1
|
Ekrani ST, Mahmoudi M, Haghmorad D, Kheder RK, Hatami A, Esmaeili SA. Manipulated mesenchymal stem cell therapy in the treatment of Parkinson's disease. Stem Cell Res Ther 2024; 15:476. [PMID: 39696636 DOI: 10.1186/s13287-024-04073-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 11/20/2024] [Indexed: 12/20/2024] Open
Abstract
Mesenchymal stem cell (MSC) therapy has been considered a promising approach for the treatment of Parkinson's disease (PD) for several years. PD is a globally prevalent neurodegenerative disease characterized by the accumulation of Lewy bodies and the loss of dopaminergic neurons, leading to severe motor and non-motor complications in patients. As current treatments are unable to halt the progression of neuronal loss and dopamine degradation, MSC therapy has emerged as a highly promising strategy for PD treatment. This promise is due to MSCs' unique properties compared to other types of stem cells, including self-renewal, differentiation potential, immune privilege, secretion of neurotrophic factors, ability to improve damaged tissue, modulation of the immune system, and lack of ethical concerns. MSCs have been employed in numerous pre-clinical and clinical studies for PD treatment with promising results. However, certain aspects of their efficacy in treating PD may benefit from various genetic and epigenetic modifications. In this review article, we assess these approaches to improving MSCs for specialized treatment of PD.
Collapse
Affiliation(s)
- Seyedeh Toktam Ekrani
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Dariush Haghmorad
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Ramiar Kamal Kheder
- Medical Laboratory Science Department, College of Science, University of Raparin, Rania, Sulaymaniyah, Iraq
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Alireza Hatami
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Cai H, Liu D, Xue WW, Ma L, Xie HT, Ning K. Lipid-based nanoparticles for drug delivery in Parkinson's disease. Transl Neurosci 2024; 15:20220359. [PMID: 39654878 PMCID: PMC11627081 DOI: 10.1515/tnsci-2022-0359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 12/12/2024] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that predominantly affects dopaminergic neurons in the substantia nigra and ventral tegmental area, resulting in symptoms such as tremors, muscle rigidity, bradykinesia, and potential cognitive and affective disturbances. The effective delivery of pharmacological agents to the central nervous system is hindered by various factors, including the restrictive properties of the blood‒brain barrier and blood‒spinal cord barrier, as well as the physicochemical characteristics of the drugs. Traditional drug delivery methods may not provide the therapeutic concentrations necessary for functional restoration in PD patients. However, lipid-based nanoparticles (NPs) offer new possibilities for enhancing the bioavailability of established treatment regimens and developing innovative therapies that can modify the course of the disease. This review provides a concise overview of recent advances in lipid-based NP strategies aimed at mitigating specific pathological mechanisms relevant to PD progression. This study also explores the potential applications of nanotechnological innovations in the development of advanced treatment modalities for individuals with PD.
Collapse
Affiliation(s)
- Han Cai
- Guangdong Celconta Biotechnology Co., Ltd, 9 Xincheng Road, Songshan Lake Park, Dongguan, Guangdong, PR China
| | - Dong Liu
- Guangdong Celconta Biotechnology Co., Ltd, 9 Xincheng Road, Songshan Lake Park, Dongguan, Guangdong, PR China
| | - Wei-Wei Xue
- Guangdong Celconta Biotechnology Co., Ltd, 9 Xincheng Road, Songshan Lake Park, Dongguan, Guangdong, PR China
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Liya Ma
- Guangdong Celconta Biotechnology Co., Ltd, 9 Xincheng Road, Songshan Lake Park, Dongguan, Guangdong, PR China
| | - Hai-Tao Xie
- Guangdong Celconta Biotechnology Co., Ltd, 9 Xincheng Road, Songshan Lake Park, Dongguan, Guangdong, PR China
| | - Ke Ning
- Guangdong Celconta Biotechnology Co., Ltd, 9 Xincheng Road, Songshan Lake Park, Dongguan, Guangdong, PR China
- Sheffield Institute of Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
3
|
García-Posadas L, Romero-Castillo I, Brennan K, Mc Gee MM, Blanco-Fernández A, Diebold Y. Isolation and Characterization of Human Conjunctival Mesenchymal Stromal Cells and Their Extracellular Vesicles. Invest Ophthalmol Vis Sci 2023; 64:38. [PMID: 37747402 PMCID: PMC10528583 DOI: 10.1167/iovs.64.12.38] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/01/2023] [Indexed: 09/26/2023] Open
