results of this study provide an important foundation for understanding the pathogenesis of glioma and discovering new therapeutic targets.
Collapse
Affiliation(s)
- ShiChao Wang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, People’s Republic of China
| | - HuanMin Zhou
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, People’s Republic of China
| | - RuiJian Zhang
- Department of Neurosurgery, The People’s Hospital of Inner Mongolia, Hohhot, Inner Mongolia, 010017, People’s Republic of China
| | - YanRu Zhang
- College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, 010018, People’s Republic of China
| |
Collapse
|
28
|
Abak A, Shoorei H, Taheri M, Ghafouri-Fard S. In vivo Engineering of Chromosome 19 q-arm by Employing the CRISPR/AsCpf1 and ddAsCpf1 Systems in Human Malignant Gliomas (Hypothesis). J Mol Neurosci 2021; 71:1648-1663. [PMID: 33990905 DOI: 10.1007/s12031-021-01855-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/23/2021] [Accepted: 05/03/2021] [Indexed: 11/29/2022]
Abstract
Deletions of the q13.3 region of chromosome 19 have been found commonly in all three main kinds of diffuse human malignant gliomas, powerfully demonstrating the existence of tumor suppressor genes in this region. Consistent with the previous studies, the most common deletion interval has been mapped to a roughly 4 Mb region of 19q13.3 between the APOC2 and HRC genes, between genetic markers D19S219 and D19S246. EML2 is a tumor suppressor gene that is located on 19q13.32 and is considerably methylated in high-grade gliomas. Notably, MIR330 gene that is situated within the non-coding intronic region of EML2 is also detected as an oncosuppressor-miR in a variety of cancers including gliomas. Additionally, glioma oncoprotein Bcl2L12 which is located on 19q13.33 is significantly overexpressed in glioblastoma multiform and has a pivotal role in cancer evolution and resistance to apoptosis. Other genes such as MIR519D and NOP53 are also discovered as tumor suppressor genes in gliomas which are located on 19q13.3 and 19q13.4, respectively. Therefore, we hypothesize that a CRISPR/AsCpf1-based genome engineering strategy might be utilized to attach these deleted sizeable chromosomal portions of genes coding tumor suppressors as vital parts of the chromosome 19 q-arm with the purpose of treatment of this chromosomal abnormality in gliomas. Also, we can concurrently employ the CRISPR-ddAsCpf1 strategy for the precise suppression of Bcl2L12 oncogene in glioma.
Collapse
Affiliation(s)
- Atefe Abak
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics. Shahid, Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Tomei S, Volontè A, Ravindran S, Mazzoleni S, Wang E, Galli R, Maccalli C. MicroRNA Expression Profile Distinguishes Glioblastoma Stem Cells from Differentiated Tumor Cells. J Pers Med 2021; 11:jpm11040264. [PMID: 33916317 PMCID: PMC8066769 DOI: 10.3390/jpm11040264] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) represents the most common and aggressive tumor of the brain. Despite the fact that several studies have recently addressed the molecular mechanisms underlying the disease, its etiology and pathogenesis are still poorly understood. GBM displays poor prognosis and its resistance to common therapeutic approaches makes it a highly recurrent tumor. Several studies have identified a subpopulation of tumor cells, known as GBM cancer stem cells (CSCs) characterized by the ability of self-renewal, tumor initiation and propagation. GBM CSCs have been shown to survive GBM chemotherapy and radiotherapy. Thus, targeting CSCs represents a promising approach to treat GBM. Recent evidence has shown that GBM is characterized by a dysregulated expression of microRNA (miRNAs). In this study we have investigated the difference between human GBM CSCs and their paired autologous differentiated tumor cells. Array-based profiling and quantitative Real-Time PCR (qRT-PCR) were performed to identify miRNAs differentially expressed in CSCs. The Cancer Genome Atlas (TCGA) data were also interrogated, and functional interpretation analysis was performed. We have identified 14 miRNAs significantly differentially expressed in GBM CSCs (p < 0.005). MiR-21 and miR-95 were among the most significantly deregulated miRNAs, and their expression was also associated to patient survival. We believe that the data provided here carry important implications for future studies aiming at elucidating the molecular mechanisms underlying GBM.
