1
|
Bosi G, Maynard BJ, Pironi F, Sayyaf Dezfuli B. Parasites and the neuroendocrine control of fish intestinal function: an ancient struggle between pathogens and host. Parasitology 2022; 149:1842-1861. [PMID: 36076315 PMCID: PMC11010486 DOI: 10.1017/s0031182022001160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 12/29/2022]
Abstract
Most individual fish in wild and farmed populations can be infected with parasites. Fish intestines can harbour protozoans, myxozoans and helminths, which include several species of digeneans, cestodes, nematodes and acanthocephalans. Enteric parasites often induce inflammation of the intestine; the pathogen provokes changes in the host physiology, which will be genetically selected for if they benefit the parasite. The host response to intestinal parasites involves neural, endocrine and immune systems and interaction among these systems is coordinated by hormones, chemokines, cytokines and neurotransmitters including peptides. Intestinal fish parasites have effects on the components of the enteric nervous and endocrine systems; mechanical/chemical changes impair the activity of these systems, including gut motility and digestion. Investigations on the role of the neuroendocrine system in response to fish intestinal parasites are very few. This paper provides immunohistochemical and ultrastructural data on effects of parasites on the enteric nervous system and the enteric endocrine system in several fish–parasite systems. Emphasis is on the occurrence of 21 molecules including cholecystokinin-8, neuropeptide Y, enkephalins, galanin, vasoactive intestinal peptide and serotonin in infected tissues.
Collapse
Affiliation(s)
- Giampaolo Bosi
- Department of Veterinary Medicine and Animal Science, University of Milan, St. dell'Università 6, 26900 Lodi, Italy
| | - Barbara J. Maynard
- The Institute for Learning and Teaching, Colorado State University, Fort Collins, CO 80523, USA
| | - Flavio Pironi
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121 Ferrara, Italy
| | - Bahram Sayyaf Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, St. Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
2
|
Mensah ET, Blanco AM, Donini A, Unniappan S. Galanin decreases spontaneous resting contractions and potentiates acetyl choline-induced contractions of goldfish gut. Neuropeptides 2018; 69:92-97. [PMID: 29709304 DOI: 10.1016/j.npep.2018.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/20/2018] [Accepted: 04/22/2018] [Indexed: 12/16/2022]
Abstract
Galanin (GAL) is a 29 amino acid peptide, first identified from the porcine intestine and widely distributed within the brain and peripheral tissues. Among GAL biological functions, its role as a potent appetite-stimulating peptide is probably the most studied. With galanin's established role in the modulation of food intake in fish, this study aims to evaluate the effects of GAL on the intestinal motility of the goldfish, Carassius auratus, using an organ bath system. Our results found that application of GAL to the organ bath causes a significant concentration-dependent decrease in the amplitude of spontaneous contractions of goldfish gut. Preincubations of intestinal strips with acetylcholine (ACh) and GAL showed that GAL increases the force of ACh-induced contractions of the goldfish gut. These results provide the first evidence for a role of GAL in gut motility in goldfish. This also suggests a crosstalk between the effects of GAL and ACh in such functions, thus pointing to a putative joint role between the two molecules. These findings offer novel information that strengthens the role of the galaninergic system in fish feeding.
Collapse
Affiliation(s)
- Elsie Tachie Mensah
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Ayelen Melisa Blanco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada
| | - Andrew Donini
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan S7N 5B4, Canada.
