1
|
Kumbar J, Ganesh CB. Organization of the Melanin concentrating hormone secreting neuronal system in the brain of the cichlid fish Oreochromis mossambicus. J Chem Neuroanat 2022; 124:102141. [PMID: 35907561 DOI: 10.1016/j.jchemneu.2022.102141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 07/12/2022] [Accepted: 07/25/2022] [Indexed: 11/15/2022]
Abstract
Melanin concentrating hormone (MCH) is a highly conserved cyclic peptide present in vertebrates. In this study, we describe the organization of MCH-immunoreactive (MCH-ir) cells and fibres in different regions of the brain in the cichlid fish Oreochromis mossambicus. Only MCH-ir fibres were observed in dorsal and ventral subdivisions of the telencephalon, the preoptic area and magnocellular and parvocellular divisions of the nucleus preopticus, and in hypothalamic areas such as the suprachiasmatic nucleus and tuberal area. Distinctly labelled MCH-ir perikarya were observed in the paraventricular organ, lateral and medial subdivisions of the nucleus lateralis tuberis, nucleus recessus lateralis and in the nucleus posterioris tuberis. The pituitary gland showed MCH-ir fibres in the proximal pars distalis, neurohypophyseal ramifications and in pars intermedia where the dark accumulations of MCH-ir content corresponded to enlarged axon terminals. In the diencephalon, MCH-ir fibres were also labelled in the pretectal area, thalamic nuclei and preglomerular complex. In the midbrain tegmentum, a cluster of MCH-ir neurons was detected in the dorsal tegmental nucleus, whereas MCH-ir fibres were distributed in the torus semicircularis and optic tectum. In the rhombencephalon, MCH-ir fibres were located in the nucleus lateralis valvulae, cerebellum and secondary gustatory nucleus. Overall, the widespread distribution of MCH-ir cells and fibres in the brain suggests diverse roles for MCH such as regulation of sensorimotor and neuroendocrine functions in the tilapia.
Collapse
Affiliation(s)
- Jyoti Kumbar
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad-580 003 India
| | - C B Ganesh
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad-580 003 India.
| |
Collapse
|
2
|
Toledo-Solís FJ, Hilerio-Ruiz AG, Delgadin T, Sirkin DP, Di Yorio MP, Vissio PG, Peña-Marín ES, Martínez-García R, Maytorena-Verdugo CI, Álvarez-González CA, de Rodrigáñez MAS. Changes in digestive enzyme activities during the early ontogeny of the South American cichlid (Cichlasoma dimerus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1211-1227. [PMID: 34173183 DOI: 10.1007/s10695-021-00976-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Cichlasoma dimerus is a neotropical cichlid that has been used as a biological model for neuroendocrinology studies. However, its culture is problematic in terms of larval feeding to allow having enough fry quantity and quality. Larviculture requires full knowledge about the digestive system and nutrition; therefore, this study was intended to assess the digestive enzymes' changes at different ages during the early ontogeny. Acid protease activity was detectable from the first day after hatching (dah), increasing to its maximum peaks on 9 dah. In contrast, alkaline proteases had low activity in the first days of life but reached their maximum activity on 17 dah. Chymotrypsin, L-aminopeptidase, and carboxypeptidase A activities increased at 6 dah, while trypsin activity was first detected on 13 dah and reached its maximum activity on 17 dah. Lipase and α-amylase activity were detectable at low levels in the first days of life, but the activity fluctuated and reaching its maximum activity at 21 dah. Alkaline phosphatase continued to oscillate and had two maximum activity peaks, the first at 6 dah and the second at 19 dah. Zymograms of alkaline proteases on day 6 dah six revealed four activity bands with molecular weights from 16.1 to 77.7 kDa. On 13 dah, two more activity bands of 24.4 and 121.9 kDa were detected, having a total of six proteases. The enzymatic activity analyzes indicate the digestive system shows the low activity of some enzymes in the first days after hatching, registering significant increases on 6 dah and the maximum peaks of activities around at 17 dah. Therefore, we recommend replacing live food with dry feed and only providing dry feed after day 17 dah.
