1
|
Xun M, Zhang J, Wu M, Chen Y. Long non-coding RNAs: The growth controller of vascular smooth muscle cells in cardiovascular diseases. Int J Biochem Cell Biol 2023; 157:106392. [PMID: 36828237 DOI: 10.1016/j.biocel.2023.106392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/13/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023]
Abstract
The active proliferation and migration of vascular smooth muscle cells supports the healing of vessel damage while their abnormal aggression or destitution contribute to the aberrant intima-medial structure and function in various cardiovascular diseases, so the understanding of the proliferation disorders of vascular smooth muscle cell and the related mechanism is the basis of effective intervention and control for cardiovascular diseases. Recently, long non-coding RNAs have stood out as upstream switchers for multiple proliferative signaling pathways and molecules, and many of them have been shown to conduce to the dysregulated proliferation and apoptosis of vascular smooth muscle cells under various pathogenic stimuli. This article discusses the long non-coding RNAs disclosed and linked to atherosclerosis, pulmonary hypertension, and aneurysms, and focuses upon their modulation of vascular smooth muscle cell population affecting three deadly cardiovascular diseases.
Collapse
Affiliation(s)
- Min Xun
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Jie Zhang
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China
| | - Meichun Wu
- Hengyang Medical School, University of South China, Hengyang 421001, China; School of Nursing, University of South China, Hengyang 421001, China
| | - Yuping Chen
- Institute of Pharmacy & Pharmacology, School of Pharmaceutical Science, University of South China, Hengyang 421001, China; Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
2
|
Chen J, Tang Z, Chen Z, Wei Y, Liang H, Zhang X, Gao Z, Zhu H. MicroRNA-218-5p regulates inflammation response via targeting TLR4 in atherosclerosis. BMC Cardiovasc Disord 2023; 23:122. [PMID: 36890438 PMCID: PMC9996974 DOI: 10.1186/s12872-023-03124-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/15/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND To investigate the expression of miR-218-5p in atherosclerosis patients and its effect on ox-LDL induced THP-1-derived macrophage inflammatory response. METHODS RT-qPCR detected the expression of serum miR-218-5p, and the diagnostic value of miR-218-5p was analyzed by ROC curve. Pearson correlation coefficient was used to evaluate the correlation between miR-218-5p and CIMT and CRP. THP-1 cells were treated with ox-LDL to construct foam cell model. The expression of miR-218-5p was regulated by in vitro transfection technique, and the effects of miR-218-5p on cell viability, apoptosis and inflammation were investigated. Luciferase reporter genes were used to analyze target genes of miR-218-5p in cell models. RESULTS The expression of miR-218-5p in the atherosclerosis cohort was significantly reduced, and miR-218-5p showed a good ability to distinguish patients from healthy people. Correlation analysis showed that the level of miR-218-5p was negatively correlated with the levels of CIMT and CRP. Cytological studies showed that the expression of miR-218-5p in macrophages decreased after ox-LDL induction. ox-LDL treatment on macrophages resulted in decreased cell viability, increased cell apoptosis and production of inflammatory cytokines, which contributed to the exacerbation of plaque formation. However, the above situation was reversed after upregulation of miR-218-5p. Bioinformatics analysis showed that TLR4 may be the target gene of miR-218-5p, and this hypothesis was proved by luciferase reporter gene assay. CONCLUSIONS The expression of miR-218-5p is reduced in atherosclerosis, and it may regulate the inflammatory response of atherosclerotic foam cells by targeting TLR4, suggesting that miR-218-5p may be a promising target for clinical atherosclerosis therapy.
Collapse
Affiliation(s)
- Jiajuan Chen
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, No. 32 Renminnan Road, Shiyan, 442000, Hubei, China
| | - Zusheng Tang
- Department of General Practitioner, Taihe Hospital, Hubei University of Medicine, No. 32 Renminnan Road, Shiyan, 442000, Hubei, China
| | - Zhen Chen
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, No. 32 Renminnan Road, Shiyan, 442000, Hubei, China
| | - Yunjie Wei
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, No. 32 Renminnan Road, Shiyan, 442000, Hubei, China
| | - Hui Liang
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Xiaoqiao Zhang
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Zhen Gao
- Department of Cardiology, Taihe Hospital, Hubei University of Medicine, No. 32 Renminnan Road, Shiyan, 442000, Hubei, China.
