1
|
Zhang P, Huang L, Li X, Hu F, Niu X, Sun Y, Yao W, Tian W. NF1-Related MicroRNA Gene Polymorphisms and the Susceptibility to Soft Tissue Sarcomas: A Case-Control Study. DNA Cell Biol 2023; 42:229-238. [PMID: 36989515 DOI: 10.1089/dna.2022.0552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023] Open
Abstract
Soft tissue sarcomas (STS) are rare malignant tumors of mesenchymal origin, which are easy to metastasize and relapse and are a great threat to human health. In our previous study, the abnormal expression of neurofibromin 1 (NF1) is observed in tumor tissue of STS, and the NF1 gene is regulated by miRNAs. The study aimed to assess the association between NF1-related miRNA gene polymorphisms and the risk of STS. In this case-control study, the information and peripheral blood were collected from 169 patients with STS and 170 healthy controls. Six single-nucleotide polymorphisms of the NF1-related miRNAs were investigated and genotyped using a Sequenom MassARRAY® matrix-assisted laser desorption/ionization time-of-flight mass spectrometry platform. The association between the polymorphisms and the risk of STS was estimated using unconditional logistic regression analysis. There was a significant statistical difference on genotype distribution of miR-199a2 rs12139213 between the case group and the control group (p = 0.026). Comparing with individuals with wild-type AA, individuals with the AT/TT genotype had a 1.753-fold (odds ratio [OR] = 1.753, 95% confidence interval [CI] = 1.090-2.819, p = 0.021) increased risk of STS and 1.907-fold (OR = 1.907, 95% CI = 1.173-3.102, p = 0.009) increased risk of STS adjusted for age and smoking status. Individuals with the AG/GG genotype for miR24-3p rs4743988 displayed a significantly reduced risk of STS compared with individuals with homozygous mutations AA (OR = 0.605, 95% CI = 0.376-0.973, p = 0.038). Individuals carrying the AT/TT genotype for miR-199a2 rs12139213 or the AA genotype for miR24-3p rs4743988 may be susceptible to STS, which could be potential biomarkers for the diagnosis of STS.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, China
| | - Lingling Huang
- Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, China
| | - Xinling Li
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Fulan Hu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, China
| | - Xiaoying Niu
- Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, China
| | - Yang Sun
- Department of Orthopaedic Oncology Surgery, Beijing Jishuitan Hospital, Peking University, Beijing, China
| | - Weitao Yao
- Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, China
| | - Wen Tian
- Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, China
| |
Collapse
|
2
|
Li Y, Xie Y, Wang D, Xu H, Ye J, Yin JC, Chen J, Yan J, Ye B, Chen C. Whole exome sequencing identified a novel POT1 variant as a candidate pathogenic allele underlying a Li-Fraumeni-like family. Front Oncol 2022; 12:963364. [PMID: 36387164 PMCID: PMC9664187 DOI: 10.3389/fonc.2022.963364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/17/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Li-Fraumeni syndrome (LFS) and Li-Fraumeni-like (LFL) syndrome are rare hereditary diseases characterized by predisposition to a diverse spectrum of cancer types, primarily sarcoma. The pathogenic variants underlying the majority of LFL cases remain to be explored. METHODS We performed whole-exome sequencing (WES) on 13 core members of a large LFL family with highly aggregated incidences of cancers, including cases with sarcoma, non-small cell lung cancer and cardiac angiosarcoma, and conducted a comprehensive literature review of candidate gene associations in LFS/LFL syndromes or sarcoma to identify potential pathogenic germline variants. RESULTS No germline variants in the best-known LFL/LFS-associated gene TP53 were detected. Of all the genes associated with LFS/LFL or sarcoma that we have surveyed, we identified a novel p.P35L germline variant in POT1 (protection of telomeres 1). Germline and somatic alterations in POT1 have been implicated in a series of familial cancers, including angiosarcoma, glioma, melanoma and colorectal cancer. This particular variant is located in the telomere-binding OB1 domain, which is important in maintaining the proper telomere length, and showed high conservation across different POT1 orthologues. No record of the variant was found in any of the 1000 genomes, ExAC, gnomAD, dpSNP and COSMIC databases. Prediction algorithms and in silico structural analysis suggested completely disrupted protein structure and function of POT1 in the presence of this mutation. CONCLUSIONS Leveraging WES, we identified a novel germline risk allele, p.P35L in POT1, that likely predisposes to LFL syndrome. Our results support the routine testing of POT1 and other LFL/LFS-associated genes in the risk populations to enable early cancer diagnosis, prevention and intervention.
