1
|
Lodato M, Plaisance V, Pawlowski V, Kwapich M, Barras A, Buissart E, Dalle S, Szunerits S, Vicogne J, Boukherroub R, Abderrahmani A. Venom Peptides, Polyphenols and Alkaloids: Are They the Next Antidiabetics That Will Preserve β-Cell Mass and Function in Type 2 Diabetes? Cells 2023; 12:cells12060940. [PMID: 36980281 PMCID: PMC10047094 DOI: 10.3390/cells12060940] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/09/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
Improvement of insulin secretion by pancreatic β-cells and preservation of their mass are the current challenges that future antidiabetic drugs should meet for achieving efficient and long-term glycemic control in patients with type 2 diabetes (T2D). The successful development of glucagon-like peptide 1 (GLP-1) analogues, derived from the saliva of a lizard from the Helodermatidae family, has provided the proof of concept that antidiabetic drugs directly targeting pancreatic β-cells can emerge from venomous animals. The literature reporting on the antidiabetic effects of medicinal plants suggests that they contain some promising active substances such as polyphenols and alkaloids, which could be active as insulin secretagogues and β-cell protectors. In this review, we discuss the potential of several polyphenols, alkaloids and venom peptides from snake, frogs, scorpions and cone snails. These molecules could contribute to the development of new efficient antidiabetic medicines targeting β-cells, which would tackle the progression of the disease.
Collapse
Affiliation(s)
- Michele Lodato
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Valérie Plaisance
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Valérie Pawlowski
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Maxime Kwapich
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
- Service de Diabétologie et d’Endocrinologie, CH Dunkerque, 59385 Dunkirk, France
| | - Alexandre Barras
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Emeline Buissart
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Stéphane Dalle
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Sabine Szunerits
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Jérôme Vicogne
- University Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Rabah Boukherroub
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
| | - Amar Abderrahmani
- University Lille, CNRS, Centrale Lille, University Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000 Lille, France
- Correspondence: ; Tel.: +33-362531704
| |
Collapse
|
2
|
Indriani S, Karnjanapratum S, Nirmal NP, Nalinanon S. Amphibian Skin and Skin Secretion: An Exotic Source of Bioactive Peptides and Its Application. Foods 2023; 12:foods12061282. [PMID: 36981206 PMCID: PMC10048636 DOI: 10.3390/foods12061282] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
Amphibians have been consumed as an alternative protein source all around the world due to their delicacy. The skin of edible amphibians, particularly frogs and giant salamanders, always goes to waste without further utilization. However, these wastes can be utilized to extract protein and bioactive peptides (BPs). Various BPs have been extracted and reported for numerous biological activities such as antioxidant, antimicrobial, anticancer, antidiabetic, etc. The main BPs identified were brevinins, bombesins, dermaseptins, esculentins, magainin, temporins, tigerinins, and salamandrins. This review provides a comprehensive discussion on various BPs isolated and identified from different amphibian skins or skin secretion and their biological activities. The general nutritional composition and production statues of amphibians were described. Additionally, multiple constraints against the utilization of amphibian skin and secretions are reported. Finally, the prospective applications of BPs in food and biomedical industries are presented such as multifunctional food additives and/or supplements as well as drug delivery agents.
Collapse
Affiliation(s)
- Sylvia Indriani
- School of Food Industry, King Mongkut’s Institute of Technology Ladkrabang, Ladkrabang, Bangkok 10520, Thailand
| | - Supatra Karnjanapratum
- Professional Culinary Arts Program, School of Management, Walailak University, Nakhon Si Thammarat 80161, Thailand
- Food Technology and Innovation Research Center of Excellence, Department of Agro-Industry, School of Agricultural Technology, Walailak University, Thasala, Nakhon Si Thammarat 80161, Thailand
| | | | - Sitthipong Nalinanon
- School of Food Industry, King Mongkut’s Institute of Technology Ladkrabang, Ladkrabang, Bangkok 10520, Thailand
- Correspondence:
| |
Collapse
|
3
|
Fu S, Du C, Zhang Q, Liu J, Zhang X, Deng M. A Novel Peptide from Polypedates megacephalus Promotes Wound Healing in Mice. Toxins (Basel) 2022; 14:toxins14110753. [PMID: 36356003 PMCID: PMC9693016 DOI: 10.3390/toxins14110753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Amphibian skin contains wound-healing peptides, antimicrobial peptides, and insulin-releasing peptides, which give their skin a strong regeneration ability to adapt to a complex and harsh living environment. In the current research, a novel wound-healing promoting peptide, PM-7, was identified from the skin secretions of Polypedates megacephalus, which has an amino acid sequence of FLNWRRILFLKVVR and shares no structural similarity with any peptides described before. It displays the activity of promoting wound healing in mice. Moreover, PM-7 exhibits the function of enhancing proliferation and migration in HUVEC and HSF cells by affecting the MAPK signaling pathway. Considering its favorable traits as a novel peptide that significantly promotes wound healing, PM-7 can be a potential candidate in the development of novel wound-repairing drugs.
