1
|
Titon Junior B, Barsotti AMG, Titon SCM, Vaz RI, de Figueiredo AC, Vasconcelos-Teixeira R, Navas CA, Gomes FR. Baseline and stress-induced steroid plasma levels and immune function vary annually and are associated with vocal activity in male toads (Rhinella icterica). Gen Comp Endocrinol 2024; 354:114517. [PMID: 38615755 DOI: 10.1016/j.ygcen.2024.114517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/19/2024] [Accepted: 04/06/2024] [Indexed: 04/16/2024]
Abstract
Theoretical models predict that elevated androgen and glucocorticoid levels in males during the reproductive season promote immunosuppression. However, some studies report decreased stress response during this season. This study investigated annual variation in plasma corticosterone and testosterone levels, plasma bacterial killing ability (BKA), and neutrophil to lymphocyte ratio (NLR) in free-living male toads (Rhinella icterica). Toads were sampled in the field (baseline) and 1 h-post restraint over five months, and we considered the occurrence of vocal activity. Baseline corticosterone, testosterone, and BKA showed higher values during the reproductive period, specifically in calling male toads. The NLR was similar throughout the year, but higher values were observed in calling toads. Moreover, baseline NLR and BKA were positively correlated with both testosterone and corticosterone, suggesting higher steroid levels during reproduction are associated with enhanced cellular and humoral immunity. Despite fluctuation of baseline values, post-restraint corticosterone levels remained uniform over the year, indicating that toads reached similar maximum values throughout the year. Testosterone levels decreased following restraint before one specific reproductive period but increased in response to restraint during and after this period. Meanwhile, BKA decreased due to restraint only after the reproductive period, indicating immune protection and resilience to immunosuppression by stressors associated with steroid hormones during reproduction. Our results show that baseline and stress-induced hormonal and immune regulation varies throughout the year and are associated with vocal activity in R. icterica males, indicating a possible compromise between steroids and immune function in anuran males.
Collapse
Affiliation(s)
- Braz Titon Junior
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brasil.
| | | | | | - Renata Ibelli Vaz
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brasil
| | - Aymam Cobo de Figueiredo
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brasil
| | | | - Carlos A Navas
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brasil
| | - Fernando Ribeiro Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brasil
| |
Collapse
|
2
|
Ruthsatz K, Rico-Millan R, Eterovick PC, Gomez-Mestre I. Exploring water-borne corticosterone collection as a non-invasive tool in amphibian conservation physiology: benefits, limitations and future perspectives. CONSERVATION PHYSIOLOGY 2023; 11:coad070. [PMID: 37663928 PMCID: PMC10472495 DOI: 10.1093/conphys/coad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 08/03/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023]
Abstract
Global change exposes wildlife to a variety of environmental stressors and is affecting biodiversity worldwide, with amphibian population declines being at the forefront of the global biodiversity crisis. The use of non-invasive methods to determine the physiological state in response to environmental stressors is therefore an important advance in the field of conservation physiology. The glucocorticoid hormone corticosterone (CORT) is one useful biomarker to assess physiological stress in amphibians, and sampling water-borne (WB) CORT is a novel, non-invasive collection technique. Here, we tested whether WB CORT can serve as a valid proxy of organismal levels of CORT in larvae of the common frog (Rana temporaria). We evaluated the association between tissue and WB CORT levels sampled from the same individuals across ontogenetic stages, ranging from newly hatched larvae to froglets at 10 days after metamorphosis. We also investigated how both tissue and WB CORT change throughout ontogeny. We found that WB CORT is a valid method in pro-metamorphic larvae as values for both methods were highly correlated. In contrast, there was no correlation between tissue and WB CORT in newly hatched, pre-metamorphic larvae, metamorphs or post-metamorphic froglets probably due to ontogenetic changes in respiratory and skin morphology and physiology affecting the transdermal CORT release. Both collection methods consistently revealed a non-linear pattern of ontogenetic change in CORT with a peak at metamorphic climax. Thus, our results indicate that WB CORT sampling is a promising, non-invasive conservation tool for studies on late-stage amphibian larvae. However, we suggest considering that different contexts might affect the reliability of WB CORT and consequently urge future studies to validate this method whenever it is used in new approaches. We conclude proposing some recommendations and perspectives on the use of WB CORT that will aid in broadening its application as a non-invasive tool in amphibian conservation physiology.