Collapse
Affiliation(s)
- Yuping Li
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yupeng Xie
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Di Wang
- Medical Department, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Hanyan Xu
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junru Ye
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiani C. Yin
- Medical Department, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Junjie Chen
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junrong Yan
- Medical Department, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Bin Ye
- Medical Department, Nanjing Geneseeq Technology Inc., Nanjing, Jiangsu, China
| | - Chengshui Chen
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China,*Correspondence: Chengshui Chen,
| |
Collapse
|
3
|
Zhang P, Li X, Huang L, Hu F, Niu X, Sun Y, Yao W. Association between microRNA 671 polymorphisms and the susceptibility to soft tissue sarcomas in a Chinese population. Front Oncol 2022; 12:960269. [PMID: 36016604 PMCID: PMC9396023 DOI: 10.3389/fonc.2022.960269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
This study evaluated the association between the microRNA (miRNA) gene polymorphisms and the susceptibility to soft tissue sarcomas (STSs). In this case–control study, DNA was extracted from leukocytes in peripheral blood, which was collected from 169 STSs patients and 170 healthy controls. Three SNPs for miR-210, five SNPs for miR-206, two SNPs for miR-485, two SNPs for miR-34b, two SNPs for miR-671, and three SNPs for miR-381 were investigated and genotyped using a Sequenom Mass ARRAY matrix-assisted laser desorption/ionization-time of flight mass spectrometry platform. Unconditional logistic regression analysis was used to analyze the association between miRNA gene polymorphisms and the susceptibility to STSs. The results showed that miR-671 rs1870238 GC + CC (OR = 1.963, 95% CI = 1.258–3.064, P = 0.003) and miR-671 rs2446065 CG + GG (OR =1.838, 95% CI = 1.178–2.868, P = 0.007) may be genetic risk factors for STSs after adjustment for age and smoking. Therefore, this study suggests that individuals carrying the GC + CC genotype for miR-671 rs1870238 or the CG + GG genotype for miR-671 rs2446065 are susceptible to STSs.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
- *Correspondence: Peng Zhang,
| | - Xinling Li
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Lingling Huang
- Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Fulan Hu
- Department of Biostatistics and Epidemiology, School of Public Health, Shenzhen University Health Science Center, Shenzhen, China
| | - Xiaoying Niu
- Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yang Sun
- Department of Orthopaedic Oncology Surgery, Beijing Jishuitan Hospital, Peking University, Beijing, China
| | - Weitao Yao
- Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
4
|
Zhang P, Huang L, Ma P, Niu X. Altered Expressions of NF1 and NF1-Related microRNAs as Biomarkers in the Diagnosis of Undifferentiated Pleomorphic Sarcoma. Front Genet 2022; 13:870191. [PMID: 35559021 PMCID: PMC9086456 DOI: 10.3389/fgene.2022.870191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/11/2022] [Indexed: 11/29/2022] Open
Abstract
Objective: Undifferentiated pleomorphic sarcoma (UPS) is a highly malignant, aggressive, and pleomorphic subtype of soft tissue sarcoma in adults. However, UPS is difficult to be diagnosed due to the lack of specific morphological and immunophenotypic features. Here, we aimed to identify new biomarkers for the diagnosis of UPS. Methods: The mRNA and protein expression of neurofibromin 1 (NF1) in 68 pairs of UPS and adjacent normal tissues were detected by qRT-PCR and immunohistochemistry, and the correlation between the NF1 protein expression and clinicopathological characteristics was analyzed. Then, differentially expressed microRNAs (DE miRNAs) were identified between the UPS tumor tissue and matched adjacent normal tissue using Hisep sequencing, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG). The DE miRNAs of the regulating NF1 gene were also identified using the TargetScan and miRanda databases and validated by qRT-PCR. Results: Compared with the adjacent normal tissue, both mRNA and protein expressions of NF1 in the UPS tumor tissue were significantly decreased, and the positive rate of NF1 protein was associated with the tumor size, metastasis, and recurrence. A total of 125 known DE miRNAs were identified from the screened miRNAs based on | log2(Fold Change) ≥5 and p-value < 0.05 (A total of 82 upregulated and 43 downregulated DE miRNAs in the UPS tissue). Target genes regulated by the DE miRNAs were enriched in pathways of metabolisms, RNA degradation, PI3K-Akt, and Rap1 pathway. In total, 11 miRNAs which were predicted to regulate the NF1 gene were screened. After verification, the relative expressions of hsa-miR-199a-3p and hsa-miR-34a-5p were increased and decreased in the UPS tumor tissue compared with those in the adjacent normal tissue, respectively. Conclusion: NF1 and NF1-related microRNAs including hsa-miR-199a-3p and hsa-miR-34a-5p may be novel biomarkers in the diagnosis of undifferentiated pleomorphic sarcoma (UPS).
Collapse
Affiliation(s)
- Peng Zhang
- Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, China
| | - Lingling Huang
- Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, China
| | - Pengwei Ma
- Department of Toxicology, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xiaoying Niu
- Department of Bone and Soft Tissue Cancer, The Affiliated Cancer Hospital of Zhengzhou University (Henan Cancer Hospital), Zhengzhou, China
| |
Collapse
|