1
|
Mitchell K, Mikwar M, Da Fonte D, Lu C, Tao B, Peng D, Erandani WKCU, Hu W, Trudeau VL. Secretoneurin is a secretogranin-2 derived hormonal peptide in vertebrate neuroendocrine systems. Gen Comp Endocrinol 2020; 299:113588. [PMID: 32828813 DOI: 10.1016/j.ygcen.2020.113588] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/04/2020] [Accepted: 08/13/2020] [Indexed: 01/09/2023]
Abstract
Secretogranin-2 (SCG2) is a large precursor protein that is processed into several potentially bioactive peptides, with the 30-43 amino acid central domain called secretoneurin (SN) being clearly evolutionary conserved in vertebrates. Secretoneurin exerts a diverse array of biological functions including regulating nervous, endocrine, and immune systems in part due to its wide tissue distribution. Expressed in some neuroendocrine neurons and pituitary cells, SN is a stimulator of the synthesis and release of luteinizing hormone from both goldfish pituitary cells and the mouse LβT2 cell line. Neuroendocrine, paracrine and autocrine signaling pathways for the stimulation of luteinizing hormone release indicate hormone-like activities to regulate reproduction. Mutation of the scg2a and scg2b genes using TALENs in zebrafish reduces sexual behavior, ovulation, oviposition, and fertility. A single injection of the SNa peptide enhanced reproductive outcomes in scg2a/scg2b double mutant zebrafish. Evidence in goldfish suggests a new role for SN to stimulate food intake by actions on other feeding-related neuropeptides. Expression and regulation of the Scg2a precursor mRNA in goldfish gut also supports a role in feeding. In rodent models, SN has trophic-like properties promoting both neuroprotection and neuronal plasticity and has chemoattractant properties that regulate neuroinflammation. Data obtained from several cellular models suggest that SN binds to and activates a G-protein coupled receptor (GPCR), but a bona fide SN receptor protein needs to be identified. Other signaling pathways for SN have been reported which provides alternatives to the GPCR hypothesis. These include AMP-activated protein kinase (AMPK), extracellular signal-regulated kinases (ERK), mitogen-activated protein kinase (MAPK)and calcium/calmodulin-dependent protein kinase II in cardiomyocytes, phosphatidylinositol 3-kinase (PI3K) and Akt/Protein Kinase B (AKT, and MAPK in endothelial cells and Janus kinase 2/signal transducer and activator of transcription protein (JAK2-STAT) signaling in neurons. Some studies in cardiac cells provide evidence for cellular internalization of SN by an unknown mechanism. Many of the biological functions of SN remain to be fully characterized, which could lead to new and exciting applications.
Collapse
Affiliation(s)
- Kimberly Mitchell
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Myy Mikwar
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Dillon Da Fonte
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Chunyu Lu
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - BinBin Tao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Di Peng
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | | | - Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
2
|
Sharma S, Chaube R. Molecular cloning and characterization of secretogranin II in the catfish Heteropneustes fossilis: Sex and seasonal brain regional variations and its gonadotropin regulation. Comp Biochem Physiol A Mol Integr Physiol 2019; 232:13-27. [DOI: 10.1016/j.cbpa.2019.02.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 12/11/2022]
|
3
|
Vasauskas AA, Hubler TR, Boston L, Scammell JG. Tissue-specific expression of squirrel monkey chorionic gonadotropin. Gen Comp Endocrinol 2011; 170:514-21. [PMID: 21130091 PMCID: PMC3022102 DOI: 10.1016/j.ygcen.2010.11.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 10/26/2010] [Accepted: 11/29/2010] [Indexed: 11/27/2022]
Abstract
Pituitary gonadotropins LH and FSH play central roles in reproductive function. In Old World primates, LH stimulates ovulation in females and testosterone production in males. Recent studies have found that squirrel monkeys and other New World primates lack expression of LH in the pituitary. Instead, chorionic gonadotropin (CG), which is normally only expressed in the placenta of Old World primates, is the active luteotropic pituitary hormone in these animals. The goal of this study was to investigate the tissue-specific regulation of squirrel monkey CG. We isolated the squirrel monkey CGβ gene and promoter from genomic DNA from squirrel monkey B-lymphoblasts and compared the promoter sequence to that of the common marmoset, another New World primate, and human and rhesus macaque CGβ and LHβ. Using reporter gene assays, we found that a squirrel monkey CGβ promoter fragment (-1898/+9) is active in both mouse pituitary LβT2 and human placenta JEG3 cells, but not in rat adrenal PC12 cells. Furthermore, within this construct separate cis-elements are responsible for pituitary- and placenta-specific expression. Pituitary-specific expression is governed by Egr-1 binding sites in the proximal 250 bp of the promoter, whereas placenta-specific expression is controlled by AP-2 sites further upstream. Thus, selective expression of the squirrel monkey CGβ promoter in pituitary and placental cells is governed by distinct cis-elements that exhibit homology with human LHβ and marmoset CGβ promoters, respectively.
Collapse
Affiliation(s)
- Audrey A. Vasauskas
- Department of Comparative Medicine, University of South Alabama College of Medicine, Mobile, Alabama 36688
- Department of Pharmacology, University of South Alabama College of Medicine, Mobile, Alabama 36688
| | - Tina R. Hubler
- Department of Biology, University of North Alabama, Florence, Alabama 35632
| | - Lori Boston
- Department of Biology, University of North Alabama, Florence, Alabama 35632
| | - Jonathan G. Scammell
- Department of Comparative Medicine, University of South Alabama College of Medicine, Mobile, Alabama 36688
- Department of Pharmacology, University of South Alabama College of Medicine, Mobile, Alabama 36688
- Corresponding author: Jonathan G. Scammell, Ph.D., Department of Comparative Medicine, MSB 992, University of South Alabama, Mobile, Alabama 36688. Telephone: +1 251-460-6239,
| |
Collapse
|