Collapse
Affiliation(s)
- Katharina Ruthsatz
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany
| | - Rafael Rico-Millan
- Ecology, Evolution, and Development Group, Doñana Biological Station – CSIC, Calle Américo Vespucio 26, 41092 Seville, Spain
| | - Paula Cabral Eterovick
- Zoological Institute, Technische Universität Braunschweig, Mendelssohnstraße 4, 38106 Braunschweig, Germany
| | - Ivan Gomez-Mestre
- Ecology, Evolution, and Development Group, Doñana Biological Station – CSIC, Calle Américo Vespucio 26, 41092 Seville, Spain
| |
Collapse
|
3
|
Assis VR, Robert J, Titon SCM. Introduction to the special issue Amphibian immunity: stress, disease and ecoimmunology. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220117. [PMID: 37305915 PMCID: PMC10258669 DOI: 10.1098/rstb.2022.0117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
Amphibian populations have been declining worldwide, with global climate changes and infectious diseases being among the primary causes of this scenario. Infectious diseases are among the primary drivers of amphibian declines, including ranavirosis and chytridiomycosis, which have gained more attention lately. While some amphibian populations are led to extinction, others are disease-resistant. Although the host's immune system plays a major role in disease resistance, little is known about the immune mechanisms underlying amphibian disease resistance and host-pathogen interactions. As ectotherms, amphibians are directly subjected to changes in temperature and rainfall, which modulate stress-related physiology, including immunity and pathogen physiology associated with diseases. In this sense, the contexts of stress, disease and ecoimmunology are essential for a better understanding of amphibian immunity. This issue brings details about the ontogeny of the amphibian immune system, including crucial aspects of innate and adaptive immunity and how ontogeny can influence amphibian disease resistance. In addition, the papers in the issue demonstrate an integrated view of the amphibian immune system associated with the influence of stress on immune-endocrine interactions. The collective body of research presented herein can provide valuable insights into the mechanisms underlying disease outcomes in natural populations, particularly in the context of changing environmental conditions. These findings may ultimately enhance our ability to forecast effective conservation strategies for amphibian populations. This article is part of the theme issue 'Amphibian immunity: stress, disease and ecoimmunology'.
Collapse
Affiliation(s)
- Vania Regina Assis
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, 05508-900 São Paulo, Brazil
- College of Public Health, University of South Florida, Tampa, FL 33612-9415, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY 14642, USA
| | | |
Collapse
|
4
|
Marchetti JR, Beard KH, Virgin EE, Lewis EL, Hess SC, Ki KC, Sermersheim LO, Furtado AP, French SS. Invasive frogs show persistent physiological differences to elevation and acclimate to colder temperatures. J Therm Biol 2023; 114:103590. [PMID: 37267784 DOI: 10.1016/j.jtherbio.2023.103590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 06/04/2023]
Abstract
The coqui frog (Eleutherodactylus coqui) was introduced to the island of Hawai'i in the 1980s and has spread across much of the island. Concern remains that this frog will continue to expand its range and invade higher elevation habitats where much of the island's endemic species are found. We determined whether coqui thermal tolerance and physiology change along Hawai'i's elevational gradients. We measured physiological responses using a short-term experiment to determine baseline tolerance and physiology by elevation, and a long-term experiment to determine the coqui's ability to acclimate to different temperatures. We collected frogs from low, medium, and high elevations. After both the short and long-term experiments, we measured critical thermal minimum (CTmin), blood glucose, oxidative stress, and corticosterone levels. CTmin was lower in high elevation frogs than low elevation frogs after the short acclimation experiment, signifying that they acclimate to local conditions. After the extended acclimation, CTmin was lower in frogs acclimated to cold temperatures compared to warm-acclimated frogs and no longer varied by elevation. Blood glucose levels were positively correlated with elevation even after the extended acclimation, suggesting glucose may also be related to lower temperatures. Oxidative stress was higher in females than males, and corticosterone was not significantly related to any predictor variables. The extended acclimation experiment showed that coquis can adjust their thermal tolerance to different temperatures over a 3-week period, suggesting the expansion of coqui into higher elevation habitats may still be possible, and they may not be as restricted by cold temperatures as previously thought.