Collapse
Affiliation(s)
- Siqi Fu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha 410013, China
| | - Canwei Du
- Chengdu Pep Biomedical Co., Ltd., Chengdu 610041, China
| | - Qijian Zhang
- Wound Center of Xiangya Hospital, Central South University, Changsha 410013, China
| | - Jiayu Liu
- Hunan Province Key Laboratory of Basic and Applied Hematology, Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha 410013, China
| | - Xushuang Zhang
- Hunan Province Key Laboratory of Basic and Applied Hematology, Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha 410013, China
| | - Meichun Deng
- Hunan Province Key Laboratory of Basic and Applied Hematology, Department of Biochemistry and Molecular Biology, School of Life Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha 410013, China
- Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410013, China
- Correspondence:
| |
Collapse
|
4
|
Heydari M, Yazdanparast R. Differentiation of PANC-1 ductal cells to β-like cells via cellular GABA modulation by Magainin and CPF-7 peptides. Biochem Biophys Res Commun 2022; 597:128-133. [PMID: 35144175 DOI: 10.1016/j.bbrc.2022.01.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/30/2022] [Indexed: 11/16/2022]
Abstract
Some of the antimicrobial peptides induce insulin release and improve glucose tolerance while their effects on pancreatic cell differentiation have remained unresolved. In this report, we evaluated the effects of two of these peptides, Magainin-II and CPF-7, and also GABA, on PANC-1 ductal cells' differentiation. Based on immunofluorescence and qRT-PCR analyses the expression levels of some of the Epithelial to Mesenchymal transition (EMT)-related factors such as Snai1 and Ngn3, as two biomarkers of alpha and beta cells, were increased. Our findings also revealed a drastic increase in Arx, Pax4, Dnmt-1 and Glucagon expressions associated with dedifferentiation of PANC-1 cells into pancreatic endocrine progenitor cells. Futhermore, Magainin-II and CPF-7 exerted their roles partly via influencing the GABA cellular content. These data would undoubtedly provide a suitable ground for further investigation to guide these cells toward transplantable insulin producing beta cells.
Collapse
Affiliation(s)
- Morteza Heydari
- Institute of Biochemistry and Biophysics, P. O. Box, 13145-1384, University of Tehran, Tehran, Iran
| | - Razieh Yazdanparast
- Institute of Biochemistry and Biophysics, P. O. Box, 13145-1384, University of Tehran, Tehran, Iran.
| |
Collapse
|
5
|
Review of Novel Potential Insulin Resistance Biomarkers in PCOS Patients—The Debate Is Still Open. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042099. [PMID: 35206286 PMCID: PMC8871992 DOI: 10.3390/ijerph19042099] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/27/2022] [Accepted: 02/09/2022] [Indexed: 12/12/2022]
Abstract
Research on proteins and peptides that play roles in metabolic regulation, which may be considered potential insulin resistance markers in some medical conditions, such as diabetes mellitus, obesity and polycystic ovarian syndrome (PCOS), has recently gained in interest. PCOS is a common endocrine disorder associated with hyperandrogenemia and failure of ovulation, which is often accompanied by metabolic abnormalities, including obesity, dyslipidemia, hyperinsulinemia, and insulin resistance. In this review, we focus on less commonly known peptides/proteins and investigate their role as potential biomarkers for insulin resistance in females affected by PCOS. We summarize studies comparing the serum fasting concentration of particular agents in PCOS individuals and healthy controls. Based on our analysis, we propose that, in the majority of studies, the levels of nesfastin-1, myonectin, omentin, neudesin were decreased in PCOS patients, while the levels of the other considered agents (e.g., preptin, gremlin-1, neuregulin-4, xenopsin-related peptide, xenin-25, and galectin-3) were increased. However, there also exist studies presenting contrary results; in particular, most data existing for lipocalin-2 are inconsistent. Therefore, further research is required to confirm those hypotheses, as well as to elucidate the involvement of these factors in PCOS-related metabolic complications.
Collapse
|
6
|
Soltaninejad H, Zare-Zardini H, Ordooei M, Ghelmani Y, Ghadiri-Anari A, Mojahedi S, Hamidieh AA. Antimicrobial Peptides from Amphibian Innate Immune System as Potent Antidiabetic Agents: A Literature Review and Bioinformatics Analysis. J Diabetes Res 2021; 2021:2894722. [PMID: 34307688 PMCID: PMC8263238 DOI: 10.1155/2021/2894722] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/05/2021] [Accepted: 06/17/2021] [Indexed: 12/30/2022] Open
Abstract
Antimicrobial peptides, as an important member of the innate immune system, have various biological activities in addition to antimicrobial activity. There are some AMPs with antidiabetic activity, especially those isolated from amphibians. These peptides can induce insulin release via different mechanisms based on peptide type. In this review study, we collected all reported AMPs with antidiabetic activity. We also analyze the sequence and structure of these peptides for evaluation of sequence and structure effect on their antidiabetic activity. Based on this review, the biggest peptide family with antidiabetic activity is temporins with nine antidiabetic peptides. Frogs are the most abundant source of antidiabetic peptides. Bioinformatics analysis showed that an increase of positive net charge and a decrease of hydrophobicity can improve the insulinotropic effect of peptides. Peptides with higher positive net charge and Boman index showed higher activity. Based on this review article, AMPs with antidiabetic activity, especially those isolated from amphibians, can be used as novel antidiabetic drug for type 2 diabetes disease. So, amphibians are potential sources for active peptides which merit further evaluation as novel insulin secretagogues. However, strategy for the increase of stability and positive activity as well as the decrease of negative side effects must be considered.