Collapse
Affiliation(s)
- Francisco Javier Toledo-Solís
- Departamento de Biología y Geología, Universidad de Almería, 04120, Almería, Spain
- Consejo Nacional de Ciencia y Tecnología (CONACYT), Av. Insurgentes Sur 1582, Alcaldía Benito Juárez, C.P. 03940, Ciudad de México, Mexico
| | - Andrea Guadalupe Hilerio-Ruiz
- Laboratorio de Acuicultura Tropical, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, 0.5 km Carretera Villahermosa-Cárdenas, C.P. 86039, Villahermosa, TAB, Mexico
| | - Tomás Delgadin
- Departamento de Biodiversidad Y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires / Instituto de Biodiversidad y Biología Experimental Aplicada (IBBEA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniela Pérez Sirkin
- Departamento de Biodiversidad Y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires / Instituto de Biodiversidad y Biología Experimental Aplicada (IBBEA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Paula Di Yorio
- Departamento de Biodiversidad Y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires / Instituto de Biodiversidad y Biología Experimental Aplicada (IBBEA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Paula Gabriela Vissio
- Departamento de Biodiversidad Y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires / Instituto de Biodiversidad y Biología Experimental Aplicada (IBBEA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Emyr Saul Peña-Marín
- Laboratorio de Acuicultura Tropical, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, 0.5 km Carretera Villahermosa-Cárdenas, C.P. 86039, Villahermosa, TAB, Mexico
- Cátedra CONACYT, Ciudad de México, Mexico
| | - Rafael Martínez-García
- Laboratorio de Acuicultura Tropical, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, 0.5 km Carretera Villahermosa-Cárdenas, C.P. 86039, Villahermosa, TAB, Mexico
| | - Claudia Ivette Maytorena-Verdugo
- Laboratorio de Acuicultura Tropical, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, 0.5 km Carretera Villahermosa-Cárdenas, C.P. 86039, Villahermosa, TAB, Mexico
| | - Carlos Alfonso Álvarez-González
- Laboratorio de Acuicultura Tropical, División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, 0.5 km Carretera Villahermosa-Cárdenas, C.P. 86039, Villahermosa, TAB, Mexico.
| | - Miguel Angel Sáenz de Rodrigáñez
- Departamento de Fisiología, Facultad de Ciencias de La Salud, Universidad de Granada, Campus de Melilla, Calle Santander, 1, C.P. 52005, Melilla, Spain
| |
Collapse
|
3
|
Vissio PG, Darias MJ, Di Yorio MP, Pérez Sirkin DI, Delgadin TH. Fish skin pigmentation in aquaculture: The influence of rearing conditions and its neuroendocrine regulation. Gen Comp Endocrinol 2021; 301:113662. [PMID: 33220300 DOI: 10.1016/j.ygcen.2020.113662] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 12/14/2022]
Abstract
Skin pigmentation pattern is a species-specific characteristic that depends on the number and the spatial combination of several types of chromatophores. This feature can change during life, for example in the metamorphosis or reproductive cycle, or as a response to biotic and/or abiotic environmental cues (nutrition, UV incidence, surrounding luminosity, and social interactions). Fish skin pigmentation is one of the most important quality criteria dictating the market value of both aquaculture and ornamental species because it serves as an external signal to infer its welfare and the culture conditions used. For that reason, several studies have been conducted aiming to understand the mechanisms underlying fish pigmentation as well as the influence exerted by rearing conditions. In this context, the present review focuses on the current knowledge on endocrine regulation of fish pigmentation as well as on the aquaculture conditions affecting skin coloration. Available information on Iberoamerican fish species cultured is presented.
Collapse
Affiliation(s)
- Paula G Vissio
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental. Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina.
