1
|
Nishiyama M, Uchida K, Abe N, Nozaki M. Molecular cloning of cytochrome P450 side-chain cleavage and changes in its mRNA expression during gonadal development of brown hagfish, Paramyxine atami. Gen Comp Endocrinol 2015; 212:1-9. [PMID: 25623145 DOI: 10.1016/j.ygcen.2015.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 01/11/2015] [Accepted: 01/16/2015] [Indexed: 11/25/2022]
Abstract
Since hagfishes are considered the most primitive vertebrate known, extant or extinct, studies on their reproduction are indispensable for understanding phylogenetic aspects of vertebrate reproduction. However, little information is available on the endocrine regulation of the gonadal function in the hagfish. Based on EST analysis of the testis of the brown hagfish (Paramyxine atami), P450 side chain cleavage (CYP11A), which is the first and essential enzyme for steroidogenesis in jawed vertebrates, was cloned. The deduced amino acid sequence of hagfish CYP11A shows high identity to other animal forms especially in two functional domains, adrenodoxin binding domain and heme-binding domain. In the phylogenetic analysis, hagfish CYP11A forms a clade with the vertebrate CYP11A. Following the real-time PCR analysis, CYP11A mRNA expression levels were clearly correlated to the developmental stages of gonads in both sexes of the brown hagfish. By in situ hybridization, CYP11A mRNA signals were found in the theca cells of the ovarian follicles and Leydig cells and the tubule-boundary cells of the testis. These molecular and histological evidences are suggesting that CYP11A plays functional roles as a steroidogenic enzyme in gonadal development. Moreover, native GTH purified from hagfish pituitary stimulated the transcriptional levels of CYP11A in the organ-cultured testis in vitro, clearly suggesting that the steroidogenic activity of the hagfish is under the control of the pituitary GTH. It is suggested that vertebrates, during their early evolution, have established the pituitary-gonadal reproductive system.
Collapse
Affiliation(s)
- Maki Nishiyama
- Sado Marine Biological Station, Faculty of Science, Niigata University, Tassha, Sado, Niigata 952-2135, Japan; Graduate School of Science and Technology, Niigata University, Nishi-ku, Niigata, Niigata 950-2181, Japan
| | - Katsuhisa Uchida
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Kibanadai-nishi, Miyazaki 889-2192, Japan
| | - Nozomi Abe
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ten-noudai, Tsukuba, Ibaraki 305-8572, Japan
| | - Masumi Nozaki
- Sado Marine Biological Station, Faculty of Science, Niigata University, Tassha, Sado, Niigata 952-2135, Japan.
| |
Collapse
|
2
|
Nozaki M. Hypothalamic-pituitary-gonadal endocrine system in the hagfish. Front Endocrinol (Lausanne) 2013; 4:200. [PMID: 24416029 PMCID: PMC3874551 DOI: 10.3389/fendo.2013.00200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 12/17/2013] [Indexed: 11/26/2022] Open
Abstract
The hypothalamic-pituitary system is considered to be a seminal event that emerged prior to or during the differentiation of the ancestral agnathans (jawless vertebrates). Hagfishes as one of the only two extant members of the class of agnathans are considered the most primitive vertebrates known, living or extinct. Accordingly, studies on their reproduction are important for understanding the evolution and phylogenetic aspects of the vertebrate reproductive endocrine system. In gnathostomes (jawed vertebrates), the hormones of the hypothalamus and pituitary have been extensively studied and shown to have well-defined roles in the control of reproduction. In hagfish, it was thought that they did not have the same neuroendocrine control of reproduction as gnathostomes, since it was not clear whether the hagfish pituitary gland contained tropic hormones of any kind. This review highlights the recent findings of the hypothalamic-pituitary-gonadal endocrine system in the hagfish. In contrast to gnathostomes that have two gonadotropins (GTH: luteinizing hormone and follicle-stimulating hormone), only one pituitary GTH has been identified in the hagfish. Immunohistochemical and functional studies confirmed that this hagfish GTH was significantly correlated with the developmental stages of the gonads and showed the presence of a steroid (estradiol) feedback system at the hypothalamic-pituitary levels. Moreover, while the identity of hypothalamic gonadotropin-releasing hormone (GnRH) has not been determined, immunoreactive (ir) GnRH has been shown in the hagfish brain including seasonal changes of ir-GnRH corresponding to gonadal reproductive stages. In addition, a hagfish PQRFamide peptide was identified and shown to stimulate the expression of hagfish GTHβ mRNA in the hagfish pituitary. These findings provide evidence that there are neuroendocrine-pituitary hormones that share common structure and functional features compared to later evolved vertebrates.