Collapse
Affiliation(s)
- Hossein Soltaninejad
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hadi Zare-Zardini
- Medical Nanotechnology and Tissue Engineering Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Hematology and Oncology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahtab Ordooei
- Hematology and Oncology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Pediatrics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Yaser Ghelmani
- Clinical Research Development Center of Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Akram Ghadiri-Anari
- Department of Internal Medicine, Diabetes Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sanaz Mojahedi
- Department of Biology, Faculty of Sciences, Science and Arts University, Yazd, Iran
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Sarmiento BE, Santos Menezes LF, Schwartz EF. Insulin Release Mechanism Modulated by Toxins Isolated from Animal Venoms: From Basic Research to Drug Development Prospects. Molecules 2019; 24:E1846. [PMID: 31091684 PMCID: PMC6571724 DOI: 10.3390/molecules24101846] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/23/2019] [Accepted: 05/09/2019] [Indexed: 12/12/2022] Open
Abstract
Venom from mammals, amphibians, snakes, arachnids, sea anemones and insects provides diverse sources of peptides with different potential medical applications. Several of these peptides have already been converted into drugs and some are still in the clinical phase. Diabetes type 2 is one of the diseases with the highest mortality rate worldwide, requiring specific attention. Diverse drugs are available (e.g., Sulfonylureas) for effective treatment, but with several adverse secondary effects, most of them related to the low specificity of these compounds to the target. In this context, the search for specific and high-affinity compounds for the management of this metabolic disease is growing. Toxins isolated from animal venom have high specificity and affinity for different molecular targets, of which the most important are ion channels. This review will present an overview about the electrical activity of the ion channels present in pancreatic β cells that are involved in the insulin secretion process, in addition to the diversity of peptides that can interact and modulate the electrical activity of pancreatic β cells. The importance of prospecting bioactive peptides for therapeutic use is also reinforced.
Collapse
Affiliation(s)
- Beatriz Elena Sarmiento
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| | - Luis Felipe Santos Menezes
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| | - Elisabeth F Schwartz
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| |
Collapse
|
8
|
Mechkarska M, Coquet L, Leprince J, Auguste RJ, Jouenne T, Mangoni ML, Conlon JM. Peptidomic analysis of the host-defense peptides in skin secretions of the Trinidadian leaf frog Phyllomedusa trinitatis (Phyllomedusidae). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2018; 28:72-79. [DOI: 10.1016/j.cbd.2018.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/21/2018] [Accepted: 06/28/2018] [Indexed: 01/01/2023]
|
9
|
Craig SL, Gault VA, Irwin N. Emerging therapeutic potential for xenin and related peptides in obesity and diabetes. Diabetes Metab Res Rev 2018; 34:e3006. [PMID: 29633491 DOI: 10.1002/dmrr.3006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/21/2018] [Accepted: 03/25/2018] [Indexed: 12/16/2022]
Abstract
Xenin-25 is a 25-amino acid peptide hormone co-secreted from the same enteroendocrine K-cell as the incretin peptide glucose-dependent insulinotropic polypeptide. There is no known specific receptor for xenin-25, but studies suggest that at least some biological actions may be mediated through interaction with the neurotensin receptor. Original investigation into the physiological significance of xenin-25 focussed on effects related to gastrointestinal transit and satiety. However, xenin-25 has been demonstrated in pancreatic islets and recently shown to possess actions in relation to the regulation of insulin and glucagon secretion, as well as promoting beta-cell survival. Accordingly, the beneficial impact of xenin-25, and related analogues, has been assessed in animal models of diabetes-obesity. In addition, studies have demonstrated that metabolically active fragment peptides of xenin-25, particularly xenin-8, possess independent therapeutic promise for diabetes, as well as serving as bioactive components for the generation of multi-acting hybrid peptides with antidiabetic potential. This review focuses on continuing developments with xenin compounds in relation to new therapeutic approaches for diabetes-obesity.