| | - Hezhong Zhu
- Department of Geriatrics, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
3
|
Sun W, Zhang X, He X, Zhang J, Wang X, Lin W, Wang X, Wu X. Long non-coding RNA SNHG16 silencing inhibits proliferation and inflammation in Mycobacterium tuberculosis-infected macrophages by targeting miR-140-5p expression. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 103:105325. [PMID: 35779785 DOI: 10.1016/j.meegid.2022.105325] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE The study investigated the clinical diagnostic value of long non-coding RNA (LncRNA) small nucleolar RNA host gene 16 (SNHG16) and explored its underlying molecular mechanism through Mycobacterium tuberculosis (M. tuberculosiinfection of macrophages. METHODS RT-qPCR analysis of the serum SNHG16 levels of the 66 healthy individuals, 67 latent TB (LTB) patients, and 67 active TB (ATB) patients. The receiver-operating characteristic (ROC) curve to detect the clinical diagnostic value of SNHG16 in TB patients. In vitro, M. tuberculosis-infected macrophages, CCK-8 and ELISA to detect cell proliferation and inflammatory factor levels. Luciferase reported assay was performed to analyze the targeting relationship between SNHG16 and miR-140-5p. RESULTS SNHG16 was significantly elevated in TB patients, and among them, ATB patients were higher than LTB patients. ROC confirmed that SNHG16 could distinguish LTB patients from healthy controls, and ATB patients from LTB patients, and can be used as a good diagnostic biomarker for TB. M. tuberculosis infection increased SNHG16 levels and promoted the proliferation and inflammation in macrophages. However, SNHG16 silencing significantly reversed the effect of infection. miR-140-5p, a direct target miRNA of SNHG16, was down-regulated in TB patients and was negatively correlated with SNHG16. When miR-140-5p was inhibited, the alleviating effect of SNHG16 silencing on M. tuberculosis infection proliferation and inflammation was significantly reversed. CONCLUSION The present results suggested that SNHG16 may be a new diagnostic biomarker for TB patients and SNHG16 silencing may alleviate TB by inhibiting the proliferation of macrophages in TB by regulation miR-140-5p.
Collapse
Affiliation(s)
- Wenna Sun
- Senior Department of Tuberculosis, The 8th Medical Center of Chinese People's Liberation Army General Hospital, Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Beijing 100091, China
| | - Xiushuang Zhang
- Senior Department of Tuberculosis, The 8th Medical Center of Chinese People's Liberation Army General Hospital, Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Beijing 100091, China
| | - Xiong He
- Senior Department of Tuberculosis, The 8th Medical Center of Chinese People's Liberation Army General Hospital, Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Beijing 100091, China
| | - Junxian Zhang
- Senior Department of Tuberculosis, The 8th Medical Center of Chinese People's Liberation Army General Hospital, Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Beijing 100091, China
| | - Xiaomeng Wang
- Senior Department of Tuberculosis, The 8th Medical Center of Chinese People's Liberation Army General Hospital, Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Beijing 100091, China
| | - Wen Lin
- Senior Department of Tuberculosis, The 8th Medical Center of Chinese People's Liberation Army General Hospital, Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Beijing 100091, China
| | - XiaoFeng Wang
- Senior Department of Tuberculosis, The 8th Medical Center of Chinese People's Liberation Army General Hospital, Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Beijing 100091, China
| | - Xueqiong Wu
- Senior Department of Tuberculosis, The 8th Medical Center of Chinese People's Liberation Army General Hospital, Tuberculosis Prevention and Control Key Laboratory, Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Beijing 100091, China.
| |
Collapse
|
4
|
Anderson KM, Anderson DM. LncRNAs at the heart of development and disease. Mamm Genome 2022; 33:354-365. [PMID: 35048139 DOI: 10.1007/s00335-021-09937-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/26/2021] [Indexed: 10/19/2022]
Abstract
Long noncoding RNAs (LncRNAs) have emerged as a diverse class of functional molecules that contribute to nearly every facet of mammalian cardiac development and disease. Recent examples show that lncRNAs can be important co-regulators of cardiac patterning and morphogenesis and modulators of the pathogenic signaling that drives heart disease. The flexibility and chemical nature of RNA allows lncRNAs to utilize diverse mechanisms, mediating their effects through their sequence, structure, and molecular interactions with DNA, protein, and other RNAs. In vivo, i.e., animal, studies of individual lncRNAs highlight their ability to balance conserved cardiac gene expression networks, serve as specific and early biomarkers, and indicate their promise as useful therapeutic targets to treat human heart disease. Here, we review recent functionally characterized lncRNAs in cardiac biology and pathology and provide a perspective on emerging approaches to decipher the role of lncRNAs in the heart.
