1
|
Berruti G. Destruction or Reconstruction: A Subtle Liaison between the Proteolytic and Signaling Role of Protein Ubiquitination in Spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1288:215-240. [PMID: 34453739 DOI: 10.1007/978-3-030-77779-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Ubiquitination is one of the most diverse forms of protein post-translational modification that changes the function of the landscape of substrate proteins in response to stimuli, without the need for "de novo" protein synthesis. Ubiquitination is involved in almost all aspects of eukaryotic cell biology, from the best-studied role in promoting the removal of faulty or unnecessary proteins by the way of the ubiquitin proteasome system and autophagy-lysosome pathway to the recruitment of proteins in specific non-proteolytic signaling pathways, as emerged by the more recent discoveries about the protein signature with peculiar types of ubiquitin chains. Spermatogenesis, on its own, is a complex cellular developmental process in which mitosis, meiosis, and cell differentiation coexist so to result in the continuous formation of haploid spermatozoa. Successful spermatogenesis is thus at the same time a mixed result of the precise expression and correct intracellular destination of structural proteins and enzymes, from one hand, and the fine removal by targeted degradation of unfolded or damaged proteins as well as of obsolete, outlived proteins, from the other hand. In this minireview, I will focus on the importance of the ubiquitin system all over the spermatogenic process, discussing both proteolytic and non-proteolytic functions of protein ubiquitination. Alterations in the ubiquitin system have been in fact implicated in pathologies leading to male infertility. Notwithstanding several aspects of the multifaceted world of the ubiquitin system have been clarified, the physiological meaning of the so-called ubiquitin code remains still partially elusive. The studies reviewed in this chapter provide information that could aid the investigators to pursue new promising discoveries in the understanding of human and animal reproductive potential.
Collapse
|
2
|
Chandrasekaran AP, Suresh B, Kim HH, Kim KS, Ramakrishna S. Concise Review: Fate Determination of Stem Cells by Deubiquitinating Enzymes. Stem Cells 2016; 35:9-16. [PMID: 27341175 DOI: 10.1002/stem.2446] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/05/2016] [Indexed: 12/22/2022]
Abstract
Post-translational modification by ubiquitin molecules is a key regulatory process for stem cell fate determination. Ubiquitination and deubiquitination are the major cellular processes used to balance the protein turnover of several transcription factors that regulate stem cell differentiation. Deubiquitinating enzymes (DUBs), which facilitate the processing of ubiquitin, significantly influence stem cell fate choices. Specifically, DUBs play a critical regulatory role during development by directing the production of new specialized cells. This review focuses on the regulatory role of DUBs in various cellular processes, including stem cell pluripotency and differentiation, adult stem cell signaling, cellular reprogramming, spermatogenesis, and oogenesis. Specifically, the identification of interactions of DUBs with core transcription factors has provided new insight into the role of DUBs in regulating stem cell fate determination. Thus, DUBs have emerged as key pharmacologic targets in the search to develop highly specific agents to treat various illnesses. Stem Cells 2017;35:9-16.
Collapse
Affiliation(s)
| | - Bharathi Suresh
- Department of Pharmacology and Brain Korea 21 plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Hyongbum Henry Kim
- Department of Pharmacology and Brain Korea 21 plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea.,College of Medicine, Hanyang University, Seoul, South Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea.,College of Medicine, Hanyang University, Seoul, South Korea
| |
Collapse
|
3
|
Suresh B, Lee J, Hong SH, Kim KS, Ramakrishna S. The role of deubiquitinating enzymes in spermatogenesis. Cell Mol Life Sci 2015; 72:4711-20. [PMID: 26350476 PMCID: PMC11113867 DOI: 10.1007/s00018-015-2030-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/10/2015] [Accepted: 08/24/2015] [Indexed: 12/11/2022]
Abstract
Spermatogenesis is a complex process through which spermatogonial stem cells undergo mitosis, meiosis, and cell differentiation to generate mature spermatozoa. During this process, male germ cells experience several translational modifications. One of the major post-translational modifications in eukaryotes is the ubiquitination of proteins, which targets proteins for degradation; this enables control of the expression of enzymes and structural proteins during spermatogenesis. It has become apparent that ubiquitination plays a key role in regulating every stage of spermatogenesis starting from gonocytes to differentiated spermatids. It is understood that, where there is ubiquitination, deubiquitination by deubiquitinating enzymes (DUBs) also exists to counterbalance the ubiquitination process in a reversible manner. Normal spermatogenesis is dependent on the balanced actions of ubiquitination and deubiquitination. This review highlights the current knowledge of the role of DUBs and their essential regulatory contribution to spermatogenesis, especially during progression into meiotic phase, acrosome biogenesis, quality sperm production, and apoptosis of germ cells.