| |
Collapse
|
3
|
Dezfuli BS, DePasquale JA, Castaldelli G, Giari L, Bosi G. A fish model for the study of the relationship between neuroendocrine and immune cells in the intestinal epithelium: Silurus glanis infected with a tapeworm. FISH & SHELLFISH IMMUNOLOGY 2017; 64:243-250. [PMID: 28330806 DOI: 10.1016/j.fsi.2017.03.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 06/06/2023]
Abstract
Immunohistochemical, immunofluorescence and ultrastructural studies were conducted on a sub-population of 20 wels catfish Silurus glanis from a tributary of the River Po (Northern Italy). Fish were examined for the presence of ecto- and endo-parasites; in the intestine of 5 fish, 11 specimens of cestode Glanitaenia osculata were noted and was the only helminth species encountered. The architecture of intestine and its cellular features were nearly identical in either the uninfected S. glanis or in those harboring G. osculata. Near the site of worm's attachment, mucous cells, several mast cells (MCs), few neutrophils and some endocrine cells (ECs) were found to co-occur within the intestinal epithelium. MCs and neutrophils were abundant also in the submucosa. Immunohistochemical staining revealed that enteric ECs were immunoreactive to met-enkephalin, galanin and serotonin anti-bodies. The numbers of ECs, mucous cells and MCs were significantly higher in infected wels catfish (Mann-Whitney U test, p < 0.05). Dual immunofluorescence staining with the biotinylated lectin Sambucus nigra Agglutinin and the rabbit polyclonal anti-met-enkephalin or anti-serotonin, with parallel transmission electron microscopy, showed that ECs often made intimate contact with the mucous cells and epithelial MCs. The presence of numerous MCs in intestinal epithelium shows S. glanis to be an interesting model fish to study processes underlying intestinal inflammation elicited by an enteric worm. Immune cells, ECs and mucous cells of the intestinal epithelium have been described at the ultrastructural level and their possible functions and interactions together will be discussed.
Collapse
Affiliation(s)
- B Sayyaf Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, Borsari St. 46, 44121 Ferrara, Italy
| | - J A DePasquale
- Morphogenyx Inc, PO Box 717, East Northport, NY 11731, USA
| | - G Castaldelli
- Department of Life Sciences and Biotechnology, University of Ferrara, Borsari St. 46, 44121 Ferrara, Italy
| | - L Giari
- Department of Life Sciences and Biotechnology, University of Ferrara, Borsari St. 46, 44121 Ferrara, Italy.
| | - G Bosi
- Department of Veterinary Sciences and Technologies for Food Safety, Università degli Studi di Milano, St. Trentacoste 2, 20134 Milan, Italy
| |
Collapse
|
4
|
Dezfuli BS, Bosi G, DePasquale JA, Manera M, Giari L. Fish innate immunity against intestinal helminths. FISH & SHELLFISH IMMUNOLOGY 2016; 50:274-287. [PMID: 26868213 DOI: 10.1016/j.fsi.2016.02.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 01/29/2016] [Accepted: 02/04/2016] [Indexed: 06/05/2023]
Abstract
Most individual fish in farmed and wild populations are infected with parasites. Upon dissection of fish, helminths from gut are often easily visible. Enteric helminths include several species of digeneans, cestodes, acanthocephalans and nematodes. Some insights into biology, morphology and histopathological effects of the main fish enteric helminths taxa will be described here. The immune system of fish, as that of other vertebrates, can be subdivided into specific and aspecific types, which in vivo act in concert with each other and indeed are interdependent in many ways. Beyond the small number of well-described models that exist, research focusing on innate immunity in fish against parasitic infections is lacking. Enteric helminths frequently cause inflammation of the digestive tract, resulting in a series of chemical and morphological changes in the affected tissues and inducing leukocyte migration to the site of infection. This review provides an overview on the aspecific defence mechanisms of fish intestine against helminths. Emphasis will be placed on the immune cellular response involving mast cells, neutrophils, macrophages, rodlet cells and mucous cells against enteric helminths. Given the relative importance of innate immunity in fish, and the magnitude of economic loss in aquaculture as a consequence of disease, this area deserves considerable attention and support.