Collapse
Affiliation(s)
- Kelly M Anderson
- Department of Medicine, Cardiovascular Research Institute, University of Rochester Medical Center, 601 Elmwood Avenue, Box CVRI, Rochester, NY, 14642, USA
| | - Douglas M Anderson
- Department of Medicine, Cardiovascular Research Institute, University of Rochester Medical Center, 601 Elmwood Avenue, Box CVRI, Rochester, NY, 14642, USA.
| |
Collapse
|
5
|
Yang Y, Zhao F, Yuan Z, Wang C, Chen K, Xiao W. Inhibition of miR-218-5p reduces myocardial ischemia-reperfusion injury in a Sprague-Dawley rat model by reducing oxidative stress and inflammation through MEF2C/NF-κB pathway. Int Immunopharmacol 2021; 101:108299. [PMID: 34749249 DOI: 10.1016/j.intimp.2021.108299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 12/01/2022]
Abstract
Following myocardial ischemia, myocardial reperfusion injury causes oxidative stress (OS) and inflammation, leading to myocardial cell apoptosis and necrosis. Recently, emerging studies have shown that microRNAs (miRNAs) contribute to the pathophysiology associated with myocardial ischemia-reperfusion (I/R). In this study, we conducted both in-vitro and in-vivo experiments to explore the role of miR-218-5p in ischemia-reperfusion (I/R)- or oxygen and glucose deprivation/reperfusion (OGD/R)-mediated cardiomyocyte injury. A total 44 Sprague-Dawley (SD) rats were used, and randomly divided into four groups, control group (n = 11), miR-218-5p-in group (n = 11), I/R group (n = 11), I/R + miR-218-5p-in group (n = 11). Our data showed that miR-218-5p was overexpressed in H9C2 cardiomyocytes under OGD/R treatment. miR-218-5p inhibition reduced the lactate dehydrogenase (LDH) activity and the levels of reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase (SOD), as well as the expression of tumor necrosis factor alpha (TNF-α), interleukin (IL-1β), and IL-6. Oppositely, miR-218-5p overexpression aggravated OGD/R-mediated damage on H9C2 cells, whereas nuclear factor kappa B (NF-κB) pathway inhibition or myocyte enhancer factor 2C (MEF2C) upregulation reversed miR-218-5p mimics-mediated effects. Bioinformatics analysis predicted that miR-218-5p targeted and dampened its expression, which was testified by the dual-luciferase reporter assay and RNA pull-down assay. In vivo, inhibiting miR-218-5p declined LDH activities and ROS, MDA and SOD levels in rat myocardial tissues under I/R injury, alleviated myocardial fibrosis and inflammatory reactions, and reduced myocardial infarction area. Overall, inhibition of miR-218-5p choked oxidative stress and inflammation in myocardial I/R injury via targeting MEF2C/NF-κB axis, thus relieving the disease progression.
Collapse
Affiliation(s)
- Yang Yang
- Department of Cardiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
| | - Fenglong Zhao
- Department of Cardiology & Nephrology, Wuyi People's Hospital, Wuyi, Hebei 053400, China
| | - Zhe Yuan
- Department of Emergency, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
| | - Chuanqiang Wang
- Department of Cardiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
| | - Ke Chen
- Department of Cardiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China
| | - Wenliang Xiao
- Department of Cardiology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, China.