Collapse
Affiliation(s)
- Sarah L Craig
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK
| | - Victor A Gault
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK
| | - Nigel Irwin
- SAAD Centre for Pharmacy and Diabetes, University of Ulster, Coleraine, Northern Ireland, UK
| |
Collapse
|
10
|
Peptidomic analysis of the extensive array of host-defense peptides in skin secretions of the dodecaploid frog Xenopus ruwenzoriensis (Pipidae). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 19:18-24. [PMID: 27290612 DOI: 10.1016/j.cbd.2016.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 01/16/2016] [Accepted: 04/28/2016] [Indexed: 11/22/2022]
Abstract
The Uganda clawed frog Xenopus ruwenzoriensis with a karyotype of 2n=108 is one of the very few vertebrates with dodecaploid status. Peptidomic analysis of norepinephrine-stimulated skin secretions from this species led to the isolation and structural characterization of 23 host-defense peptides belonging to the following families: magainin (3 peptides), peptide glycine-leucine-amide (PGLa; 6 peptides), xenopsin precursor fragment (XPF; 3 peptides), caerulein precursor fragment (CPF; 8 peptides), and caerulein precursor fragment-related peptide (CPF-RP; 3 peptides). In addition, the secretions contained caerulein, identical to the peptide from Xenopus laevis, and two peptides that were identified as members of the trefoil factor family (TFF). The data indicate that silencing of the host-defense peptide genes following polyploidization has been appreciable and non-uniform. Consistent with data derived from comparison of nucleotide sequences of mitochrondrial and nuclear genes, cladistic analyses based upon the primary structures of the host-defense peptides provide support for an evolutionary scenario in which X. ruwenzoriensis arose from an allopolyploidization event involving an octoploid ancestor of the present-day frogs belonging to the Xenopus amieti species group and a tetraploid ancestor of Xenopus pygmaeus.
Collapse
|
11
|
Conlon JM, Mechkarska M, Kolodziejek J, Leprince J, Coquet L, Jouenne T, Vaudry H, Nowotny N, King JD. Host-defense and trefoil factor family peptides in skin secretions of the Mawa clawed frog Xenopus boumbaensis (Pipidae). Peptides 2015; 72:44-9. [PMID: 25849343 DOI: 10.1016/j.peptides.2015.03.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Revised: 03/27/2015] [Accepted: 03/30/2015] [Indexed: 02/02/2023]
Abstract
Peptidomic analysis of norepinephrine-stimulated skin secretions from the octoploid Mawa clawed frog Xenopus boumbaensis Loumont, 1983 led to the identification and characterization of 15 host-defense peptides belonging to the magainin (two peptides), peptide glycine-leucine-amide (PGLa; three peptides), xenopsin precursor fragment (XPF; three peptides), caerulein precursor fragment (CPF; two peptides), and caerulein precursor fragment-related peptide (CPF-RP; five peptides) families. In addition, caerulein and three peptides with structural similarity to the trefoil factor family (TFF) peptides, xP2 and xP4 from Xenopus laevis were also present in the secretions. Consistent with data from comparisons of the nucleotides sequence of mitochondrial and nuclear genes, the primary structures of the peptides suggest a close phylogenetic relationship between X. boumbaensis and the octoploid frogs Xenopus amieti and Xenopus andrei. As the three species occupy disjunct ranges within Cameroon, it is suggested that they diverged from a common ancestor by allopatric speciation.
Collapse
Affiliation(s)
- J Michael Conlon
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, UK; Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, 17666 Al Ain, United Arab Emirates.
| | - Milena Mechkarska
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, 17666 Al Ain, United Arab Emirates
| | - Jolanta Kolodziejek
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine, Veterinärplatz 1, A-1210 Vienna, Austria
| | - Jérôme Leprince
- INSERM U-982, PRIMACEN, CNRS, IRIB, University of Rouen, 76821 Mont-Saint-Aignan, France
| | - Laurent Coquet
- PISSARO, Institute for Research and Innovation in Biomedicine (IRIB) CNRS UMR 6270, University of Rouen, 76821 Mont-Saint-Aignan, France
| | - Thierry Jouenne
- PISSARO, Institute for Research and Innovation in Biomedicine (IRIB) CNRS UMR 6270, University of Rouen, 76821 Mont-Saint-Aignan, France
| | - Hubert Vaudry
- INSERM U-982, PRIMACEN, CNRS, IRIB, University of Rouen, 76821 Mont-Saint-Aignan, France
| | - Norbert Nowotny
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine, Veterinärplatz 1, A-1210 Vienna, Austria; Department of Microbiology and Immunology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Jay D King
- Rare Species Conservatory Foundation, St. Louis, MO 63110, USA
| |
Collapse
|
12
|
Xu X, Lai R. The chemistry and biological activities of peptides from amphibian skin secretions. Chem Rev 2015; 115:1760-846. [PMID: 25594509 DOI: 10.1021/cr4006704] [Citation(s) in RCA: 235] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xueqing Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology , Kunming 650223, Yunnan, China
| | | |
Collapse
|
13
|
Mechkarska M, Coquet L, Leprince J, Jouenne T, Vaudry H, Michalak K, Michalak P, Conlon JM. Host-defense peptides from skin secretions of the octoploid frogs Xenopus vestitus and Xenopus wittei (Pipidae): insights into evolutionary relationships. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2014; 11:20-8. [PMID: 25086320 DOI: 10.1016/j.cbd.2014.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/07/2014] [Accepted: 07/14/2014] [Indexed: 10/25/2022]