| | - Maria J Darias
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - María P Di Yorio
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental. Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina
| | - Daniela I Pérez Sirkin
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental. Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina
| | - Tomás H Delgadin
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental. Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET, Buenos Aires, Argentina
| |
Collapse
|
4
|
Diniz GB, Bittencourt JC. The Melanin-Concentrating Hormone (MCH) System: A Tale of Two Peptides. Front Neurosci 2019; 13:1280. [PMID: 31849590 PMCID: PMC6901935 DOI: 10.3389/fnins.2019.01280] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/11/2019] [Indexed: 12/19/2022] Open
Abstract
The melanin-concentrating hormone (MCH) system is a robust integrator of exogenous and endogenous information, modulating arousal and energy balance in mammals. Its predominant function in teleosts, however, is to concentrate melanin in the scales, contributing to the adaptive color change observed in several teleost species. These contrasting functions resulted from a gene duplication that occurred after the teleost divergence, which resulted in the generation of two MCH-coding genes in this clade, which acquired distinctive sequences, distribution, and functions, examined in detail here. We also describe the distribution of MCH immunoreactivity and gene expression in a large number of species, in an attempt to identify its core elements. While initially originated as a periventricular peptide, with an intimate relationship with the third ventricle, multiple events of lateral migration occurred during evolution, making the ventrolateral and dorsolateral hypothalamus the predominant sites of MCH in teleosts and mammals, respectively. Substantial differences between species can be identified, likely reflecting differences in habitat and behavior. This observation aligns well with the idea that MCH is a major integrator of internal and external information, ensuring an appropriate response to ensure the organism’s homeostasis. New studies on the MCH system in species that have not yet been investigated will help us understand more precisely how these habitat changes are connected to the hypothalamic neurochemical circuits, paving the way to new intervention strategies that may be used with pharmacological purposes.
Collapse
Affiliation(s)
- Giovanne B Diniz
- Departamento de Anatomia, Instituto de Ciências Biomedicas, Universidade de São Paulo, São Paulo, Brazil.,Department of Neurosurgery, Yale School of Medicine, New Haven, CT, United States
| | - Jackson C Bittencourt
- Departamento de Anatomia, Instituto de Ciências Biomedicas, Universidade de São Paulo, São Paulo, Brazil.,Nucleo de Neurociencias e Comportamento, Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Di Yorio MP, Pérez Sirkin DI, Muñoz-Cueto JA, Delgadin TH, Tsutsui K, Somoza GM, Vissio PG. Morphological relationship between GnIH and GnRH neurons in the brain of the neotropical cichlid fish Cichlasoma dimerus. Gen Comp Endocrinol 2019; 273:144-151. [PMID: 29913169 DOI: 10.1016/j.ygcen.2018.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/28/2018] [Accepted: 06/15/2018] [Indexed: 01/23/2023]
Abstract
Reproduction is regulated by the hypothalamic-pituitary-gonadal axis. The first neuropeptide identified that regulates this function was the decapeptide gonadotropin-releasing hormone (GnRH). Nowadays, in gnatostomates, a number of GnRH variants have been identified and classified into three different types: GnRH1, GnRH2, and GnRH3. Almost 30 years later, a new peptide that inhibits gonadotropin synthesis and secretion was discovered and thus named as gonadotropin-inhibitory hormone (GnIH). In avians and mammals, the interaction and regulation between GnRH and GnIH neurons has been widely studied; however, in other vertebrate groups there is little information about the relationship between these neurons. In previous works, three GnRH variants and a GnIH propeptide were characterized in Cichlasoma dimerus, and it was demonstrated that GnIH inhibited gonadotropins release in this species. Because no innervation was detected at the pituitary level, we speculate that GnIH would inhibit gonadotropins via GnRH. Thus, the aim of the present study was to evaluate the anatomical relationship between neurons expressing GnIH and the three GnRH variants by double labelling confocal immunofluorescence in adults of C. dimerus. Our results showed no apparent contacts between GnIH and GnRH1, fiber to fiber interactions between GnIH and GnRH2, and co-localization of GnIH and GnRH3 variant in neurons of the nucleus olfacto-retinalis. In conclusion, whether GnIH regulates the expression or secretion of GnRH1 in this species, an indirect modulation seems more plausible. Moreover, the present results suggest an interaction between GnIH and GnRH2 systems. Finally, new clues were provided to investigate the role of nucleus olfacto-retinalis cells and putative GnIH and GnRH3 interactions in the modulation of the reproductive network in teleost fish.