Collapse
Affiliation(s)
- Masumi Nozaki
- Sado Marine Biological Station, Faculty of Science, Niigata University, Sado, Japan
| |
Collapse
|
3
|
Nishiyama M, Chiba H, Uchida K, Shimotani T, Nozaki M. Relationships between plasma concentrations of sex steroid hormones and gonadal development in the brown hagfish, Paramyxine atami. Zoolog Sci 2013; 30:967-74. [PMID: 24199862 DOI: 10.2108/zsj.30.967] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The relationship between sex steroid hormone profiles in plasma and gonadal function in hagfish is poorly understood. In the present study, plasma concentrations of estradiol, testosterone, and progesterone were examined with respect to gonadal development, sexual differences, and possible function of atretic follicles in the brown hagfish, Paramyxine atami, using a time-resolved fluoroimmunoassay. Plasma concentrations of these three hormones were low in juveniles of both sexes. In females, plasma estradiol showed a significant correlation with ovarian development, with the highest concentrations in late vitellogenic adults. Plasma testosterone and progesterone also increased significantly in non-vitellogenic adult females; however, plasma testosterone showed no significant differences among adult females at different ovarian developments, while plasma progesterone was significantly lower in late vitellogenic adults than it was in non-vitellogenic adults. Vitellogenic females that possessed atretic follicles showed significantly lower concentrations of all three hormones than females that only possessed normal follicles. In males, no significant differences were found in plasma estradiol or testosterone levels among groups of different developmental stages of the testis, while plasma progesterone showed a clear inverse relationship with testicular development. Thus, differences were found in plasma sex steroid hormone profiles between male and female P. atami. Moreover, plasma estradiol showed a significant correlation with ovarian development, which suggests that estradiol is involved in the regulation of ovarian development. The present study also revealed that steroid hormone production was strongly suppressed in females that possessed atretic follicles in their ovaries.
Collapse
Affiliation(s)
- Maki Nishiyama
- 1 Sado Marine Biological Station, Faculty of Science, Niigata University, Tassha, Sado, Niigata 952-2135, Japan
| | | | | | | | | |
Collapse
|
4
|
Nozaki M, Uchida K, Honda K, Shimotani T, Nishiyama M. Effects of estradiol or testosterone treatment on expression of gonadotropin subunit mRNAs and proteins in the pituitary of juvenile brown hagfish, Paramyxine atami. Gen Comp Endocrinol 2013; 189:111-8. [PMID: 23684771 DOI: 10.1016/j.ygcen.2013.04.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/25/2013] [Accepted: 04/27/2013] [Indexed: 11/26/2022]
Abstract
A single functional gonadotropin (GTH) comprising two subunits, α and β, was recently identified in the pituitary of brown hagfish (Paramyxine atami). Little is known about the feedback mechanisms that regulate these GTH subunits by sex steroids in the hagfish. The present study was designed to examine feedback effects of estradiol and testosterone on mRNA expression and protein expression of both GTHα and GTHβ subunits in the pituitary of the juvenile P. atami. Intraperitoneal administration of estradiol over the course of 27days resulted in substantial accumulation of immunoreactive (ir)-GTHα and ir-GTHβ in the adenohypophysis, but testosterone treatments over 27days had no effects on ir-GTHα or ir-GTHβ. Estradiol treatment for 1, 2, 4 or 14days had no effect on GTHα mRNA levels. In contrast, after 2days of estradiol treatment, GTHβ mRNA levels had increased significantly from baseline, while these levels were not affected after treatment over 1, 4, or 14days. After 14days of testosterone treatment, both GTHα and GTHβ mRNA levels had decreased significantly from baseline levels. These results indicate that estradiol acted primarily to suppress the secretion of GTH, and hence resulted in the accumulations of ir-GTHα and ir-GTHβ in the pituitary. On the other hand, testosterone appeared to suppress both the synthesis and the secretion of GTH. Thus, estradiol and testosterone probably differ in their effects on the regulation of pituitary GTH synthesis and secretion in juvenile hagfish.