Abstract
The primary structures of host-defense peptides have proved useful in elucidating the evolution history of frogs. Peptidomic analysis was used to compare the diversity of host-defense peptides in norepinephrine-stimulated skin secretions from the octoploid frogs, Xenopus vestitus (Kivu clawed frog) and Xenopus wittei (De Witte's clawed frog) in the family Pipidae. Structural characterization demonstrated that the X. vestitus peptides belong to the magainin (3 peptides), peptide glycine-leucine-amide (PGLa; 4 peptides), xenopsin-precursor fragment (XPF; 1 peptide), and caerulein-precursor fragment (CPF; 5 peptides) families. The X. wittei peptides comprise magainin (4 peptides), PGLa (1 peptide), XPF (2 peptides), and CPF (7 peptides). In addition, secretions from both species contain caerulein, identical to the peptide from Xenopus laevis, but X. wittei secretions contains the novel peptide [R4K]xenopsin. The variability in the numbers of paralogs in each peptide family indicates a selective silencing of the host-defense peptide genes following the polyploidization events. The primary structures of the peptides provide insight into phylogenetic relationships among the octoploid Xenopus frogs. The data support a sister-group relationship between X. vestitus and Xenopus lenduensis, suggestive of bifurcating speciation after allopolyploidization, whereas X. wittei is more closely related to the Xenopus amieti-Xenopus andrei group suggesting a common tetraploid ancestor. Consistent with previous data, the CPF peptides showed the highest growth inhibitory activity against bacteria with CPF-W6 (GIGSLLAKAAKLAAGLV.NH2) combining high antimicrobial potency against Staphylococcus aureus (MIC=4 μM) with relatively low hemolytic activity (LC50=190 μM).
Collapse
Affiliation(s)
- Milena Mechkarska
- Department of Biochemistry, Faculty of Medicine and Health Sciences, United Arab Emirates University, 17666 Al-Ain, United Arab Emirates
| | - Laurent Coquet
- PISSARO, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, 76821 Mont-Saint-Aignan, France; CNRS UMR 6270, University of Rouen, 76821 Mont-Saint-Aignan, France
| | - Jérôme Leprince
- INSERM U-982, PRIMACEN, CNRS, IRIB, University of Rouen, 76821 Mont-Saint-Aignan, France
| | - Thierry Jouenne
- PISSARO, Institute for Research and Innovation in Biomedicine (IRIB), University of Rouen, 76821 Mont-Saint-Aignan, France; CNRS UMR 6270, University of Rouen, 76821 Mont-Saint-Aignan, France
| | - Hubert Vaudry
- INSERM U-982, PRIMACEN, CNRS, IRIB, University of Rouen, 76821 Mont-Saint-Aignan, France
| | - Katarzyna Michalak
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Washington Street, MC 0477 Blacksburg, VA 24061-0477, USA; Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0477, USA
| | - Pawel Michalak
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Washington Street, MC 0477 Blacksburg, VA 24061-0477, USA; Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0477, USA
| | - J Michael Conlon
- Department of Biochemistry, Faculty of Medicine and Health Sciences, United Arab Emirates University, 17666 Al-Ain, United Arab Emirates.
| |
Collapse
|
14
|
Conlon JM, Mechkarska M, Lukic ML, Flatt PR. Potential therapeutic applications of multifunctional host-defense peptides from frog skin as anti-cancer, anti-viral, immunomodulatory, and anti-diabetic agents. Peptides 2014; 57:67-77. [PMID: 24793775 DOI: 10.1016/j.peptides.2014.04.019] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/24/2014] [Accepted: 04/24/2014] [Indexed: 12/14/2022]
Abstract
Frog skin constitutes a rich source of peptides with a wide range of biological properties. These include host-defense peptides with cytotoxic activities against bacteria, fungi, protozoa, viruses, and mammalian cells. Several hundred such peptides from diverse species have been described. Although attention has been focused mainly on antimicrobial activity, the therapeutic potential of frog skin peptides as anti-infective agents remains to be realized and no compound based upon their structures has yet been adopted in clinical practice. Consequently, alternative applications are being explored. Certain naturally occurring frog skin peptides, and analogs with improved therapeutic properties, show selective cytotoxicity against tumor cells and viruses and so have potential for development into anti-cancer and anti-viral agents. Some peptides display complex cytokine-mediated immunomodulatory properties. Effects on the production of both pro-inflammatory and anti-inflammatory cytokines by peritoneal macrophages and peripheral blood mononuclear cells have been observed so that clinical applications as anti-inflammatory, immunosuppressive, and immunostimulatory agents are possible. Several frog skin peptides, first identified on the basis of antimicrobial activity, have been shown to stimulate insulin release both in vitro and in vivo and so show potential as incretin-based therapies for treatment of patients with Type 2 diabetes mellitus. This review assesses the therapeutic possibilities of peptides from frogs belonging to the Ascaphidae, Alytidae, Pipidae, Dicroglossidae, Leptodactylidae, Hylidae, and Ranidae families that complement their potential role as anti-infectives for use against multidrug-resistant microorganisms.