Collapse
Affiliation(s)
- María P Di Yorio
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Intituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Daniela I Pérez Sirkin
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Intituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - José A Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), INMAR-CACYTMAR Research Institutes, Puerto Real University Campus, Puerto Real, Spain
| | - Tomás H Delgadin
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Intituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Kazuyoshi Tsutsui
- Department of Biology and Center for Medical Life Science, Waseda University, Tokyo 162-8480, Japan
| | - Gustavo M Somoza
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús, CONICET-UNSAM, Chascomús, Argentina
| | - Paula G Vissio
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Intituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Abstract
From a physiological-behavioral perspective, it has been shown that fish with a higher density of black eumelanin spots are more dominant, less sensitive to stress, have higher feed intake, better feed efficiency and therefore are larger in size. Thus, we hypothesized that genetic (co)variation between skin pigmentation patterns and growth exists and it is advantageous in rainbow trout. The objective of this study was to determine the genetic relationships between skin pigmentation patterns and BW in a breeding population of rainbow trout. We performed a genetic analysis of pigmentation traits including dorsal color (DC), lateral band (LB) intensity, amount of spotting above (SA) and below (SB) the lateral line, and BW at harvest (HW). Variance components were estimated using a multi-trait linear animal model fitted by restricted maximum likelihood. Estimated heritabilities were 0.08±0.02, 0.17±0.03, 0.44±0.04, 0.17±0.04 and 0.23±0.04 for DC, LB, SA, SB and HW, respectively. Genetic correlations between HW and skin color traits were 0.42±0.13, 0.32±0.14 and 0.25±0.11 for LB, SA and SB, respectively. These results indicate positive, but low to moderate genetic relationships between the amount of spotting and BW in rainbow trout. Thus, higher levels of spotting are genetically associated with better growth performance in this population.
Collapse
|
7
|
Wang T, Yuan D, Zhou C, Lin F, Wei R, Chen H, Wu H, Xin Z, Liu J, Gao Y, Chen D, Yang S, Wang Y, Pu Y, Li Z. Molecular characterization of melanin-concentrating hormone (MCH) in Schizothorax prenanti: cloning, tissue distribution and role in food intake regulation. FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:883-893. [PMID: 26690629 DOI: 10.1007/s10695-015-0182-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 12/11/2015] [Indexed: 06/05/2023]
Abstract
Melanin-concentrating hormone (MCH) is a crucial neuropeptide involved in various biological functions in both mammals and fish. In this study, the full-length MCH cDNA was obtained from Schizothorax prenanti by rapid amplification of cDNA ends polymerase chain reaction. The full-length MCH cDNA contained 589 nucleotides including an open reading frame of 375 nucleotides encoding 256 amino acids. MCH mRNA was highly expressed in the brain by real-time quantitative PCR analysis. Within the brain, expression of MCH mRNA was preponderantly detected in the hypothalamus. In addition, the MCH mRNA expression in the S. prenanti hypothalamus of fed group was significantly decreased compared with the fasted group at 1 and 3 h post-feeding, respectively. Furthermore, the MCH gene expression presented significant increase in the hypothalamus of fasted group compared with the fed group during long-term fasting. After re-feeding, there was a dramatic decrease in MCH mRNA expression in the hypothalamus of S. prenanti. The results indicate that the expression of MCH is affected by feeding status. Taken together, our results suggest that MCH may be involved in food intake regulation in S. prenanti.
Collapse
Affiliation(s)
- Tao Wang
- Department of Aquaculture, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Dengyue Yuan
- Department of Aquaculture, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Chaowei Zhou
- Department of Aquaculture, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Fangjun Lin
- Department of Aquaculture, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Rongbin Wei
- Department of Aquaculture, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Hu Chen
- Department of Aquaculture, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Hongwei Wu
- Department of Aquaculture, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Zhiming Xin
- Department of Aquaculture, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Ju Liu
- Department of Aquaculture, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Yundi Gao
- Department of Aquaculture, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Defang Chen
- Department of Aquaculture, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Shiyong Yang
- Department of Aquaculture, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Yan Wang
- Department of Aquaculture, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Yundan Pu
- Department of Aquaculture, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China
| | - Zhiqiong Li
- Department of Aquaculture, Sichuan Agricultural University, 46# Xinkang Road, Ya'an, China.