Abstract
Purpose The purpose of this study was to isolate and culture human conjunctival mesenchymal stromal cells (Conj-MSCs) from cadaveric donor tissue, and to obtain and characterize their extracellular vesicles (EVs) and their effect on conjunctival epithelium. Methods Stromal cells isolated from cadaveric donor conjunctival tissues were cultured and analyzed to determine whether they could be defined as MSCs. Expression of MSC markers was analyzed by flow cytometry. Cells were cultured in adipogenic, osteogenic, and chondrocyte differentiation media, and stained with Oil Red, Von Kossa, and Toluidine Blue, respectively, to determine multipotent capacity. EVs were isolated from cultured Conj-MSCs by differential ultracentrifugation. EV morphology was evaluated by atomic force microscopy, size distribution analyzed by dynamic light scattering, and EVs were individually characterized by nanoflow cytometry. The effect of EVs on oxidative stress and viability was analyzed in in vitro models using the conjunctival epithelial cell line IM-HConEpiC. Results Cultured stromal cells fulfilled the criteria of MSCs: adherence to plastic; expression of CD90 (99.95 ± 0.03% positive cells), CD105 (99.04 ± 1.43%), CD73 (99.99 ± 0.19%), CD44 (99.93 ± 0.05%), and absence of CD34, CD11b, CD19, CD45 and HLA-DR (0.82 ± 0.91%); and in vitro differentiation into different lineages. Main Conj-MSC EV subpopulations were round, small EVs that expressed CD9, CD63, CD81, and CD147. Conj-MSC EVs significantly decreased the production of reactive oxygen species in IM-HConEpiCs exposed to H2O2 in similar levels than adipose tissue-MSC-derived EVs and ascorbic acid, used as controls. Conclusions It is possible to isolate human Conj-MSCs from cadaveric tissue, and to use these cells as a source of small EVs with antioxidant activity on conjunctival epithelial cells.
Collapse
Affiliation(s)
- Laura García-Posadas
- Ocular Surface Group, Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain
| | - Ismael Romero-Castillo
- Ocular Surface Group, Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain
| | - Kieran Brennan
- School of Biomolecular & Biomedical Science, Conway Institute of Biomolecular & Biomedical Research, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Margaret M. Mc Gee
- School of Biomolecular & Biomedical Science, Conway Institute of Biomolecular & Biomedical Research, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Alfonso Blanco-Fernández
- Flow Cytometry Core Technology, Conway Institute, University College Dublin (UCD), Belfield, Dublin 4, Ireland
| | - Yolanda Diebold
- Ocular Surface Group, Instituto Universitario de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Samadi A, Moammeri A, Pourmadadi M, Abbasi P, Hosseinpour Z, Farokh A, Shamsabadipour A, Heydari M, Mohammadi MR. Cell Encapsulation and 3D Bioprinting for Therapeutic Cell Transplantation. ACS Biomater Sci Eng 2023; 9:1862-1890. [PMID: 36877212 DOI: 10.1021/acsbiomaterials.2c01183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
The promise of cell therapy has been augmented by introducing biomaterials, where intricate scaffold shapes are fabricated to accommodate the cells within. In this review, we first discuss cell encapsulation and the promising potential of biomaterials to overcome challenges associated with cell therapy, particularly cellular function and longevity. More specifically, cell therapies in the context of autoimmune disorders, neurodegenerative diseases, and cancer are reviewed from the perspectives of preclinical findings as well as available clinical data. Next, techniques to fabricate cell-biomaterials constructs, focusing on emerging 3D bioprinting technologies, will be reviewed. 3D bioprinting is an advancing field that enables fabricating complex, interconnected, and consistent cell-based constructs capable of scaling up highly reproducible cell-biomaterials platforms with high precision. It is expected that 3D bioprinting devices will expand and become more precise, scalable, and appropriate for clinical manufacturing. Rather than one printer fits all, seeing more application-specific printer types, such as a bioprinter for bone tissue fabrication, which would be different from a bioprinter for skin tissue fabrication, is anticipated in the future.