Collapse
Affiliation(s)
- B S Dezfuli
- Department of Life Sciences and Biotechnology, University of Ferrara, University of Ferrara, Ferrara, Italy.
| | - G Bosi
- Department of Veterinary Sciences and Technologies for Food Safety, Università degli Studi di Milano, Milan, Italy
| | - J A DePasquale
- Morphogenyx Inc, PO Box 717, East Northport, NY 11731, USA
| | - M Manera
- Faculty of Biosciences, Food and Environmental Technologies, University of Teramo, Teramo, Italy
| | - L Giari
- Department of Life Sciences and Biotechnology, University of Ferrara, University of Ferrara, Ferrara, Italy
| |
Collapse
|
5
|
Galanin regulates blood glucose level in the zebrafish: a morphological and functional study. Histochem Cell Biol 2015; 145:105-17. [PMID: 26496922 PMCID: PMC4710661 DOI: 10.1007/s00418-015-1376-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2015] [Indexed: 02/02/2023]
Abstract
The present study has demonstrated the galaninergic innervation of the endocrine pancreas including sources of the galaninergic nerve fibers, and the influence of galanin receptor agonists on blood glucose level in the zebrafish. For the first time, a very abundant galaninergic innervation of the endocrine pancreas during development is shown, from the second day post-fertilization to adulthood. The fibers originated from ganglia consisting of galanin-IR, non-adrenergic (non-sensory) neurons located rostrally to the pancreatic tissue. The ganglia were found on the dorsal side of the initial part of the anterior intestinal segment, close to the intestinal branch of the vagus nerve. The galanin-IR neurons did not show immunoreactivity for applied antibodies against tyrosine hydroxylase, choline acetyltransferase, and vesicular acetylcholine transporter. Intraperitoneal injections of galanin analog NAX 5055 resulted in a statistically significant increase in the blood glucose level. Injections of another galanin receptor agonist, galnon, also caused a rise in blood glucose level; however, it was not statistically significant. The present findings suggest that, like in mammals, in the zebrafish galanin is involved in the regulation of blood glucose level. However, further studies are needed to elucidate the exact mechanism of the galanin action.
Collapse
|
6
|
Bosi G, Shinn AP, Giari L, Sayyaf Dezfuli B. Enteric neuromodulators and mucus discharge in a fish infected with the intestinal helminth Pomphorhynchus laevis. Parasit Vectors 2015; 8:359. [PMID: 26152567 PMCID: PMC4495775 DOI: 10.1186/s13071-015-0970-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 06/30/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In vertebrates, the presence of enteric worms can induce structural changes to the alimentary canal impacting on the neuroendocrine system, altering the proper functioning of the gastrointestinal tract and affecting the occurrence and relative density of endocrine cells (ECs). This account represents the first immunohistochemistry and ultrastructure-based study which documents the intimate relationship between the intestinal mucous cells and ECs in a fish-helminth system, investigating the potential effects of enteric neuromodulators on gut mucus secretion/discharge. METHODS A modified dual immunohisto- and histochemical staining technique was applied on intestinal sections from both infected and uninfected fish. Sections were incubated in antisera to a range of neuromodulators (i.e. leu-enkephalin, met-enkephalin, galanin and serotonin) and the glycoconjugate histochemistry of the mucous cells was determined using a subsequent alcian blue - periodic acid Schiff staining step. Dual fluorescent staining on sections prepared for confocal laser scanning microscopy and transmission electron microscopy were also used to document the relationship between ECs and mucous cells. RESULTS From a total of 26 specimens of Squalius cephalus sampled from the River Paglia, 16 (i.e. 62 %) specimens were found to harbour an infection of the acanthocephalan Pomphorhynchus laevis (average intensity of infection 9.2 ± 0.8 parasites host(-1), mean ± standard error). When acanthocephalans were present, the numbers of mucous cells (most notably those containing acidic or mixed glycoconjugates) and ECs secreting leu-enkephalin, met-enkephalin, galanin, serotonin were significantly higher than those seen on sections from uninfected fish. The relationship between met-enkephalin-like or serotonin-like ECs and lectin DBA positive mucous cells was demonstrated through a dual fluorescent staining. The presence of tight connections and desmosomes between mucous and ECs in transmission electron micrographs provides further evidence of this intimate relationship. CONCLUSIONS The presence of P. laevis induces an increase in the number of enteric ECs that are immunoreactive to leu- and met-enkephalin, galanin, and serotonin anti-sera. The mucous cells hyperplasia and enhanced mucus secretion in the helminth-infected intestines could be elicited by the increase in the number of ECs which release these regulatory substances.