Collapse
Affiliation(s)
- Jack R Marchetti
- Department of Biology and the Ecology Center, Utah State University, Logan, UT, 84322, USA
| | - Karen H Beard
- Department of Wildland Resources, Utah State University, Logan, UT, 84322, USA.
| | - Emily E Virgin
- Department of Biology and the Ecology Center, Utah State University, Logan, UT, 84322, USA
| | - Erin L Lewis
- Department of Biology and the Ecology Center, Utah State University, Logan, UT, 84322, USA
| | - Steven C Hess
- USDA APHIS-WS National Wildlife Research Center, Hawaii Field Station, Hilo, HI, 96720, USA
| | - Kwanho C Ki
- Department of Biology and the Ecology Center, Utah State University, Logan, UT, 84322, USA
| | - Layne O Sermersheim
- Department of Biology and the Ecology Center, Utah State University, Logan, UT, 84322, USA
| | - Adriana P Furtado
- Departamento de Ciências Animais, Universidade de Brasília, Distrito Federal, 70910900, Brazil
| | - Susannah S French
- Department of Biology and the Ecology Center, Utah State University, Logan, UT, 84322, USA
| |
Collapse
|
5
|
Monroe DJ, Barny LA, Wu A, Minbiole KPC, Gabor CR. An integrated physiological perspective on anthropogenic stressors in the Gulf coast toad (Incilius nebulifer). Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1112982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Anthropogenic environmental change, including climate change and urbanization, results in warmer temperatures in both terrestrial and aquatic habitats and changes in community assemblages including invasive species introductions, among many other alterations. Anurans are particularly susceptible to these changes because generally they have a biphasic lifecycle and rely on aquatic and terrestrial habitats for survival. Changes such as warmer water temperature can result in direct and carryover effects, after metamorphosis that decrease fitness. However, Gulf Coast toads (Incilius (Bufo) nebulifer) are expanding their range, including into anthropogenically disturbed areas. We hypothesize that I. nebulifer copes with warmer water, reduced water levels, and invasive species by altering their physiology and/or behavior. Corticosterone is the primary glucocorticoid in amphibians, and it modulates many aspects of physiology and behavior, potentially including lipid storage and hop performance, during unpredictable (stressful) events. As a true toad, I. nebulifer also produces bufadienolide toxins that aid in its antipredator defense and may have tradeoffs with corticosterone. In a fully factorial design, we measured baseline corticosterone levels in tadpoles in response to two treatments: decreased water levels and increased water temperatures. After metamorphosis, we measured the corticosterone profile and other associated responses to exposure to the predatory red imported fire ant (Solenopsis invicta; RIFA). We found that tadpoles had elevated baseline corticosterone release rates when reared in warmer water and reduced water levels. Toadlets also had elevated baseline corticosterone release rates when exposed to any combination of two of the three treatments but when exposed to all three treatments toadlets instead showed elevated magnitude of their stress response. Predator avoidance (as measured by hop performance) was reduced after exposure to RIFA. Tadpoles from warmer water developed more quickly and were smaller in mass after metamorphosis. Toadlets had reduced production of two of the three detected bufadienolides and increased energy storage (lipids) after exposure to warmer water and reduced growth after exposure to reduced water levels. We found direct and carryover effects of common anthropogenic changes in I. nebulifer that may aid in their ability to persist despite these changes.
Collapse
|
6
|
Lima AS, de Figueredo AC, Floreste FR, Garcia Neto PG, Gomes FR, Titon SCM. Temperature Extreme Events Decrease Endocrine and Immune Reactive Scope in Bullfrogs (Lithobates catesbeianus). Integr Comp Biol 2022; 62:1671-1682. [PMID: 35771987 DOI: 10.1093/icb/icac105] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 01/05/2023] Open
Abstract
Currently, effects of increased atmospheric temperature, in the context of ongoing climate change, have been investigated in multiple organisms and levels of biological organization. While there has been a focus on the impacts of increased mean temperature, an emergent and equally important point is the consequences of recurrent exposure to extreme temperature events, simulating heat waves. This study investigated the effects of serial exposure to high temperatures on immune and endocrine variables before and after exposure to an acute secondary stressor in bullfrogs (Lithobates catesbeianus). Adult males were divided into three groups and subjected to three thermal regimes: control (c; constant 22°C); experimental 1 (E1; kept at 22°C and exposed to 4 days of 30°C every 16 days); and experimental 2 (E2; kept at 22°C and exposed to 4 days of 30°C every 6 days). Blood samples were collected on the last day of key extreme heat events. Two weeks after the last extreme heat event, animals were subjected to restraint stress (1 h) and sampled again. Blood samples were used to determine neutrophil: lymphocyte ratio, plasma bacterial killing ability, as well as, corticosterone and plasma testosterone levels. Overall, we found exposure to extreme heat events did not affect immune and endocrine variables over time. Meanwhile, the previous exposure to extreme heat events modulated the responsiveness to restraint. The amplitude of increased corticosterone plasma levels and neutrophil: lymphocyte ratio in response to restraint decreased with the number of previous exposures to extreme heat events. These results suggest that exposure to extreme climatic events has hidden effects on bullfrog's stress response, expressed as diminished reactive scope to a novel stressor. This represents a highly deleterious facet of climate change since diminished responsiveness prevents proper coping with wildlife challenges.