| |
Collapse
|
8
|
Di Yorio MP, Pérez Sirkin DI, Delgadin TH, Shimizu A, Tsutsui K, Somoza GM, Vissio PG. Gonadotrophin-Inhibitory Hormone in the Cichlid Fish Cichlasoma dimerus: Structure, Brain Distribution and Differential Effects on the Secretion of Gonadotrophins and Growth Hormone. J Neuroendocrinol 2016; 28. [PMID: 26919074 DOI: 10.1111/jne.12377] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 02/10/2016] [Accepted: 02/19/2016] [Indexed: 12/21/2022]
Abstract
The role of gonadotrophin-inhibitory hormone (GnIH) in the inhibition of the reproductive axis has been well-established in birds and mammals. However, its role in other vertebrates, such as the teleost fish, remains controversial. In this context, the present study aimed to evaluate whether GnIH modulates the release of gonadotrophins and growth hormone (GH) in the cichlid fish Cichlasoma dimerus. First, we partially sequenced the precursor polypeptide for GnIH and identified three putative GnIH peptides. Next, we analysed the expression of this precursor polypeptide via a polymerase chain reaction in the reproductive axis of both sexes. We found a high expression of the polypeptide in the hypothalamus and gonads of males. Immunocytochemistry allowed the observation of GnIH-immunoreactive somata in the nucleus posterioris periventricularis and the nucleus olfacto-retinalis, with no differences between the sexes. GnIH-immunoreactive fibres were present in all brain regions, with a high density in the nucleus lateralis tuberis and at both sides of the third ventricle. Finally, we performed in vitro studies on intact pituitary cultures to evaluate the effect of two doses (10(-6) m and 10(-8) m) of synthetic C. dimerus (cd-) LPQRFa-1 and LPQRFa-2 on the release of gonadotrophins and GH. We observed that cd-LPQRFa-1 decreased β-luteinising hormone (LH) and β-follicle-stimulating hormone (FSH) and also increased GH release to the culture medium. The release of β-FSH was increased only when it was stimulated with the higher cd-LPQRFa-2 dose. The results of the present study indicate that cd-LPQRFa-1, the cichlid fish GnIH, inhibits β-LH and β-FSH release and stimulates GH release in intact pituitary cultures of C. dimerus. The results also show that cd-LPQRF-2 could act as an β-FSH-releasing factor in this fish species.
Collapse
Affiliation(s)
- M P Di Yorio
- Laboratorio de Neuroendocrinología del Crecimiento y la Reproducción, DBBE, FCEN-UBA/IBBEA-CONICET-UBA, Ciudad Universitaria, (C1428EHA), Buenos Aires, Argentina
| | - D I Pérez Sirkin
- Laboratorio de Neuroendocrinología del Crecimiento y la Reproducción, DBBE, FCEN-UBA/IBBEA-CONICET-UBA, Ciudad Universitaria, (C1428EHA), Buenos Aires, Argentina
| | - T H Delgadin
- Laboratorio de Neuroendocrinología del Crecimiento y la Reproducción, DBBE, FCEN-UBA/IBBEA-CONICET-UBA, Ciudad Universitaria, (C1428EHA), Buenos Aires, Argentina
| | - A Shimizu
- National Research Institute of Fisheries Science, Fisheries Research Agency, Yokohama, Kanagawa, Japan
| | - K Tsutsui
- Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - G M Somoza
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), CONICET-UNSAM, Chascomús, Buenos Aires, Argentina
| | - P G Vissio
- Laboratorio de Neuroendocrinología del Crecimiento y la Reproducción, DBBE, FCEN-UBA/IBBEA-CONICET-UBA, Ciudad Universitaria, (C1428EHA), Buenos Aires, Argentina
| |
Collapse
|
9
|
Kim JH, Leggatt RA, Chan M, Volkoff H, Devlin RH. Effects of chronic growth hormone overexpression on appetite-regulating brain gene expression in coho salmon. Mol Cell Endocrinol 2015; 413:178-88. [PMID: 26123591 DOI: 10.1016/j.mce.2015.06.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/22/2015] [Indexed: 10/23/2022]
Abstract
Organisms must carefully regulate energy intake and expenditure to balance growth and trade-offs with other physiological processes. This regulation is influenced by key pathways controlling appetite, feeding behaviour and energy homeostasis. Growth hormone (GH) transgenesis provides a model where food intake can be elevated, and is associated with dramatic modifications of growth, metabolism, and feeding behaviour, particularly in fish. RNA-Seq and qPCR analyses were used to compare the expression of multiple genes important in appetite regulation within brain regions and the pituitary gland (PIT) of GH transgenic (fed fully to satiation or restricted to a wild-type ration throughout their lifetime) and wild-type coho salmon (Oncorhynchus kisutch). RNA-Seq results showed that differences in both genotype and ration levels resulted in differentially expressed genes associated with appetite regulation in transgenic fish, including elevated Agrp1 in hypothalamus (HYP) and reduced Mch in PIT. Altered mRNA levels for Agrp1, Npy, Gh, Ghr, Igf1, Mch and Pomc were also assessed using qPCR analysis. Levels of mRNA for Agrp1, Gh, and Ghr were higher in transgenic than wild-type fish in HYP and in the preoptic area (POA), with Agrp1 more than 7-fold higher in POA and 12-fold higher in HYP of transgenic salmon compared to wild-type fish. These data are consistent with the known roles of orexigenic factors on foraging behaviour acting via GH and through MC4R receptor-mediated signalling. Igf1 mRNA was elevated in fully-fed transgenic fish in HYP and POA, but not in ration-restricted fish, yet both of these types of transgenic animals have very pronounced feeding behaviour relative to wild-type fish, suggesting IGF1 is not playing a direct role in appetite stimulation acting via paracrine or autocrine mechanisms. The present findings provide new insights on mechanisms ruling altered appetite regulation in response to chronically elevated GH, and on potential pathways by which elevated feeding response is controlled, independently of food availability and growth.
