1
|
Wang Q, Lu W, Lu L, Wu R, Wu D. miR-575/RIPK4 axis modulates cell cycle progression and proliferation by inactivating the Wnt/β-catenin signaling pathway through inhibiting RUNX1 in colon cancer. Mol Cell Biochem 2024; 479:1747-1766. [PMID: 38480605 DOI: 10.1007/s11010-024-04938-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/10/2024] [Indexed: 07/18/2024]
Abstract
Receptor interacting protein serine/threonine kinase 4 (RIPK4) is widely involved in human cancer development. Nevertheless, its role in colon cancer (COAD) has not been elucidated till now. Our research aimed at exploring the function and underlying molecular mechanism of RIPK4 in COAD progression. Through bioinformatic analyses and RT-qPCR, RIPK4 was discovered to be increased in COAD cells and tissues, and its high level predicted poor prognosis. Loss-of-function assays revealed that RIPK4 silencing suppressed COAD cell growth, induced cell cycle arrest, and enhanced cell apoptosis. In vivo experiments also proved that tumor growth was inhibited by silencing of RIPK4. Luciferase reporter assay validated that RIPK4 was targeted and negatively regulated by miR-575. Western blotting demonstrated that Wnt3a, phosphorylated (p)-GSK-3β, and cytoplasmic and nuclear β-catenin protein levels, β-catenin nuclear translocation, and Cyclin D1, CDK4, Cyclin E, and c-Myc protein levels were reduced by RIPK4 knockdown, which however was reversed by treatment with LiCl, the Wnt/β-catenin pathway activator. LiCl also offset the influence of RIPK4 knockdown on COAD cell growth, cell cycle process, and apoptosis. Finally, RIPK4 downregulation reduced RUNX1 level, which was upregulated in COAD and its high level predicted poor prognosis. RIPK4 is positively associated with RUNX1 in COAD. Overexpressing RUNX1 antagonized the suppression of RIPK4 knockdown on RUNX1, Wnt3a, p-GSK-3β, cytoplasmic β-catenin, nuclear β-catenin, Cyclin D1, CDK4, Cyclin E, and c-Myc levels. Collectively, miR-575/RIPK4 axis repressed COAD progression via inactivating the Wnt/β-catenin pathway through downregulating RUNX1.
Collapse
Affiliation(s)
- Qun Wang
- Department of Hepatopancreatobiliary Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 16 Zhuodaoquan South Road, Hongshan District, Wuhan, 430079, China.
- Colorectal Cancer Clinical Research Center of Wuhan, Wuhan, 430079, China.
- Colorectal Cancer Clinical Research Center of Hubei Province, Wuhan, 430079, China.
| | - Weijun Lu
- Department of Hepatopancreatobiliary Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 16 Zhuodaoquan South Road, Hongshan District, Wuhan, 430079, China
- Colorectal Cancer Clinical Research Center of Wuhan, Wuhan, 430079, China
| | - Li Lu
- Colorectal Cancer Clinical Research Center of Wuhan, Wuhan, 430079, China
- Department of Gastrointestinal Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, China
| | - Ruopu Wu
- Tianjin Medical University, Tianjin, 300070, China
| | - Dongde Wu
- Department of Hepatopancreatobiliary Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 16 Zhuodaoquan South Road, Hongshan District, Wuhan, 430079, China.