Collapse
Affiliation(s)
- Alan Siqueira Lima
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brazil
| | - Aymam Cobo de Figueredo
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brazil
| | - Felipe Rangel Floreste
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brazil
| | - Patrício Getúlio Garcia Neto
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brazil
| | - Fernando Ribeiro Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brazil
| | - Stefanny Christie Monteiro Titon
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, trav. 14, 101, São Paulo, SP 05508-090, Brazil
| |
Collapse
|
7
|
Trait Covariances in Eastern Box Turtles Do Not Support Pleiotropic Effects of the Melanocortin System on Color, Behavior, and Stress Physiology. J HERPETOL 2022. [DOI: 10.1670/22-010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Dittrich C, Tietje M, Rödel MO. Larger is not better: no mate preference by European common frog (Rana temporaria) males. BEHAVIOUR 2022. [DOI: 10.1163/1568539x-bja10169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
In explosive breeding frogs, high intrasexual competition between males leads to a sexual coercion ruled mating system, where males presumably evolved preferences for specific female traits. We tested these preferences in the European Common Frog by excluding intrasexual competition. We hypothesized that all males show preferences towards larger female body size, due to higher fecundity. Our results did not show any preference considering female body size, neither in the attempt to amplex a female nor during the formation of pairs. Additionally, we witnessed a high failure rate of male mating attempts, which hints at high mating costs and offers an explanation for the lack of preferences in males. Nonetheless, we observed a non-random mating pattern in successfully formed pairs, where in the absence of size dimorphism females were on average larger than males. This indicates a different mechanism for selection which is independent from male mating preference or scramble competition.
Collapse
Affiliation(s)
- Carolin Dittrich
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany
- Berlin–Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Melanie Tietje
- Department of Biology, Aarhus University, Ny Munkegade 116, 8000 Aarhus C, Denmark
| | - Mark-Oliver Rödel
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115 Berlin, Germany
- Berlin–Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| |
Collapse
|
9
|
Claunch NM, Bartoszek IA, Tillis S, Stacy NI, Ossiboff RJ, Oakey S, Schoenle LA, Wellehan JFX, Romagosa CM. Physiological effects of capture and short-term captivity in an invasive snake species, the Burmese python (Python bivittatus) in Florida. Comp Biochem Physiol A Mol Integr Physiol 2022; 267:111162. [PMID: 35149178 DOI: 10.1016/j.cbpa.2022.111162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 02/05/2023]
Abstract
It is important to evaluate the role of captivity as a potential stressor. An understanding of stress responses to capture and transition to captivity may inform the limitations of laboratory studies on wild animals, aid in understanding the consequences of introducing animals into captive environments, and help predict which species may be successful invasives. We investigated physiological effects of captivity by comparing at-capture blood variables in wild Burmese pythons (Python bivittatus) in Florida to pythons recently brought into captivity (1-109 days). We conducted an acute restraint test by collecting samples at baseline (immediately at handling) and one hour post-restraint across wild field-sampled (n = 19) and recently-captive (n = 33) pythons to evaluate fluctuations in plasma corticosterone, bacterial killing ability, antibody response, leukogram, and serpentovirus infection. We observed higher baseline plasma corticosterone and monocytes in recently captive compared to wild snakes, which both subsided in snakes held for a longer time in captivity, and a mild decrease in lymphocytes in the middle of the captivity period. Functional immunity and viral infection were not affected by captivity, and pythons maintained restraint-induced responses in corticosterone, heterophil to lymphocyte ratio, and monocyte counts throughout captivity. Prevalence for serpentovirus was 50%, though infection status was related to sampling date rather than captivity, indicating that viral infection may be seasonal. The history of Burmese python as a common captive animal for research and pet trade, as well as its general resilience to effects of capture and short-term captivity, may contribute to its invasion success in Florida.