Collapse
Affiliation(s)
- Amirmasoud Samadi
- Department of Chemical and Biomolecular Engineering, 6000 Interdisciplinary Science & Engineering Building (ISEB), Irvine, California 92617, United States
| | - Ali Moammeri
- School of Chemical Engineering, College of Engineering, University of Tehran, Enghelab Square, 16 Azar Street, Tehran 1417935840, Iran
| | - Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Enghelab Square, 16 Azar Street, Tehran 1417935840, Iran
| | - Parisa Abbasi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Azadi Avenue, Tehran 1458889694, Iran
| | - Zeinab Hosseinpour
- Biotechnology Research Laboratory, Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol 4714871167, Mazandaran Province, Iran
| | - Arian Farokh
- School of Chemical Engineering, College of Engineering, University of Tehran, Enghelab Square, 16 Azar Street, Tehran 1417935840, Iran
| | - Amin Shamsabadipour
- School of Chemical Engineering, College of Engineering, University of Tehran, Enghelab Square, 16 Azar Street, Tehran 1417935840, Iran
| | - Maryam Heydari
- Department of Cell and Molecular Biology, Faculty of Biological Science, University of Kharazmi, Tehran 199389373, Iran
| | - M Rezaa Mohammadi
- Dale E. and Sarah Ann Fowler School of Engineering, Chapman University, Orange, California 92866, United States
| |
Collapse
|
5
|
Rodríguez-Pallares J, Labandeira-García J, García-Garrote M, Parga J. Combined cell-based therapy strategies for the treatment of Parkinson’s disease: focus on mesenchymal stromal cells. Neural Regen Res 2023; 18:478-484. [DOI: 10.4103/1673-5374.350193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
6
|
Heris RM, Shirvaliloo M, Abbaspour-Aghdam S, Hazrati A, Shariati A, Youshanlouei HR, Niaragh FJ, Valizadeh H, Ahmadi M. The potential use of mesenchymal stem cells and their exosomes in Parkinson's disease treatment. Stem Cell Res Ther 2022; 13:371. [PMID: 35902981 PMCID: PMC9331055 DOI: 10.1186/s13287-022-03050-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 07/17/2022] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is the second most predominant neurodegenerative disease worldwide. It is recognized clinically by severe complications in motor function caused by progressive degeneration of dopaminergic neurons (DAn) and dopamine depletion. As the current standard of treatment is focused on alleviating symptoms through Levodopa, developing neuroprotective techniques is critical for adopting a more pathology-oriented therapeutic approach. Regenerative cell therapy has provided us with an unrivalled platform for evaluating potentially effective novel methods for treating neurodegenerative illnesses over the last two decades. Mesenchymal stem cells (MSCs) are most promising, as they can differentiate into dopaminergic neurons and produce neurotrophic substances. The precise process by which stem cells repair neuronal injury is unknown, and MSC-derived exosomes are suggested to be responsible for a significant portion of such effects. The present review discusses the application of mesenchymal stem cells and MSC-derived exosomes in PD treatment.
Collapse
Affiliation(s)
| | - Milad Shirvaliloo
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ali Hazrati
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Shariati
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Farhad Jadidi Niaragh
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Valizadeh
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
7
|
Marikar SN, El-Osta A, Johnston A, Such G, Al-Hasani K. Microencapsulation-based cell therapies. Cell Mol Life Sci 2022; 79:351. [PMID: 35674842 PMCID: PMC9177480 DOI: 10.1007/s00018-022-04369-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/06/2022] [Accepted: 05/10/2022] [Indexed: 11/25/2022]
Abstract
Mapping a new therapeutic route can be fraught with challenges, but recent developments in the preparation and properties of small particles combined with significant improvements to tried and tested techniques offer refined cell targeting with tremendous translational potential. Regenerating new cells through the use of compounds that regulate epigenetic pathways represents an attractive approach that is gaining increased attention for the treatment of several diseases including Type 1 Diabetes and cardiomyopathy. However, cells that have been regenerated using epigenetic agents will still encounter immunological barriers as well as limitations associated with their longevity and potency during transplantation. Strategies aimed at protecting these epigenetically regenerated cells from the host immune response include microencapsulation. Microencapsulation can provide new solutions for the treatment of many diseases. In particular, it offers an advantageous method of administering therapeutic materials and molecules that cannot be substituted by pharmacological substances. Promising clinical findings have shown the potential beneficial use of microencapsulation for islet transplantation as well as for cardiac, hepatic, and neuronal repair. For the treatment of diseases such as type I diabetes that requires insulin release regulated by the patient's metabolic needs, microencapsulation may be the most effective therapeutic strategy. However, new materials need to be developed, so that transplanted encapsulated cells are able to survive for longer periods in the host. In this article, we discuss microencapsulation strategies and chart recent progress in nanomedicine that offers new potential for this area in the future.
Collapse
Affiliation(s)
- Safiya Naina Marikar
- Epigenetics in Human Health and Disease, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Assam El-Osta
- Epigenetics in Human Health and Disease, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | - Angus Johnston
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Georgina Such
- School of Chemistry, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Keith Al-Hasani
- Epigenetics in Human Health and Disease, Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia.
| |
Collapse
|