Collapse
Affiliation(s)
- Jin-Hyoung Kim
- Fisheries and Oceans Canada, Centre for Aquaculture and Environmental Research, 4160 Marine Drive, West Vancouver, BC V7V 1N6 Canada
| | - Rosalind A Leggatt
- Fisheries and Oceans Canada, Centre for Aquaculture and Environmental Research, 4160 Marine Drive, West Vancouver, BC V7V 1N6 Canada
| | - Michelle Chan
- Fisheries and Oceans Canada, Centre for Aquaculture and Environmental Research, 4160 Marine Drive, West Vancouver, BC V7V 1N6 Canada
| | - Hélène Volkoff
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9 Canada; Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9 Canada
| | - Robert H Devlin
- Fisheries and Oceans Canada, Centre for Aquaculture and Environmental Research, 4160 Marine Drive, West Vancouver, BC V7V 1N6 Canada.
| |
Collapse
|
10
|
Delgadin TH, Pérez Sirkin DI, Di Yorio MP, Arranz SE, Vissio PG. GH, IGF-I and GH receptors mRNA expression in response to growth impairment following a food deprivation period in individually housed cichlid fish Cichlasoma dimerus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:51-60. [PMID: 25351458 DOI: 10.1007/s10695-014-0005-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/20/2014] [Indexed: 06/04/2023]
Abstract
Cichlasoma dimerus is a social cichlid fish capable of growing at high rates under laboratory conditions, but knowledge on somatic growth regulation is still unclear. Growth hormone (GH)/insulin-like growth factor I (IGF-I) axis is the key regulator of somatic growth in vertebrates. Two types of growth hormone receptors have been described in teleost fish, named GH receptor type 1 (GHR1) and type 2 (GHR2). In addition, isoforms of these receptors lacking part of the intracellular region have been described. The aim of this study was to evaluate the somatic growth, liver histology and changes in the GH/IGF-I axis after 4 weeks of food deprivation in C. dimerus. Four-week fasted fish showed reductions in specific growth rates in body weight (p < 0.001) and standard length (p < 0.001). Additionally, the hepatosomatic index (p < 0.001) and hepatocyte area (p < 0.001) decreased in fasted fish, while no changes in glucose levels were detected in plasma. The starvation protocol failed to induce changes in GH mRNA levels in the pituitary and IGF-I mRNA levels in liver. In contrast, IGF-I mRNA levels in muscle decreased in fasted fish (p = 0.002). On the other hand, GHR2 (detected with primer sets designed over the extracellular and intracellular region) was upregulated by starvation both in liver and muscle (p < 0.05), while GHR1 remained unchanged. These results show that a fasting period reduced somatic growth both in length and body weight concomitantly with alterations on liver and muscle GHR2 and muscle IGF-I mRNA expression.