Collapse
Affiliation(s)
- J Michael Conlon
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, 17666 Al Ain, United Arab Emirates; School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK.
| | - Milena Mechkarska
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, 17666 Al Ain, United Arab Emirates
| | - Miodrag L Lukic
- Center for Molecular Medicine, Faculty of Medicine, University of Kragujevac, Kragujevac, Serbia
| | - Peter R Flatt
- School of Biomedical Sciences, University of Ulster, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| |
Collapse
|
15
|
Matthijs S, Ye L, Stijlemans B, Cornelis P, Bossuyt F, Roelants K. Low structural variation in the host-defense peptide repertoire of the dwarf clawed frog Hymenochirus boettgeri (Pipidae). PLoS One 2014; 9:e86339. [PMID: 24466037 PMCID: PMC3899252 DOI: 10.1371/journal.pone.0086339] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 12/06/2013] [Indexed: 02/05/2023] Open
Abstract
THE skin secretion of many amphibians contains peptides that are able to kill a broad range of microorganisms (antimicrobial peptides: AMPs) and potentially play a role in innate immune defense. Similar to the toxin arsenals of various animals, amphibian AMP repertoires typically show major structural variation, and previous studies have suggested that this may be the result of diversifying selection in adaptation to a diverse spectrum of pathogens. Here we report on transcriptome analyses that indicate a very different pattern in the dwarf clawed frog H. boettgeri. Our analyses reveal a diverse set of transcripts containing two to six tandem repeats, together encoding 14 distinct peptides. Five of these have recently been identified as AMPs, while three more are shown here to potently inhibit the growth of gram-negative bacteria, including multi-drug resistant strains of the medically important Pseudomonas aeruginosa. Although the number of predicted peptides is similar to the numbers of related AMPs in Xenopus and Silurana frog species, they show significantly lower structural variation. Selection analyses confirm that, in contrast to the AMPs of other amphibians, the H. boettgeri peptides did not evolve under diversifying selection. Instead, the low sequence variation among tandem repeats resulted from purifying selection, recent duplication and/or concerted gene evolution. Our study demonstrates that defense peptide repertoires of closely related taxa, after diverging from each other, may evolve under differential selective regimes, leading to contrasting patterns of structural diversity.
Collapse
Affiliation(s)
- Severine Matthijs
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lumeng Ye
- Department of Bioengineering Sciences, Research Group of Microbiology and Vlaams Instituut voor Biotechnologie, Vrije Universiteit Brussel, Brussels, Belgium
| | - Benoit Stijlemans
- Unit of Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Laboratory of Myeloid Cell Immunology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
| | - Pierre Cornelis
- Department of Bioengineering Sciences, Research Group of Microbiology and Vlaams Instituut voor Biotechnologie, Vrije Universiteit Brussel, Brussels, Belgium
| | - Franky Bossuyt
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kim Roelants
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Brussels, Belgium
- * E-mail:
| |
Collapse
|
16
|
Peptidomic analysis of skin secretions provides insight into the taxonomic status of the African clawed frogs Xenopus victorianus and Xenopus laevis sudanensis (Pipidae). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2013; 8:250-4. [DOI: 10.1016/j.cbd.2013.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/06/2013] [Accepted: 07/07/2013] [Indexed: 12/31/2022]
|
17
|
Origin and functional diversification of an amphibian defense peptide arsenal. PLoS Genet 2013; 9:e1003662. [PMID: 23935531 PMCID: PMC3731216 DOI: 10.1371/journal.pgen.1003662] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 06/05/2013] [Indexed: 11/19/2022] Open
Abstract
The skin secretion of many amphibians contains an arsenal of bioactive molecules, including hormone-like peptides (HLPs) acting as defense toxins against predators, and antimicrobial peptides (AMPs) providing protection against infectious microorganisms. Several amphibian taxa seem to have independently acquired the genes to produce skin-secreted peptide arsenals, but it remains unknown how these originated from a non-defensive ancestral gene and evolved diverse defense functions against predators and pathogens. We conducted transcriptome, genome, peptidome and phylogenetic analyses to chart the full gene repertoire underlying the defense peptide arsenal of the frog Silurana tropicalis and reconstruct its evolutionary history. Our study uncovers a cluster of 13 transcriptionally active genes, together encoding up to 19 peptides, including diverse HLP homologues and AMPs. This gene cluster arose from a duplicated gastrointestinal hormone gene that attained a HLP-like defense function after major remodeling of its promoter region. Instead, new defense functions, including antimicrobial activity, arose by mutation of the precursor proteins, resulting in the proteolytic processing of secondary peptides alongside the original ones. Although gene duplication did not trigger functional innovation, it may have subsequently facilitated the convergent loss of the original function in multiple gene lineages (subfunctionalization), completing their transformation from HLP gene to AMP gene. The processing of multiple peptides from a single precursor entails a mechanism through which peptide-encoding genes may establish new functions without the need for gene duplication to avoid adaptive conflicts with older ones.