Collapse
Affiliation(s)
- Bharathi Suresh
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seongdong-gu, Seoul, South Korea
| | - Junwon Lee
- Department of Physiology and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon, South Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seongdong-gu, Seoul, South Korea.
- College of Medicine, Hanyang University, Seoul, South Korea.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seongdong-gu, Seoul, South Korea.
- College of Medicine, Hanyang University, Seoul, South Korea.
| |
Collapse
|
4
|
Berruti G, Paiardi C. USP8/UBPy-regulated sorting and the development of sperm acrosome: the recruitment of MET. Reproduction 2015; 149:633-44. [DOI: 10.1530/rep-14-0671] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/05/2015] [Indexed: 01/12/2023]
Abstract
The acrosome is a peculiar vacuole that at fertilization undergoes the acrosome reaction (AR), an event unique in the sperm life. Contents released promote sperm penetration through oocyte's investments; membranous components are involved in sperm–egg interaction/fusion. Therefore, both constituents play a role in fertilization. The biogenesis of this vacuole, however, has not been clarified yet; recently, it has been proposed as a novel lysosome-related organelle (LRO). Our research focuses on the involvement of the endosomal pathway in acrosomogenesis starting from the early phases. The trafficking sorted by USP8/UBPy, an endosomal regulator recently described as a compelling candidate for male fertility gene, was investigated in comparison to that of SP56, a marker of the biosynthetic pathway. Mouse spermatids were double/triple immunolabeled and examined by confocal microscopy. The contribution of the vesicular traffic assisted by the cortical microtubule array was also evaluated in nocodazole-treated spermatids. USP8/UBPy-sorted cargo contributes early to acrosomogenesis and its trafficking is microtubule mediated. It was identified, through co-immunoprecipitation/co-immunolocalization assays, that the membrane receptor MET, described herein for the first time in spermatids, as an USP8/UBPy-target substrate is delivered to the acrosome. MET and USP8/UBPy still colocalize in epididymal spermatozoa. Following the AR, MET and USP8/UBPy show a distinct fate. MET, in particular, translocates at the PAS, the post acrosomal segment known to harbor sperm-borne factors involved in oocyte activation. Overall, our results support the concept of the acrosome as a LRO and provide evidence for the identification of MET as a tyrosine kinase receptor that may play a role in fertilization.
Collapse
|
5
|
Holland A, Ohlendieck K. Comparative profiling of the sperm proteome. Proteomics 2014; 15:632-48. [DOI: 10.1002/pmic.201400032] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 02/27/2014] [Accepted: 06/02/2014] [Indexed: 01/28/2023]
Affiliation(s)
- Ashling Holland
- Department of Biology; National University of Ireland; Maynooth County Kildare Ireland
| | - Kay Ohlendieck
- Department of Biology; National University of Ireland; Maynooth County Kildare Ireland
| |
Collapse
|
6
|
Molecular chaperones, cochaperones, and ubiquitination/deubiquitination system: involvement in the production of high quality spermatozoa. BIOMED RESEARCH INTERNATIONAL 2014; 2014:561426. [PMID: 25045686 PMCID: PMC4089148 DOI: 10.1155/2014/561426] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 06/04/2014] [Indexed: 01/16/2023]
Abstract
Spermatogenesis is a complex process in which mitosis, meiosis, and cell differentiation events coexist. The need to guarantee the production of qualitatively functional spermatozoa has evolved into several control systems that check spermatogenesis progression/sperm maturation and tag aberrant gametes for degradation. In this review, we will focus on the importance of the evolutionarily conserved molecular pathways involving molecular chaperones belonging to the superfamily of heat shock proteins (HSPs), their cochaperones, and ubiquitination/deubiquitination system all over the spermatogenetic process. In this respect, we will discuss the conserved role played by the DNAJ protein Msj-1 (mouse sperm cell-specific DNAJ first homologue) and the deubiquitinating enzyme Ubpy (ubiquitin-specific processing protease-y) during the spermiogenesis in both mammals and nonmammalian vertebrates.
