1
|
Odetayo AF, Akhigbe RE, Bassey GE, Hamed MA, Olayaki LA. Impact of stress on male fertility: role of gonadotropin inhibitory hormone. Front Endocrinol (Lausanne) 2024; 14:1329564. [PMID: 38260147 PMCID: PMC10801237 DOI: 10.3389/fendo.2023.1329564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Studies have implicated oxidative stress-sensitive signaling in the pathogenesis of stress-induced male infertility. However, apart from oxidative stress, gonadotropin inhibitory hormone (GnIH) plays a major role. The present study provides a detailed review of the role of GnIH in stress-induced male infertility. Available evidence-based data revealed that GnIH enhances the release of corticosteroids by activating the hypothalamic-pituitary-adrenal axis. GnIH also mediates the inhibition of the conversion of thyroxine (T4) to triiodothyronine (T3) by suppressing the hypothalamic-pituitary-thyroidal axis. In addition, GnIH inhibits gonadotropin-releasing hormone (GnRH), thus suppressing the hypothalamic-pituitary-testicular axis, and by extension testosterone biosynthesis. More so, GnIH inhibits kisspeptin release. These events distort testicular histoarchitecture, impair testicular and adrenal steroidogenesis, lower spermatogenesis, and deteriorate sperm quality and function. In conclusion, GnIH, via multiple mechanisms, plays a key role in stress-induced male infertility. Suppression of GnIH under stressful conditions may thus be a beneficial prophylactic and/or therapeutic strategy.
Collapse
Affiliation(s)
- Adeyemi F. Odetayo
- Department of Physiology, Federal University of Health Sciences, Ila Orangun, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
| | - Roland E. Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | | | - Moses A. Hamed
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Nigeria
- Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Nigeria
- The Brainwill Laboratories and Biomedical Services, Osogbo, Nigeria
| | | |
Collapse
|
2
|
Wang B, Cui A, Xu Y, Zhang Y, Jiang Y, Liu X. Food deprivation differentially modulates gene expression of LPXRFa and kisspeptin systems in the brain-pituitary axis of half-smooth tongue sole ( Cynoglossus semilaevis). Front Endocrinol (Lausanne) 2023; 14:1099832. [PMID: 37033260 PMCID: PMC10081681 DOI: 10.3389/fendo.2023.1099832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/15/2023] [Indexed: 04/11/2023] Open
Abstract
LPXRFa, also known as gonadotropin-inhibitory hormone (GnIH), and kisspeptin (Kiss) are two major hypothalamic peptides that modulate the reproductive axis of vertebrates, including teleosts. However, little information is available regarding the actions of nutritional status on the regulation of these two neuroendocrine systems in fish. Herein, we assessed the effects of starvation and refeeding on the expression of lpxrfa, kiss2 and their receptors (lpxrfa-r and kiss2r respectively) at the brain-pituitary level of half-smooth tongue sole (Cynoglossus semilaevis). Food deprivation for 4 weeks induced a rise in brain lpxrfa as well as brain and pituitary lpxrfa-r mRNA levels, and refeeding restored brain lpxrfa and lpxrfa-r expression back to normal. However, pituitary lpxrfa-r mRNA levels still remained high after 1 week of refeeding. Neither lpxrfa nor kiss2 transcripts in the pituitary were altered by fasting, but their mRNA levels increased significantly after 1 week of refeeding, and declined back to the control levels after 2 weeks of refeeding. None of brain kiss2 and kiss2r along with pituitary kiss2r transcripts were modified by the nutritional status. In summary, our results revealed an interaction between energy status and the elements of LPXRFa and Kiss systems in the brain-pituitary axis of half-smooth tongue sole. Food deprivation and refeeding differentially regulated the two systems, which provided additional evidence for the involvement of the LPXRFa and Kiss systems in the regulation of reproduction by energy balance in non-mammalian species.
Collapse
Affiliation(s)
- Bin Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Joint Laboratory for Deep Blue Fishery Engineering, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Aijun Cui
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Joint Laboratory for Deep Blue Fishery Engineering, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Yongjiang Xu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Joint Laboratory for Deep Blue Fishery Engineering, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
- *Correspondence: Yongjiang Xu,
| | - Yaxing Zhang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yan Jiang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Joint Laboratory for Deep Blue Fishery Engineering, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| | - Xuezhou Liu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Joint Laboratory for Deep Blue Fishery Engineering, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China
| |
Collapse
|