Collapse
|
18
|
Mechkarska M, Prajeep M, Leprince J, Vaudry H, Meetani MA, Evans BJ, Conlon JM. A comparison of host-defense peptides in skin secretions of female Xenopus laevis × Xenopus borealis and X. borealis × X. laevis F1 hybrids. Peptides 2013; 45:1-8. [PMID: 23624316 DOI: 10.1016/j.peptides.2013.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/15/2013] [Accepted: 04/17/2013] [Indexed: 12/30/2022]
Abstract
Peptidomic analysis was used to compare the diversity of host-defense peptides in norepinephrine-stimulated skin secretions from laboratory-generated female F1 hybrids of Xenopus laevis and Xenopus borealis (Pipidae). Skin secretions of hybrids with maternal X. laevis (XLB) contained 12 antimicrobial peptides (AMPs), comprising 8 from X. laevis and 4 from X. borealis. Magainin-B1, XPF-B1, PGLa-B1 CPF-B2, CPF-B3 and CPF-B4 from X. borealis and XPF-1, XPF-2, and CPF-6 from X. laevis were not detected and CPF-1 and CPF-7 were present in low concentration. The secretions contained caerulein and caerulein-B1 derived from both parents but lacked X. laevis xenopsin and X. borealis caerulein-B2. Skin secretions of hybrids with maternal X. borealis (XBL) contained 14 AMPs comprising 6 from X. borealis and 8 from X. laevis. Magainin-B1, XPF-B1, PGLa-B1, CPF-B2, XPF-1, CPF-5, and CPF-7 were absent and CPF-B3, CPF-B4, CPF-1 and CPF-6 were present only in low concentration. Xenopsin and caerulein were identified in the secretions but caerulein-B2 was absent and caerulein-B1 was present in low concentration. No peptides were identified in secretions of either XLB or XBL hybrids that were not present in the parental species. The data indicate that hybridization between X. laevis and X. borealis results in increased diversity of host-defense peptides in skin secretions but point to extensive AMP gene silencing compared with previously studied female X. laevis×X. muelleri F1 hybrids and no novel peptide expression.
Collapse
Affiliation(s)
- Milena Mechkarska
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | | | | | | | | | | |
Collapse
|
19
|
Conlon JM, Attoub S, Arafat H, Mechkarska M, Casewell NR, Harrison RA, Calvete JJ. Cytotoxic activities of [Ser⁴⁹]phospholipase A₂ from the venom of the saw-scaled vipers Echis ocellatus, Echis pyramidum leakeyi, Echis carinatus sochureki, and Echis coloratus. Toxicon 2013; 71:96-104. [PMID: 23747272 DOI: 10.1016/j.toxicon.2013.05.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 05/19/2013] [Accepted: 05/23/2013] [Indexed: 11/30/2022]
Abstract
Fractionation by reversed-phase HPLC of venom from four species of saw-scaled viper: Echis ocellatus, Echis pyramidum leakeyi, Echis carinatus sochureki, and Echis coloratus led to identification in each sample of an abundant protein with cytotoxic activity against human non-small cell lung adenocarcinoma A549 cells. The active component in each case was identified by MALDI-TOF mass fingerprinting of tryptic digests as [Ser⁴⁹]phospholipase A₂ ([Ser⁴⁹]PLA₂). An isoform of [Ser⁴⁹]PLA₂ containing the single Ala¹⁸→ Val substitution and a partially characterized [Asp⁴⁹]PLA₂ were also present in the E. coloratus venom. LC₅₀ values against A549 cells for the purified [Ser⁴⁹]PLA₂ proteins from the four species are in the range 2.9-8.5 μM. This range is not significantly different from the range of LC₅₀ values against human umbilical vein endothelial HUVEC cells (2.5-12.2 μM) indicating that the [Ser⁴⁹]PLA₂ proteins show no differential anti-tumor activity. The LC₅₀ value for [Ser⁴⁹]PLA₂ from E. ocellatus against human erythrocytes is >100 μM and the MIC values against Escherichia coli and Staphylococcus aureus are >100 μM. It is suggested that the [Ser⁴⁹]PLA₂ proteins play a major role in producing local tissue necrosis and hemorrhage at the site of envenomation.
Collapse
Affiliation(s)
- J Michael Conlon
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates.
| | | | | | | | | | | | | |
Collapse
|
20
|
Srinivasan D, Mechkarska M, Abdel-Wahab YH, Flatt PR, Conlon JM. Caerulein precursor fragment (CPF) peptides from the skin secretions of Xenopus laevis and Silurana epitropicalis are potent insulin-releasing agents. Biochimie 2013; 95:429-35. [DOI: 10.1016/j.biochi.2012.10.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 10/31/2012] [Indexed: 10/27/2022]
|
21
|
Bowie JH, Separovic F, Tyler MJ. Host-defense peptides of Australian anurans. Part 2. Structure, activity, mechanism of action, and evolutionary significance. Peptides 2012; 37:174-88. [PMID: 22771617 DOI: 10.1016/j.peptides.2012.06.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 06/26/2012] [Accepted: 06/26/2012] [Indexed: 01/01/2023]
Abstract
A previous review summarized research prior to 2004 carried out on the bioactive host-defense peptides contained in the skin secretions of Australian anurans (frogs and toads). This review covers the extension of that research from 2004 to 2012, and includes membrane-active peptides (including antibacterial, anticancer, antifungal and antiviral peptides) together with the mechanisms by which these peptides interact with model membranes, peptides that may be classified as "neuropeptides" (including smooth muscle active peptides, opioids and immunomodulators) and peptides which inhibit the formation of nitric oxide from neuronal nitric oxide synthase. The review discusses the outcome of cDNA sequencing of signal-spacer-active peptides from an evolutionary viewpoint, and also lists those peptides for which activities have not been found to this time.