Collapse
|
7
|
The role of histone ubiquitination during spermatogenesis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:870695. [PMID: 24963488 PMCID: PMC4052122 DOI: 10.1155/2014/870695] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 04/29/2014] [Indexed: 11/17/2022]
Abstract
Protein ubiquitin-proteasome (ubiquitin-proteasome) system is the major mechanism responsible for protein degradation in eukaryotic cell. During spermatogenesis, the replacement of histone by protamine is vital for normal sperm formation, which is involved in ubiquitination enzymes expressed in testis. Recently, histone ubiquitin ligases have been shown to play critical roles in several aspects of spermatogenesis, such as meiotic sex chromosome inactivation (MSCI), DNA damage response, and spermiogenesis. In this review, we highlight recent progress in the discovery of several histone ubiquitin ligases and elaborate mechanisms of how these enzymes are involved in these processes through knockout mouse model. Using Huwe1, UBR2, and RNF8 as examples, we emphasized the diverse functions for each enzyme and the broad involvement of these enzymes in every stage, from spermatogonia differentiation and meiotic division to spermiogenesis; thus histone ubiquitin ligases represent a class of enzymes, which play important roles in spermatogenesis through targeting histone for ubiquitination and therefore are involved in transcription regulation, epigenetic modification, and other processes essential for normal gametes formation.
Collapse
|
8
|
Ubiquitin-proteasome system in spermatogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 759:181-213. [PMID: 25030765 DOI: 10.1007/978-1-4939-0817-2_9] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Spermatogenesis represents a complex succession of cell division and differentiation events resulting in the continuous formation of spermatozoa. Such a complex program requires precise expression of enzymes and structural proteins which is effected not only by regulation of gene transcription and translation, but also by targeted protein degradation. In this chapter, we review current knowledge about the role of the ubiquitin-proteasome system in spermatogenesis, describing both proteolytic and non-proteolytic functions of ubiquitination. Ubiquitination plays essential roles in the establishment of both spermatogonial stem cells and differentiating spermatogonia from gonocytes. It also plays critical roles in several key processes during meiosis such as genetic recombination and sex chromosome silencing. Finally, in spermiogenesis, we summarize current knowledge of the role of the ubiquitin-proteasome system in nucleosome removal and establishment of key structures in the mature spermatid. Many mechanisms remain to be precisely defined, but present knowledge indicates that research in this area has significant potential to translate into benefits that will address problems in both human and animal reproduction.
Collapse
|
9
|
Jockusch H, Holland A, Staunton L, Schmitt-John T, Heimann P, Dowling P, Ohlendieck K. Pathoproteomics of testicular tissue deficient in the GARP component VPS54: The wobbler mouse model of globozoospermia. Proteomics 2013; 14:839-52. [DOI: 10.1002/pmic.201300189] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/12/2013] [Accepted: 09/10/2013] [Indexed: 01/18/2023]
Affiliation(s)
- Harald Jockusch
- Department of Developmental Biology and Molecular Pathology; University of Bielefeld; Bielefeld Germany
| | - Ashling Holland
- Department of Biology; National University of Ireland; Maynooth Ireland
| | - Lisa Staunton
- Department of Biology; National University of Ireland; Maynooth Ireland
| | - Thomas Schmitt-John
- Department of Molecular Biology and Genetics; Aarhus University; Aarhus Denmark
| | - Peter Heimann
- Department of Cell Biology; University of Bielefeld; Bielefeld Germany
| | - Paul Dowling
- National Institute for Cellular Biotechnology; Dublin City University; Dublin Ireland
| | - Kay Ohlendieck
- Department of Biology; National University of Ireland; Maynooth Ireland
| |
Collapse
|
10
|
Cacciola G, Chioccarelli T, Fasano S, Pierantoni R, Cobellis G. Estrogens and spermiogenesis: new insights from type 1 cannabinoid receptor knockout mice. Int J Endocrinol 2013; 2013:501350. [PMID: 24324492 PMCID: PMC3845505 DOI: 10.1155/2013/501350] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 09/26/2013] [Indexed: 12/01/2022] Open
Abstract
Spermatogenesis is a complex mechanism which allows the production of male gametes; it consists of mitotic, meiotic, and differentiation phases. Spermiogenesis is the terminal differentiation process during which haploid round spermatids undergo several biochemical and morphological changes, including extensive remodelling of chromatin and nuclear shape. Spermiogenesis is under control of endocrine, paracrine, and autocrine factors, like gonadotropins and testosterone. More recently, emerging pieces of evidence are suggesting that, among these factors, estrogens may have a role. To date, this is a matter of debate and concern because of the agonistic and antagonistic estrogenic effects that environmental chemicals may have on animal and human with damaging outcome on fertility. In this review, we summarize data which fuel this debate, with a particular attention to our recent results, obtained using type 1 cannabinoid receptor knockout male mice as animal model.