Collapse
Affiliation(s)
- Giampaolo Bosi
- Department of Veterinary Sciences and Technologies for Food Safety, Università degli Studi di Milano, St. Trentacoste 2, 20134, Milan, Italy.
| | - Andrew Paul Shinn
- Fish Vet Group Asia Limited, 99/386, Chaengwattana Building, Chaengwattana Rd., Kwaeng Toongsonghong, Khet Laksi, Bangkok, 10210, Thailand.
| | - Luisa Giari
- Department of Life Sciences & Biotechnology, University of Ferrara, St. Borsari 46, 44121, Ferrara, Italy.
| | - Bahram Sayyaf Dezfuli
- Department of Life Sciences & Biotechnology, University of Ferrara, St. Borsari 46, 44121, Ferrara, Italy.
| |
Collapse
|
7
|
Expression of neuropeptides and anoctamin 1 in the embryonic and adult zebrafish intestine, revealing neuronal subpopulations and ICC-like cells. Cell Tissue Res 2013; 354:355-70. [PMID: 23881406 DOI: 10.1007/s00441-013-1685-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 06/17/2013] [Indexed: 12/12/2022]
Abstract
This immunohistochemical study in zebrafish aims to extend the neurochemical characterization of enteric neuronal subpopulations and to validate a marker for identification of interstitial cells of Cajal (ICC). The expression of neuropeptides and anoctamin 1 (Ano1), a selective ICC marker in mammals, was analyzed in both embryonic and adult intestine. Neuropeptides were present from 3 days postfertilization (dpf). At 3 dpf, galanin-positive nerve fibers were found in the proximal intestine, while calcitonin gene-related peptide (CGRP)- and substance P-expressing fibers appeared in the distal intestine. At 5 dpf, immunoreactive fibers were present along the entire intestinal length, indicating a well-developed peptidergic innervation at the onset of feeding. In the adult intestine, vasoactive intestinal peptide (VIP), pituitary adenylate cyclase-activating peptide (PACAP), galanin, CGRP and substance P were detected in nerve fibers. Colchicine pretreatment enhanced only VIP and PACAP immunoreactivity. VIP and PACAP were coexpressed in enteric neurons. Colocalization stainings revealed three neuronal subpopulations expressing VIP and PACAP: a nitrergic noncholinergic subpopulation, a serotonergic subpopulation and a subpopulation expressing no other markers. Ano1-immunostaining revealed a 3-dimensional network in the adult intestine containing multipolar cells at the myenteric plexus and bipolar cells interspersed between circular smooth muscle cells. Ano1 immunoreactivity first appeared at 3 dpf, indicative of the onset of proliferation of ICC-like cells. It is shown that the Ano1 antiserum is a selective marker of ICC-like cells in the zebrafish intestine. Finally, it is hypothesized that ICC-like cells mediate the spontaneous regular activity of the embryonic intestine.
Collapse
|
8
|
Olsson C, Holmgren S. Autonomic control of gut motility: a comparative view. Auton Neurosci 2010; 165:80-101. [PMID: 20724224 DOI: 10.1016/j.autneu.2010.07.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 06/24/2010] [Accepted: 07/06/2010] [Indexed: 12/16/2022]
Abstract
Gut motility is regulated to optimize food transport and processing. The autonomic innervation of the gut generally includes extrinsic cranial and spinal autonomic nerves. It also comprises the nerves contained entirely within the gut wall, i.e. the enteric nervous system. The extrinsic and enteric nervous control follows a similar pattern throughout the vertebrate groups. However, differences are common and may occur between groups and families as well as between closely related species. In this review, we give an overview of the distribution and effects of common neurotransmitters in the vertebrate gut. While the focus is on birds, reptiles, amphibians and fish, mammalian data are included to form the background for comparisons. While some transmitters, like acetylcholine and nitric oxide, show similar distribution patterns and effects in most species investigated, the role of others is more varying. The significance for these differences is not yet fully understood, emphasizing the need for continued comparative studies of autonomic control.