| |
Collapse
|
6
|
Kuji T, Sugasawa T, Fujita SI, Ono S, Kawakami Y, Takekoshi K. A Pilot Study of miRNA Expression Profile as a Liquid Biopsy for Full-Marathon Participants. Sports (Basel) 2021; 9:sports9100134. [PMID: 34678915 PMCID: PMC8539081 DOI: 10.3390/sports9100134] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 12/21/2022] Open
Abstract
Exosomal microRNA (miRNA) in plasma and urine has attracted attention as a novel diagnostic tool for pathological conditions. However, the mechanisms of miRNA dynamics in the exercise physiology field are not well understood in terms of monitoring sports performance. This pilot study aimed to reveal the miRNA dynamics in urine and plasma of full-marathon participants. Plasma and urine samples were collected from 26 marathon participants before, immediately after, 2 h after, and one day after a full marathon. The samples were pooled, and exosomal miRNAs were extracted and analyzed using next-generation sequencing. We determined that the exosomal miRNA expression profile changed under time dependency in full marathon. New uncharacterized exosomal miRNAs such as hsa-miR-582-3p and hsa-miR-199a-3p could be potential biomarkers reflecting physical stress of full marathon in plasma and urine. In addition, some muscle miRNAs in plasma and urine have supported the utility for monitoring physical stress. Furthermore, some inflammation-related exosomal miRNAs were useful only in plasma. These results suggest that these exosomal miRNAs in plasma and/or urine are highly sensitive biomarkers for physical stress in full marathons. Thus, our findings may yield valuable insights into exercise physiology.
Collapse
Affiliation(s)
- Tomoaki Kuji
- Doctoral Program in Sports Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan; or
- Research and Development Division, Blue Industries Inc., ArcaCentral Bldg. 14F, 1-2-1 Kinshi, Sumida, Tokyo 130-0013, Japan
| | - Takehito Sugasawa
- Laboratory of Laboratory-Sports Medicine, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan; (T.S.); (S.-i.F.); (Y.K.)
| | - Shin-ichiro Fujita
- Laboratory of Laboratory-Sports Medicine, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan; (T.S.); (S.-i.F.); (Y.K.)
| | - Seiko Ono
- Master’s Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan;
| | - Yasushi Kawakami
- Laboratory of Laboratory-Sports Medicine, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan; (T.S.); (S.-i.F.); (Y.K.)
| | - Kazuhiro Takekoshi
- Laboratory of Laboratory-Sports Medicine, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan; (T.S.); (S.-i.F.); (Y.K.)
- Correspondence: ; Tel.: +81-29-853-3209
| |
Collapse
|
7
|
Mao P, Liu X, Wen Y, Tang L, Tang Y. LncRNA SNHG12 regulates ox-LDL-induced endothelial cell injury by the miR-218-5p/IGF2 axis in atherosclerosis. Cell Cycle 2021; 20:1561-1577. [PMID: 34313533 PMCID: PMC8409753 DOI: 10.1080/15384101.2021.1953755] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022] Open
Abstract
Atherosclerosis (AS) is a cardiovascular disorder accompanied by endothelial dysfunction. Extensive evidence demonstrates the regulatory functions of long noncoding RNAs (lncRNAs) in cardiovascular disease, including AS. Here, the function of lncRNA small nucleolar RNA host gene 12 (SNHG12) in AS progression was investigated. A cell model of AS was established in human umbilical endothelial cells (HUVECs) using oxidative low-density lipoprotein (ox-LDL). CCK-8, flow cytometry, TUNEL, ELISA, and western blotting analyses were performed. Apolipoprotein E-deficient (apoE-/-) mice fed a Western diet were used as in vivo models of AS. RT-qPCR determined the levels of SNHG12, microRNA-218-5p (miR-218-5p) and insulin-like growth factor-II (IGF2). The molecular mechanisms were investigated using luciferase reporter and RNA pull-down assays. We found that SNHG12 and IGF2 expression levels were high and miR-218-5p expression levels were low in AS patients and ox-LDL-treated HUVECs. SNHG12 depletion attenuated ox-LDL-induced injury in HUVECs, whereas miR-218-5p suppression partially abated this effect. Moreover, IGF2 overexpression prevented the alleviative role of miR-218-5p in ox-LDL-treated HUVECs. SNHG12 upregulated IGF2 expression by sponging miR-218-5p. More importantly, SNHG12 increased proinflammatory cytokine production and augmented atherosclerotic lesions in vivo. Overall, SNHG12 promotes the development of AS by the miR-218-5p/IGF2 axis.