| |
Collapse
|
2
|
Niemira M, Bielska A, Chwialkowska K, Raczkowska J, Skwarska A, Erol A, Zeller A, Sokolowska G, Toczydlowski D, Sidorkiewicz I, Mariak Z, Reszec J, Lyson T, Moniuszko M, Kretowski A. Circulating serum miR-362-3p and miR-6721-5p as potential biomarkers for classification patients with adult-type diffuse glioma. Front Mol Biosci 2024; 11:1368372. [PMID: 38455766 PMCID: PMC10918470 DOI: 10.3389/fmolb.2024.1368372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
According to the fifth edition of the WHO Classification of Tumours of the Central Nervous System (CNS) published in 2021, grade 4 gliomas classification includes IDH-mutant astrocytomas and wild-type IDH glioblastomas. Unfortunately, despite precision oncology development, the prognosis for patients with grade 4 glioma remains poor, indicating an urgent need for better diagnostic and therapeutic strategies. Circulating miRNAs besides being important regulators of cancer development could serve as promising diagnostic biomarkers for patients with grade 4 glioma. Here, we propose a two-miRNA miR-362-3p and miR-6721-5p screening signature for serum for non-invasive classification of identified glioma cases into the highest-grade 4 and lower-grade gliomas. A total of 102 samples were included in this study, comprising 78 grade 4 glioma cases and 24 grade 2-3 glioma subjects. Using the NanoString platform, seven miRNAs were identified as differentially expressed (DE), which was subsequently confirmed via RT-qPCR analysis. Next, numerous combinations of DE miRNAs were employed to develop classification models. The dual panel of miR-362-3p and miR-6721-5p displayed the highest diagnostic value to differentiate grade 4 patients and lower grade cases with an AUC of 0.867. Additionally, this signature also had a high AUC = 0.854 in the verification cohorts by RT-qPCR and an AUC = 0.842 using external data from the GEO public database. The functional annotation analyses of predicted DE miRNA target genes showed their primary involvement in the STAT3 and HIF-1 signalling pathways and the signalling pathway of pluripotency of stem cells and glioblastoma-related pathways. For additional exploration of miRNA expression patterns correlated with glioma, we performed the Weighted Gene-Co Expression Network Analysis (WGCNA). We showed that the modules most associated with glioma grade contained as many as six DE miRNAs. In conclusion, this study presents the first evidence of serum miRNA expression profiling in adult-type diffuse glioma using a classification based on the WHO 2021 guidelines. We expect that the discovered dual miR-362-3p and miR-6721-5p signatures have the potential to be utilised for grading gliomas in clinical applications.
Collapse
Affiliation(s)
- Magdalena Niemira
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Agnieszka Bielska
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Karolina Chwialkowska
- Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Bialystok, Poland
| | - Justyna Raczkowska
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Anna Skwarska
- Albert Einstein College of Medicine, Cancer Center, Bronx, NY, United States
| | - Anna Erol
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Anna Zeller
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Gabriela Sokolowska
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Damian Toczydlowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Iwona Sidorkiewicz
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Zenon Mariak
- Department of Neurosurgery, Medical University of Bialystok, Bialystok, Poland
| | - Joanna Reszec
- Department of Medical Pathology, Medical University of Bialystok, Bialystok, Poland
| | - Tomasz Lyson
- Department of Neurosurgery, Medical University of Bialystok, Bialystok, Poland
| | - Marcin Moniuszko
- Centre of Regenerative Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Adam Kretowski
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
3
|
Zheng YK, Zhou ZS, Wang GZ, Tu JY, Cheng HB, Ma SZ, Ke C, Wang Y, Jian QP, Shu YH, Wu XW. MiR-122-5p regulates the mevalonate pathway by targeting p53 in non-small cell lung cancer. Cell Death Dis 2023; 14:234. [PMID: 37005437 PMCID: PMC10067850 DOI: 10.1038/s41419-023-05761-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/02/2023] [Accepted: 03/21/2023] [Indexed: 04/04/2023]
Abstract
The 5-year survival rate of non-small cell lung cancer (NSCLC) patients is very low. MicroRNAs (miRNAs) are involved in the occurrence of NSCLC. miR-122-5p interacts with wild-type p53 (wtp53), and wtp53 affects tumor growth by inhibiting the mevalonate (MVA) pathway. Therefore, this study aimed to evaluate the role of these factors in NSCLC. The role of miR-122-5p and p53 was established in samples from NSCLC patients, and human NSCLC cells A549 using the miR-122-5p inhibitor, miR-122-5p mimic, and si-p53. Our results showed that inhibiting miR-122-5p expression led to the activation of p53. This inhibited the progression of the MVA pathway in the NSCLC cells A549, hindered cell proliferation and migration, and promoted apoptosis. miR-122-5p was negatively correlated with p53 expression in p53 wild-type NSCLC patients. The expression of key genes in the MVA pathway in tumors of p53 wild-type NSCLC patients was not always higher than the corresponding normal tissues. The malignancy of NSCLC was positively correlated with the high expression of the key genes in the MVA pathway. Therefore, miR-122-5p regulated NSCLC by targeting p53, providing potential molecular targets for developing targeted drugs.
Collapse
Affiliation(s)
- Yu-Kun Zheng
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zhong-Shi Zhou
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Engineering Technology Research Center of Chinese Material Medical Processing Technology, Wuhan, 430065, China
| | - Guang-Zhong Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Engineering Technology Research Center of Chinese Material Medical Processing Technology, Wuhan, 430065, China
| | - Ji-Yuan Tu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Engineering Technology Research Center of Chinese Material Medical Processing Technology, Wuhan, 430065, China
| | - Huan-Bo Cheng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Shang-Zhi Ma
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Chang Ke
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yan Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Qi-Pan Jian
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yu-Hang Shu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xiao-Wei Wu
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|