Collapse
Affiliation(s)
- Natalie M Claunch
- School of Natural Resources and Environment, University of Florida, USA.
| | | | - Steve Tillis
- College of Veterinary Medicine, University of Florida, USA
| | - Nicole I Stacy
- College of Veterinary Medicine, University of Florida, USA
| | | | - Samantha Oakey
- College of Veterinary Medicine, University of Georgia, USA
| | | | | | | |
Collapse
|
10
|
Dezetter M, Le Galliard JF, Leroux-Coyau M, Brischoux F, Angelier F, Lourdais O. Two stressors are worse than one: combined heatwave and drought affect hydration state and glucocorticoid levels in a temperate ectotherm. J Exp Biol 2022; 225:274818. [PMID: 35319758 DOI: 10.1242/jeb.243777] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/14/2022] [Indexed: 11/20/2022]
Abstract
Heatwaves and droughts are becoming more intense and frequent with climate change. These extreme weather events often occur simultaneously and may alter organismal physiology, yet their combined impacts remain largely unknown. Here, we experimentally investigated physiological responses of a temperate ectotherm, the asp viper (Vipera aspis), to a simulated heatwave and drought. We applied a two-by-two factorial design by manipulating the daily temperature cycle (control vs. heatwave) and the water availability (water available vs. water-deprived) over a month followed by exposure to standard thermal conditions with ad libium access to water. Simulated heatwave and water deprivation additively increased mass loss, while water deprivation led to greater plasma osmolality (dehydration). Mass gain from drinking after the treatment period was higher in vipers from the heatwave and water-deprived group suggesting that thirst was synergistically influenced by thermal and water constraints. Heatwave conditions and water deprivation also additively increased baseline corticosterone levels but did not influence basal metabolic rates and plasma markers of oxidative stress. Our results demonstrate that a short-term exposure to combined heatwave and drought can exacerbate physiological stress through additive effects, and interactively impact behavioral responses to dehydration. Considering combined effects of temperature and water availability is thus crucial to assess organismal responses to climate change.
Collapse
Affiliation(s)
- Mathias Dezetter
- Sorbonne University, CNRS, IRD, INRA, Institut d'écologie et des sciences de l'environnement (iEES Paris), 4 Place Jussieu, 75252 Paris Cedex 5, France.,Centre d'étude biologique de Chizé, UMR 7372 CNRS-La Rochelle Université, , 79360, Villiers en Bois, France
| | - Jean-François Le Galliard
- Sorbonne University, CNRS, IRD, INRA, Institut d'écologie et des sciences de l'environnement (iEES Paris), 4 Place Jussieu, 75252 Paris Cedex 5, France.,Ecole normale supérieure, PSL University, Département de biologie, CNRS, UMS 3194, Centre de recherche en écologie expérimentale et prédictive (CEREEP-Ecotron IleDeFrance), 11 chemin de Busseau, 77140 Saint-Pierre-lès-Nemours, France
| | - Mathieu Leroux-Coyau
- Sorbonne University, CNRS, IRD, INRA, Institut d'écologie et des sciences de l'environnement (iEES Paris), 4 Place Jussieu, 75252 Paris Cedex 5, France
| | - François Brischoux
- Centre d'étude biologique de Chizé, UMR 7372 CNRS-La Rochelle Université, , 79360, Villiers en Bois, France
| | - Fréderic Angelier
- Centre d'étude biologique de Chizé, UMR 7372 CNRS-La Rochelle Université, , 79360, Villiers en Bois, France
| | - Olivier Lourdais
- Centre d'étude biologique de Chizé, UMR 7372 CNRS-La Rochelle Université, , 79360, Villiers en Bois, France.,School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| |
Collapse
|
11
|
URINARY CORTICOSTERONE CONCENTRATIONS IN FREE-RANGING AND MANAGED CANE TOADS ( RHINELLA MARINA). J Zoo Wildl Med 2022; 52:1234-1240. [PMID: 34998294 DOI: 10.1638/2020-0221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2021] [Indexed: 11/21/2022] Open
Abstract
Approximately 40% of amphibian species are threatened with extinction. The welfare of amphibians maintained under managed care as assurance populations is of vital importance to guard against extinction and provide a viable source population for future reintroduction. To manage amphibian species properly ex situ, it is important to understand how stress levels change over time when animals are removed from the wild and placed into managed environments. Corticosterone was analyzed in urine samples from free-ranging cane toads (Rhinella marina, n = 55) in Miami, FL, and under managed care for 22 (n = 48), 50 (n = 11), 81 (n = 25), or 119 (n = 10) days. Concentrations of corticosterone in free-ranging toad urine averaged 1.74 ± 0.195 ng/ml urine specific gravity (sp. gr.), which was greater (P < 0.05) than other time points (day 22: 0.77 ± 0.114 L; day 81: 0.85 ± 0.191 ng/ml sp. gr.; day 119: 0.58 ± 0.093 ng/ml sp. gr.), except day 50 (0.91 ± 0.274 ng/ml sp. gr.), which was not different from free-ranging or managed care values. Thus, corticosterone was lower in cane toads under managed care compared with those sampled in the wild, suggesting that managed care is not a stressor for this species.