Collapse
Affiliation(s)
- Ping Mao
- Departments of Cardiovascular Diseases, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Xiaowei Liu
- Departments of Cardiovascular Diseases, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Yingzheng Wen
- Departments of Cardiovascular Diseases, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Lijiang Tang
- Departments of Cardiovascular Diseases, Zhejiang Hospital, Hangzhou, Zhejiang, China
| | - Yimin Tang
- Departments of Cardiovascular Diseases, Zhejiang Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Yu Z, Zhang Y, Zheng H, Gao Q, Wang H. LncRNA SNHG16 regulates trophoblast functions by the miR-218-5p/LASP1 axis. J Mol Histol 2021; 52:1021-1033. [PMID: 34110517 DOI: 10.1007/s10735-021-09985-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/24/2021] [Indexed: 12/22/2022]
Abstract
Altered placental development and function lead to placental diseases such as preeclampsia (PE) which is mainly characterized by insufficient trophoblast invasion and abnormally invasive placenta disorders. Long noncoding RNAs (lncRNAs) are widely reported to function as crucial players in the pathogenesis of PE. The present investigation clarified the role of lncRNA small nucleolar RNA host gene 16 (SNHG16) in PE. RT-qPCR was used to measure gene expression. The proliferation of trophoblast cells was examined using CCK-8 and EdU assays. Trophoblast migration and invasion were assessed using wound healing and transwell assays. The apoptosis was estimated by flow cytometry. Luciferase reporter and RNA pull-down assays were performed to explore the molecular mechanisms in trophoblast cells. We found that SNHG16 was downregulated in placenta from patients with PE. Moreover, SNHG16 depletion significantly inhibited trophoblast cell proliferation, migration, and invasion and stimulated apoptosis, while SNHG16 overexpression exerted an opposite effect. Subsequently, we confirmed that SNHG16 acted as a competing RNA (ceRNA) of miR-218-5p that was verified to directly target LASP1. Both miR-218-5p depletion and LASP1 upregulation antagonized the effect of SNHG16 knockdown on HTR-8/SVneo cell functions. In conclusion, SNHG16 facilitates trophoblast cell migration and invasion by the miR-218-5p/LASP1 axis.
Collapse
Affiliation(s)
- Zhou Yu
- Department of Obstetrics, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huaiyin District, Huaian , 223300, Jiangsu, China
| | - Yulei Zhang
- Department of Obstetrics, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huaiyin District, Huaian , 223300, Jiangsu, China
| | - Haoyu Zheng
- Department of Obstetrics, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huaiyin District, Huaian , 223300, Jiangsu, China
| | - Qiong Gao
- Department of Obstetrics, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huaiyin District, Huaian , 223300, Jiangsu, China
| | - Haidong Wang
- Department of Obstetrics, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, No. 1 Huanghe West Road, Huaiyin District, Huaian , 223300, Jiangsu, China.
| |
Collapse
|
9
|
Li J, Zhang Y, Zhang D, Li Y. The Role of Long Non-coding RNAs in Sepsis-Induced Cardiac Dysfunction. Front Cardiovasc Med 2021; 8:684348. [PMID: 34041287 PMCID: PMC8141560 DOI: 10.3389/fcvm.2021.684348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 04/16/2021] [Indexed: 12/20/2022] Open
Abstract
Sepsis is a syndrome with life-threatening organ dysfunction induced by a dysregulated host response to infection. The heart is one of the most commonly involved organs during sepsis, and cardiac dysfunction, which is usually indicative of an extremely poor clinical outcome, is a leading cause of death in septic cases. Despite substantial improvements in the understanding of the mechanisms that contribute to the origin and responses to sepsis, the prognosis of sepsis-induced cardiac dysfunction (SICD) remains poor and its molecular pathophysiological changes are not well-characterized. The recently discovered group of mediators known as long non-coding RNAs (lncRNAs) have presented novel insights and opportunities to explore the mechanisms and development of SICD and may provide new targets for diagnosis and therapeutic strategies. LncRNAs are RNA transcripts of more than 200 nucleotides with limited or no protein-coding potential. Evidence has rapidly accumulated from numerous studies on how lncRNAs function in associated regulatory circuits during SICD. This review outlines the direct evidence of the effect of lncRNAs on SICD based on clinical trials and animal studies. Furthermore, potential functional lncRNAs in SICD that have been identified in sepsis studies are summarized with a proven biological function in research on other cardiovascular diseases.
Collapse
Affiliation(s)
- Jiawen Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yulin Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|