Collapse
Affiliation(s)
- Tomás Horacio Delgadin
- Laboratorio de Neuroendocrinología del Crecimiento y la Reproducción, DBBE, FCEN-UBA, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
11
|
Kang DY, Kim HC. Functional relevance of three proopiomelanocortin (POMC) genes in darkening camouflage, blind-side hypermelanosis, and appetite of Paralichthys olivaceus. Comp Biochem Physiol B Biochem Mol Biol 2015; 179:44-56. [DOI: 10.1016/j.cbpb.2014.09.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 08/21/2014] [Accepted: 09/10/2014] [Indexed: 12/12/2022]
|
12
|
Tuziak SM, Volkoff H. Melanin-concentrating hormone (MCH) and gonadotropin-releasing hormones (GnRH) in Atlantic cod, Gadus morhua: tissue distributions, early ontogeny and effects of fasting. Peptides 2013; 50:109-18. [PMID: 24140403 DOI: 10.1016/j.peptides.2013.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/07/2013] [Accepted: 10/07/2013] [Indexed: 01/25/2023]
Abstract
Melanin-concentrating hormone (MCH) is classically known for its role in regulating teleost fish skin color change for environmental adaptation. Recent evidence suggests that MCH also has appetite-stimulating properties. The gonadotropin-releasing hormone (GnRH) peptide family has dual roles in endocrine control of reproduction and energy status in fish. Atlantic cod (Gadus morhua) are a commercially important aquaculture species inhabiting the shores of Atlantic Canada. In this study, we examine MCH and GnRH transcript expression profiles during early development as well as in central and peripheral tissues and quantify juvenile Atlantic cod MCH and GnRH hypothalamic mRNA expressions following food deprivation. MCH and GnRH3 cDNAs are maternally deposited into cod eggs, while MCH has variable expression throughout early development. GnRH2 and GnRH3 mRNAs "turn-on" during mid-segmentation once the brain is fully developed. For both MCH and GnRH, highest expression appears during the exogenous feeding stages, perhaps supporting their functions as appetite regulators during early development. MCH and GnRH transcripts are found in brain regions related to appetite regulation (telencephalon/preoptic area, optic tectum/thalamus, hypothalamus), as well as the pituitary gland and the stomach, suggesting a peripheral function in food intake regulation. Atlantic cod MCH mRNA is upregulated during fasting, while GnRH2 and GnRH3 transcripts do not appear to be influenced by food deprivation. In conclusion, MCH might be involved in stimulating food intake in juvenile Atlantic cod, while GnRHs may play a more significant role in appetite regulation during early development.
Collapse
Affiliation(s)
- Sarah M Tuziak
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador A1B-3X9, Canada.
| | | |
Collapse
|
13
|
Kang DY, Kim HC. Functional characterization of two melanin-concentrating hormone genes in the color camouflage, hypermelanosis, and appetite of starry flounder. Gen Comp Endocrinol 2013; 189:74-83. [PMID: 23660446 DOI: 10.1016/j.ygcen.2013.04.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 04/18/2013] [Accepted: 04/21/2013] [Indexed: 12/31/2022]
Abstract
To investigate the involvement of two melanin-concentrating hormones (MCHs) in skin color change and appetite in flatfish, we isolated two forms of prepro-melanin concentrating hormone (pMCHs) mRNA in the starry flounder Platichthys stellatus and compared their amino acid structures to those of other animals. Then, we examined the relationship of the two starry flounder pMCH (sf-pMCH) with physiological color change, blind-side malpigmentation, and feeding by quantifying mRNA expression level. Sf-pMCH1 cDNA had a 387-bp open reading frame (ORF) that encoded a protein consisting of 129 amino acid residues. The sf-pMCH1 protein included a signal peptide composed of 24 amino acid residues; MCH1 encoded a protein consisting of 17 amino acids. The sf-pMCH2 cDNA had a 450-bp ORF that encoded a protein consisting of 150 amino acid residues, which included a signal peptide comprising 23 amino acid residues; MCH2 encoded a protein consisting of 23 amino acids that was structurally similar to mammalian MCH. Reverse transcription-polymerase chain reaction (RT-PCR) revealed that the strongest sf-pMCHs gene expression was observed in the brain and pituitary, but weak or no amplification was detected in other tissues. The expression of sf-pMCH1 was relatively high compared to that of sf-pMCH2 in the brain. The relative levels of mRNA were significantly lower in dark background-reared and hypermelanic fish, indicating that the two pMCHs and background color are related to the physiological and morphological color changes of skin. In term of feeding regulation, we found an obvious functional role of pMCH1 in appetite, whereas the pMCH2 gene was not found to play a role in feeding.
Collapse
Affiliation(s)
- Duk-Young Kang
- West Sea Fisheries Research Institute, NFRDI, Incheon 400-420, South Korea.
| | | |
Collapse
|