Collapse
Affiliation(s)
- Masumi Nozaki
- Sado Marine Biological Station, Faculty of Science, Niigata University, Tassha, Sado, Niigata 952-2135, Japan.
| | | | | | | | | |
Collapse
|
5
|
Uchida K, Moriyama S, Sower SA, Nozaki M. Glycoprotein hormone in the pituitary of hagfish and its evolutionary implications. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:75-83. [PMID: 22614069 DOI: 10.1007/s10695-012-9657-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 05/05/2012] [Indexed: 06/01/2023]
Abstract
The pituitary gland is present in all vertebrates, from agnathans (jawless vertebrates) to mammals, but not in invertebrates. Reproduction in gnathostomes (jawed vertebrates) is controlled by two pituitary gonadotropins (GTHs), luteinizing hormone and follicle-stimulating hormone, which are part of the pituitary glycoprotein hormone (GPH) family. Hagfishes, which lack both jaws and vertebrae, are considered the most primitive vertebrate known, living or extinct. Accordingly, they are of particular importance in understanding the evolution of the pituitary GPHs and their functions related to vertebrate reproduction. Nevertheless, key elements of the reproductive endocrine system in hagfish have yet to be elucidated. Our current report has revealed the first identification of a functional GPH composed of two subunits that possess gonadotropic action at the pituitary of brown hagfish. It seems most likely that an ancestral GPH gave rise to only one GTH in hagfish pituitary and that multiplicity of GPHs arose later during the early evolution of gnathostomes. This paper briefly summarizes the latest findings on the hagfish GPH from an evolutionary point of view.
Collapse
Affiliation(s)
- Katsuhisa Uchida
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki, 889-2192, Japan.
| | | | | | | |
Collapse
|
6
|
Osugi T, Uchida K, Nozaki M, Tsutsui K. Characterization of novel RFamide peptides in the central nervous system of the brown hagfish: isolation, localization, and functional analysis. Endocrinology 2011; 152:4252-64. [PMID: 21862614 DOI: 10.1210/en.2011-1375] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
RFamide (RFa) peptides play various important roles in the central nervous system in both invertebrates and vertebrates. However, there is no evidence of the existence of any RFamide peptide in the brain of hagfish, one of the oldest lineages of vertebrates. In this study, we sought to identify novel RFamide peptides from the brains of hagfish (Paramyxine atami). We identified four novel RFamide peptides, which had the C-terminal Pro-Gln-Arg-Phe-NH2 structure. cDNA cloning revealed that the identified RFamide peptides are encoded in two types of cDNA. Molecular phylogenetic analysis of the two precursors indicated that the hagfish RFamide peptides belong to the PQRFamide peptide group that includes mammalian neuropeptide FF and AF. Based on immunohistochemistry and in situ hybridization, hagfish PQRFamide peptide precursor mRNA and its translated peptides were localized in the infundibular nucleus of the hypothalamus. Immunoreactive fibers were terminated on blood vessels in the infundibular nucleus. Dense immunoreactive fibers were also observed in other brain regions. We further showed that one of the hagfish PQRFamide peptides significantly stimulated the expression of gonadotropin-β mRNA in the cultured hagfish pituitary. These results indicate that the control mechanism of gonadotropin expression by a hypothalamic neuropeptide evolved in the agnathan brain. This is the first evidence describing the identification of RFamide peptides in the hagfish brain. This is also the first report showing the regulation of gonadotropin expression by a homolog of neuropeptide FF that belongs to the PQRFamide peptide group in any vertebrate.
Collapse
Affiliation(s)
- Tomohiro Osugi
- Laboratory of Integrative Brain Sciences, Department of Biology, Waseda University, Center for Medical Life Science of Waseda University, 2-2 Wakamatsu-cho, Shinjuku-.ku, Tokyo 162-8480, Japan
| | | | | | | |
Collapse
|
7
|
Evolutionary origin of a functional gonadotropin in the pituitary of the most primitive vertebrate, hagfish. Proc Natl Acad Sci U S A 2010; 107:15832-7. [PMID: 20733079 DOI: 10.1073/pnas.1002208107] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hagfish, which lack both jaws and vertebrae, are considered the most primitive vertebrate known, living or extinct. Hagfish have long been the enigma of vertebrate evolution not only because of their evolutionary position, but also because of our lack of knowledge on fundamental processes. Key elements of the reproductive endocrine system in hagfish have yet to be elucidated. Here, the presence and identity of a functional glycoprotein hormone (GPH) have been elucidated from the brown hagfish Paramyxine atami. The hagfish GPH consists of two subunits, alpha and beta, which are synthesized and colocalized in the same cells of the adenohypophysis. The cellular and transcriptional activities of hagfish GPHalpha and -beta were significantly correlated with the developmental stages of the gonad. The purified native GPH induced the release of gonadal sex steroids in vitro. From our phylogenetic analysis, we propose that ancestral glycoprotein alpha-subunit 2 (GPA2) and beta-subunit 5 (GPB5) gave rise to GPHalpha and GPHbeta of the vertebrate glycoprotein hormone family, respectively. The identified hagfish GPHalpha and -beta subunits appear to be the typical gnathostome GPHalpha and -beta subunits based on the sequence and phylogenetic analyses. We hypothesize that the identity of a single functional GPH of the hagfish, hagfish GTH, provides critical evidence for the existence of a pituitary-gonadal system in the earliest divergent vertebrate that likely evolved from an ancestral, prevertebrate exclusively neuroendocrine mechanism by gradual emergence of a previously undescribed control level, the pituitary, which is not found in the Protochordates.