Collapse
Affiliation(s)
- John H Bowie
- Department of Chemistry, School of Chemistry and Physics, The University of Adelaide, South Australia 5005, Australia.
| | | | | |
Collapse
|
22
|
Mechkarska M, Meetani M, Michalak P, Vaksman Z, Takada K, Conlon JM. Hybridization between the African clawed frogs Xenopus laevis and Xenopus muelleri (Pipidae) increases the multiplicity of antimicrobial peptides in skin secretions of female offspring. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2012; 7:285-91. [PMID: 22687652 DOI: 10.1016/j.cbd.2012.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 05/20/2012] [Accepted: 05/20/2012] [Indexed: 01/08/2023]
Abstract
Peptidomic analysis was used to compare the distribution of host-defense peptides in norepinephrine-stimulated skin secretions from laboratory-generated female F1 hybrids of the common clawed frog Xenopus laevis (Daudin, 1802) and Mueller's clawed frog Xenopus muelleri (Peters, 1844) with the corresponding distribution in skin secretions from the parent species. A total of 18 peptides were identified in secretions from the hybrid frogs. Eleven peptides (magainin-1, magainin-2, CPF-1, CPF-3, CPF-4, CPF-5, CPF-6, CPF-7, XPF-1, XPF-2, and PGLa) were identified in secretions of both the hybrids and X. laevis. Four peptides (magainin-M1, XPF-M1, CPF-M1, and tigerinin-M1) were previously found in skin secretions of X. muelleri but magainin-M2 and CPF-M2 from X. muelleri were not detected. Three previously undescribed peptides (magainin-LM1, PGLa-LM1, and CPF-LM1) were purified from the secretions of the hybrid frogs that were not detected in secretions from either X. laevis or X. muelleri. Magainin-LM1 differs from magainin-2 from X. laevis by a single amino acid substitution (Gly(13)→Ala) but PGLa-LM1 and CPF-LM1 differ appreciably in structure from orthologs in the parent species. CPF-LM1 shows potent, broad-spectrum antimicrobial activity and is hemolytic. The data indicate that hybridization increases the multiplicity of skin host-defense peptides in skin secretions. As the female F1 hybrids are fertile, hybridization may represent an adaptive strategy among Xenopus species to increase protection against pathogenic microorganisms in the environment.
Collapse
Affiliation(s)
- Milena Mechkarska
- Department of Biochemistry, Faculty of Medicine and Health Sciences, United Arab Emirates University, 17666 Al-Ain, United Arab Emirates
| | | | | | | | | | | |
Collapse
|
23
|
King JD, Mechkarska M, Coquet L, Leprince J, Jouenne T, Vaudry H, Takada K, Conlon JM. Host-defense peptides from skin secretions of the tetraploid frogs Xenopus petersii and Xenopus pygmaeus, and the octoploid frog Xenopus lenduensis (Pipidae). Peptides 2012; 33:35-43. [PMID: 22123629 DOI: 10.1016/j.peptides.2011.11.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 11/13/2011] [Accepted: 11/14/2011] [Indexed: 10/15/2022]
Abstract
Peptidomic analysis of norepinephrine-stimulated skin secretions led to the identification of host-defense peptides belonging to the magainin, peptide glycine-leucine-amide (PGLa), and caerulein precursor fragment (CPF) families from the tetraploid frogs, Xenopus petersii (Peters' clawed frog) and Xenopus pygmaeus (Bouchia clawed frog), and the octoploid frog Xenopus lenduensis (Lendu Plateau clawed frog). Xenopsin-precursor fragment (XPF) peptides were not detected. The primary structures of the antimicrobial peptides from X. petersii demonstrate a close, but not conspecific relationship, with Xenopus laevis whereas the X. pygmaeus peptides show appreciable variation from previously characterized orthologs from other Xenopus species. Polyploidization events within the Xenopodinae (Silurana+Xenopus) are associated with extensive gene silencing (nonfunctionization) but unexpectedly the full complement of four PGLa paralogs were isolated from X. lenduendis secretions. Consistent with previous data, the CPF peptides showed the highest growth-inhibitory activity against bacteria with CPF-PG1 (GFGSLLGKALKIGTNLL.NH(2)) from X. pygmaeus combining high antimicrobial potency against Staphylococcus aureus (MIC=6 μM) with relatively low hemolytic activity (LC(50)=145 μM).
Collapse
Affiliation(s)
- Jay D King
- Rare Species Conservatory Foundation, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|