Collapse
Affiliation(s)
- Catharina Olsson
- Department of Zoology/Zoophysiology, University of Gothenburg, Sweden.
| | | |
Collapse
|
9
|
The enteric nervous system. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s1546-5098(10)03008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
10
|
Abstract
The enteric nervous system follows a similar overall arrangement in all vertebrate groups. In fish, the majority of nerve cell bodies are found in the myenteric plexus, innervating muscles, blood vessels and glands. In this review, I describe similarities and differences in size, shape and transmitter content in enteric neurons in different fish species and also in comparison with other vertebrates, foremost mammals. The use of different histological and immunochemical methods is reviewed in a historical perspective including advantages and disadvantages of different methods. Lately, zebrafish have become an important model species for developmental studies of the nervous system, including the enteric nervous system, and this is briefly discussed. Finally, examples of how the enteric nervous system controls gut activity in fish is presented, focussing on the effect on gastrointestinal motility.
Collapse
|
11
|
Holmgren S, Olsson C. Chapter 10 The Neuronal and Endocrine Regulation of Gut Function. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s1546-5098(09)28010-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
12
|
Ferrari MFR, Fior-Chadi DR, Chadi G. Effects of bilateral adrenalectomy on systemic kainate-induced activation of the nucleus of the solitary tract. Regulation of blood pressure and local neurotransmitters. J Mol Histol 2008; 39:253-63. [PMID: 18196466 DOI: 10.1007/s10735-008-9161-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2007] [Accepted: 01/04/2008] [Indexed: 02/07/2023]
Abstract
Glutamatergic transmission through metabotropic and ionotropic receptors, including kainate receptors, plays an important role in the nucleus of the solitary tract (NTS) functions. Glutamate system may interact with several other neurotransmitter systems which might also be influenced by steroid hormones. In the present study we analyzed the ability of systemic kainate to stimulate rat NTS neurons, which was evaluated by c-Fos as a marker of neuronal activation, and also to change the levels of NTS neurotransmitters such as GABA, NPY, CGRP, GAL, NT and NO by means of quantitative immunohistichemistry combined with image analysis. The analysis was also performed in adrenalectomized and kainate stimulated rats in order to evaluate a possible role of adrenal hormones on NTS neurotransmission. Male Wistar rats (3 month-old) were used in the present study. A group of 15 rats was submitted either to bilateral adrenalectomy or sham operation. Forty-eight hours after the surgeries, adrenalectomized rats received a single intraperitoneal injection of kainate (12 mg/kg) and the sham-operated rats were injected either with saline or kainate and sacrificed 8 hours later. The same experimental design was applied in a group of rats in order to register the arterial blood pressure. Systemic kainate decreased the basal values of mean arterial blood pressure (35%) and heart rate (22%) of sham-operated rats, reduction that were maintained in adrenalectomized rats. Kainate triggered a marked elevation of c-Fos positive neurons in the NTS which was 54% counteracted by adrenalectomy. The kainate activated NTS showed changes in the immunoreactive levels of GABA (143% of elevation) and NPY (36% of decrease), which were not modified by previous ablation of adrenal glands. Modulation in the levels of CGRP, GAL and NT immunoreactivities were only observed after kainate in the adrenalectomized rats. Treatments did not alter NOS labeling. It is possible that modulatory function among neurotransmitter systems in the NTS might be influenced by steroid hormones and the implications for central regulation of blood pressure or other visceral regulatory mechanisms control should be further investigated.
Collapse
Affiliation(s)
- Merari F R Ferrari
- Department of Physiology, Institute of Biosciences, University of São Paulo, Sao Paulo 05508-900, Brazil.
| | | | | |
Collapse
|