Collapse
|
8
|
Kano S. Genomics and Developmental Approaches to an Ascidian Adenohypophysis Primordium. Integr Comp Biol 2010; 50:35-52. [DOI: 10.1093/icb/icq050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
9
|
Nozaki M. The Hagfish Pituitary Gland and Its Putative Adenohypophysial Hormones. Zoolog Sci 2008; 25:1028-36. [DOI: 10.2108/zsj.25.1028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Abstract
The use of steroids and their receptors as ligand-gated transcription factors is thought to be an important step in vertebrate evolution. The lamprey is the earliest-evolving vertebrate to date in which sex steroids and their receptors have been demonstrated to have hormonal roles similar to those found in jawed vertebrates. Sex steroids and their receptors have been examined in several lamprey species, and the majority of studies have focused on the sea lamprey, Petromyzon marinus. While classical steroids appear to be present in lampreys, their function, concentrations, and synthesis have not been determined conclusively. The only classical steroid that is thought to act as a hormone in both males and females is estradiol. Recent research has established that lampreys produce and circulate 15alpha-hydroxylated steroids, and that these steroids respond to upstream stimulation within the hypothalamic-pituitary-gonadal axis. In particular, 15alpha-hydroxyprogesterone is highly sensitive and responds in great magnitude to stimulation, and is likely a hormone. Lampreys also appear to use androstenedione, a precursor to vertebrate androgens, as their main androgen, and a receptor for androstenedione has recently been described. Non-classical steroids are prevalent in many aquatic vertebrates, and the non-classical steroids found in the sea lamprey may represent an evolutionary artifact, or alternatively may be a way to avoid endocrine disruption when ingesting the body fluids of host fish. The lamprey will continue to be an interesting model for examining the evolution of steroid hormones, steroid receptors, and steroid function.
Collapse
Affiliation(s)
- Mara B Bryan
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA.
| | | | | |
Collapse
|
11
|
Nozaki M, Shimotani T, Uchida K. Gonadotropin-like and adrenocorticotropin-like cells in the pituitary gland of hagfish, Paramyxine atami; immunohistochemistry in combination with lectin histochemistry. Cell Tissue Res 2007; 328:563-72. [PMID: 17347815 DOI: 10.1007/s00441-006-0349-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Accepted: 09/19/2006] [Indexed: 10/23/2022]
Abstract
The pituitary system of the hagfish remains an enigma. The present study has aimed to detect possible adenohypophysial hormones in the pituitary gland of the brown hagfish, Paramyxine atami, by means of immunohistochemistry in combination with lectin histochemistry. Rabbit antisera raised against ovine luteinizing hormone (LH)beta, proopiomelanocortin (POMC)-related peptides, and the growth hormone/prolactin family of tetrapod and fish species were used, and 25 kinds of lectins were tested. Three different types of adenohypophysial cells were revealed in the pituitary of brown hagfish. The first was stained with both anti-ovine LH beta and several D-mannose-binding lectins, such as Lens culinaris agglutinin and Pisum sativum agglutinin. This cell type predominated in the adenohypophysis in adults with developing gonads and thus appeared to be involved in the regulation of gonadal functions. The second was negative for anti-ovine LH beta but was stained with several N-acetylglucosamine-binding lectins, such as wheat germ agglutinin and Lycopersicon esculentum lectin. This cell type exhibited a weak positive reaction with anti-lamprey adrenocorticotropin (ACTH) and thus appeared to be related to POMC-like cells. The second cell type was found in the adenohypophysis regardless of the developmental state of the gonads. The third cell type was negative for both antisera and lectins. Since this cell type was numerous in juveniles and adults without developing gonads, most cells of this type were probably undifferentiated. These findings suggest that GTH and ACTH are major adenohypophysial hormones in the hagfish.
Collapse
Affiliation(s)
- Masumi Nozaki
- Sado Marine Biological Station, Faculty of Science, Niigata University, Tassha, Sado, Niigata, 952-2135, Japan.
| | | | | |
Collapse
|