Collapse
Affiliation(s)
- Giovanna Cacciola
- Dipartimento di Medicina Sperimentale, Sez. Bottazzi, Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy
| | - Teresa Chioccarelli
- Dipartimento di Medicina Sperimentale, Sez. Bottazzi, Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy
| | - Silvia Fasano
- Dipartimento di Medicina Sperimentale, Sez. Bottazzi, Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy
| | - Riccardo Pierantoni
- Dipartimento di Medicina Sperimentale, Sez. Bottazzi, Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy
- *Riccardo Pierantoni:
| | - Gilda Cobellis
- Dipartimento di Medicina Sperimentale, Sez. Bottazzi, Seconda Università di Napoli, Via Costantinopoli 16, 80138 Napoli, Italy
| |
Collapse
|
11
|
Hou CC, Yang WX. New insights to the ubiquitin–proteasome pathway (UPP) mechanism during spermatogenesis. Mol Biol Rep 2012; 40:3213-30. [DOI: 10.1007/s11033-012-2397-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 12/17/2012] [Indexed: 12/12/2022]
|
12
|
Paiardi C, Pasini ME, Gioria M, Berruti G. Failure of acrosome formation and globozoospermia in the wobbler mouse, a Vps54 spontaneous recessive mutant. SPERMATOGENESIS 2011; 1:52-62. [PMID: 21866276 DOI: 10.4161/spmg.1.1.14698] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Revised: 12/31/2010] [Accepted: 01/03/2011] [Indexed: 11/19/2022]
Abstract
The acrosome is a unique organelle that plays an important role at fertilization and during sperm morphogenesis and that is absent in globozoospermia, an inherited infertility syndrome in humans. At the light of recent experimental evidence, the acrosome is considered a lysosome-related organelle to whose biogenesis both the endocytic and biosynthetic pathways contribute. Vps54 is a vesicular sorting protein involved in the retrograde traffic; the recessive Vps54(L967Q) mutation in the mouse results in the wobbler phenotype, characterized by motor-neuron degeneration and male infertility. Here we have investigated the spatio-temporal occurrence/progression of the wobbler fertility disorder starting from mice at post-natal day 35, the day of the first event of spermiation. We show that the pathogenesis of wobbler infertility originates at the first spermiogenetic wave, affecting acrosome formation and sperm head elongation. Vps54(L967Q)-labeled vesicles, on the contrary of the wild-type Vps54-labeled ones, are not able to coalesce into a larger vesicle that develops, flattens and shapes to give rise to the acrosome. Evidence that it is the malfunctioning of the endocytic traffic to hamper the development of the acrosome comes out from the study on UBPy. UBPy, a deubiquitinating enzyme, is a marker of acrosome biogenesis from the endocytic pathway. In wobbler spermatids UBPy-positive endosomes remain single, scattered vesicles that do not contribute to acrosome formation. As secondary defect of wobbler spermiogenesis, spermatid mitochondria are misorted; moreover, with the progression of the age/disease also Sertoli-germ cell adhesions are compromised suggesting a derailment in the endocytic route that underlies their restructuring.