Collapse
Affiliation(s)
- Sara Tomei
- Research Department, Sidra Medicine, Doha PO26999, Qatar; (S.R.); (C.M.)
- Correspondence: ; Tel.: +974-4003-7681
| | - Andrea Volontè
- Unit of Immuno-Biotherapy of Melanoma and Solid Tumors, Division of Molecular Oncology, San Raffaele Foundation Scientific Institute, 20132 Milan, Italy;
| | - Shilpa Ravindran
- Research Department, Sidra Medicine, Doha PO26999, Qatar; (S.R.); (C.M.)
| | - Stefania Mazzoleni
- Neural Stem Cell Biology Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy; (S.M.); (R.G.)
| | - Ena Wang
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center, and Center for Human Immunology (CHI) National Institutes of Health, Bethesda, MD 20892, USA;
| | - Rossella Galli
- Neural Stem Cell Biology Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy; (S.M.); (R.G.)
| | - Cristina Maccalli
- Research Department, Sidra Medicine, Doha PO26999, Qatar; (S.R.); (C.M.)
| |
Collapse
|
30
|
Glioblastoma and MiRNAs. Cancers (Basel) 2021; 13:cancers13071581. [PMID: 33808106 PMCID: PMC8037240 DOI: 10.3390/cancers13071581] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma (GB) is one of the most common types of lethal brain tumors. Although several treatment options are available including surgery, along with adjuvant chemo and radiotherapy, the disease has a poor prognosis and patients generally die within 14 months of diagnosis. GB is chemo and radio resistant. Thus, there is a critical need for new insights into GB treatment to increase the chance of therapeutic success. This is why microRNA (miRNA) is being potentially considered in the diagnosis and treatment of glioblastoma. The objective of our review is to provide a holistic picture of GB up-regulated and down-regulated miRNA, in relationship with the expression of other genes, cell signaling pathways, and their role in GB diagnosis and treatment. MiRNA treatment is being considered to be used against GB together with radiotherapy and chemotherapy. Moreover, the use of miRNA as a diagnostic tool has also begun. Knowing that miRNAs are isolated in almost all human body fluids and that there are more than 3000 miRNAs in the human genome, plus the fact that each miRNA controls hundreds of different mRNAs, there is still much study needed to explore how miRNAs relate to GB for its proliferation, progression, and inhibition.
Collapse
|
31
|
Yoo JY, Yeh M, Kaur B, Lee TJ. Targeted delivery of small noncoding RNA for glioblastoma. Cancer Lett 2020; 500:274-280. [PMID: 33176185 DOI: 10.1016/j.canlet.2020.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/16/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
Abstract
Aberrant expression of certain genes and microRNAs (miRNAs) has been shown to drive cancer development and progression, thus the modification of aberrant gene and miRNA expression presents an opportunity for therapeutic targeting. Ectopic modulation of a single dysregulated miRNA has the potential to revert therapeutically unfavorable gene expression in cancer cells by targeting multiple genes simultaneously. Although the use of noncoding RNA-based cancer therapy is a promising approach, the lack of a feasible delivery platform for small noncoding RNAs has hindered the development of this therapeutic modality. Recently, however, there has been an evolution in RNA nanotechnology, in which small noncoding RNA is loaded onto nanoparticles derived from the pRNA-3WJ viral RNA motif of the bacteriophage phi29. Preclinical studies have shown the capacity of this technology to specifically target tumor cells by conjugating these nanoparticles with ligands specific for cancer cells and resulting in the endocytic delivery of siRNA and miRNA inhibitors directly into the cell. Here we provide a systematic review of the various strategies, which have been utilized for miRNA delivery with a specific focus on the preclinical evaluation of promising RNA nanoparticles for glioblastoma (GBM) targeted therapy.
Collapse
Affiliation(s)
- Ji Young Yoo
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Margaret Yeh
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Balveen Kaur
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Tae Jin Lee
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|