Collapse
Affiliation(s)
- Chiara Paiardi
- Department of Biology; Laboratory of cellular and Molecular Biology of Reproduction; University of Milano; Milan, Italy
| | | | | | | |
Collapse
|
13
|
Böhne A, Darras A, D'Cotta H, Baroiller JF, Galiana-Arnoux D, Volff JN. The vertebrate makorin ubiquitin ligase gene family has been shaped by large-scale duplication and retroposition from an ancestral gonad-specific, maternal-effect gene. BMC Genomics 2010; 11:721. [PMID: 21172006 PMCID: PMC3022923 DOI: 10.1186/1471-2164-11-721] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 12/20/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Members of the makorin (mkrn) gene family encode RING/C3H zinc finger proteins with U3 ubiquitin ligase activity. Although these proteins have been described in a variety of eukaryotes such as plants, fungi, invertebrates and vertebrates including human, almost nothing is known about their structural and functional evolution. RESULTS Via partial sequencing of a testis cDNA library from the poeciliid fish Xiphophorus maculatus, we have identified a new member of the makorin gene family, that we called mkrn4. In addition to the already described mkrn1 and mkrn2, mkrn4 is the third example of a makorin gene present in both tetrapods and ray-finned fish. However, this gene was not detected in mouse and rat, suggesting its loss in the lineage leading to rodent murids. Mkrn2 and mkrn4 are located in large ancient duplicated regions in tetrapod and fish genomes, suggesting the possible involvement of ancestral vertebrate-specific genome duplication in the formation of these genes. Intriguingly, many mkrn1 and mkrn2 intronless retrocopies have been detected in mammals but not in other vertebrates, most of them corresponding to pseudogenes. The nature and number of zinc fingers were found to be conserved in Mkrn1 and Mkrn2 but much more variable in Mkrn4, with lineage-specific differences. RT-qPCR analysis demonstrated a highly gonad-biased expression pattern for makorin genes in medaka and zebrafish (ray-finned fishes) and amphibians, but a strong relaxation of this specificity in birds and mammals. All three mkrn genes were maternally expressed before zygotic genome activation in both medaka and zebrafish early embryos. CONCLUSION Our analysis demonstrates that the makorin gene family has evolved through large-scale duplication and subsequent lineage-specific retroposition-mediated duplications in vertebrates. From the three major vertebrate mkrn genes, mkrn4 shows the highest evolutionary dynamics, with lineage-specific loss of zinc fingers and even complete gene elimination from certain groups of vertebrates. Comparative expression analysis strongly suggests that the ancestral E3 ubiquitin ligase function of the single copy mkrn gene before duplication in vertebrates was gonad-specific, with maternal expression in early embryos.
Collapse
Affiliation(s)
- Astrid Böhne
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, Lyon, France.
| | | | | | | | | | | |
Collapse
|
14
|
Sironen A, Uimari P, Nagy S, Paku S, Andersson M, Vilkki J. Knobbed acrosome defect is associated with a region containing the genes STK17b and HECW2 on porcine chromosome 15. BMC Genomics 2010; 11:699. [PMID: 21143916 PMCID: PMC3016419 DOI: 10.1186/1471-2164-11-699] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Accepted: 12/09/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Male infertility is an increasing problem in all domestic species including man. Localization and identification of genes involved in defects causing male infertility provide valuable information of specific events in sperm development. Correct condensation of the sperm head and development of the acrosome are required for fertile sperm. In the Finnish Yorkshire pig population a knobbed acrosome defect (KAD) has been reported which appears to be of genetic origin. In previous studies we have shown that a large number of affected spermatozoa have a cystic swelling anterior to the apical part of the acrosome. RESULTS Characterization of the knobbed acrosome affected sperm revealed that both the acrosomal granules and chromatin are affected. This type of KAD appears to be a previously unknown and serious form of the defect. A genome wide scan with PorcineSNP60 Genotyping BeadChip defined the KAD associated region within 0.7 Mbp on porcine chromosome 15. Two genes, STK17b and HECW2, located within this region were sequenced. The expression of these genes appeared comparable in KA-affected and control boars. The known function of HECW2 in acrosome development highlighted this gene as a good candidate responsible for the KAD. One nonsynonymous SNP was identified within the HECW2 gene. However, as this mutation was found in homozygous state in individuals with normal sperm, this is not likely to be the causal mutation. CONCLUSIONS In this study we identified two candidate genes for a severe defect affecting both the sperm acrosome and chromatin that causes infertility. One of these genes, HECW2, plays an important role in ubiquitination, a prerequisite for chromatin remodelling and acrosome formation, highlighting the involvement of this gene in the knobbed acrosome defect and male infertility.
Collapse
Affiliation(s)
- Anu Sironen
- Agrifood Research Finland, MTT, Biotechnology and Food Research, Genomics, FI-36100 Jokioinen, Finland.
| | | | | | | | | | | |
Collapse
|