Collapse
|
12
|
Titon SCM, Assis VR. Introduction to the special issue: Ecoimmunology in ectotherms. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2021; 333:697-705. [PMID: 33450144 DOI: 10.1002/jez.2437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Stefanny C M Titon
- Laboratório de Comportamento e Fisiologia Evolutiva, Rua do Matão, Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Vania R Assis
- Laboratório de Comportamento e Fisiologia Evolutiva, Rua do Matão, Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
13
|
Lima AS, Ferreira LDF, Silva DP, Gomes FR, Titon SCM. Thermal sensitivity of Bullfrog's immune response kept at different temperatures. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:767-778. [PMID: 33369285 DOI: 10.1002/jez.2436] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 11/23/2020] [Accepted: 12/14/2020] [Indexed: 01/10/2023]
Abstract
Climate change and emerging infectious diseases are often described as the main factors associated with the worldwide amphibian population decline. In this context, rising temperatures due to global warming might act as a chronic stressor for many amphibians, leading to immunosuppression. This study aimed to characterize the thermal sensitivity of the Bullfrog's (Lithobates catesbeianus) immune response and the effect of acclimation at different temperatures on it. Plasma bacterial killing ability (BKA) and phagocytosis activity of blood leukocytes were measured at different incubation temperatures (5-40°C) in individuals kept at 28°C and 34°C. First, all individuals were held under 28°C and sampled on the 16th day. Subsequently, one group was kept at 28°, and the other one was transferred to 34°C. Both groups were sampled at 83 and 106 days of maintenance. Plasma corticosterone (CORT) and testosterone (T) were assessed to evidence thermal stress and possible endocrine correlates of immune changes over time. The incubation temperature affected BKA both on animals kept at 28°C and 34°C, with maximum values at lower temperatures (5-20°C). Phagocytosis activity was constant over the range of assay temperatures. Immune and endocrine variables decreased over time in both thermal regimes, but frogs maintained at 34°C showed lower T and immunosuppression, evidencing stress response. Therefore, exposure to high temperatures might decrease immune function in bullfrogs due to chronic stress response and by exposition to temperatures of lower performance according to the thermal sensitivity curve, which might increase vulnerability to diseases in this anuran species.
Collapse
Affiliation(s)
- Alan S Lima
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Letícia de F Ferreira
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Diego P Silva
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Fernando R Gomes
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Stefanny C M Titon
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Laid-back invaders: Cane toads (Rhinella marina) down-regulate their stress responses as they colonize a harsh climate. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
15
|
Taylor EN, Diele‐Viegas LM, Gangloff EJ, Hall JM, Halpern B, Massey MD, Rödder D, Rollinson N, Spears S, Sun B, Telemeco RS. The thermal ecology and physiology of reptiles and amphibians: A user's guide. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 335:13-44. [DOI: 10.1002/jez.2396] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Emily N. Taylor
- Biological Sciences Department California Polytechnic State University San Luis Obispo California
| | | | | | - Joshua M. Hall
- Department of Biological Sciences Auburn University Auburn Alabama
| | | | - Melanie D. Massey
- Department of Biology Dalhousie University Halifax Nova Scotia Canada
| | - Dennis Rödder
- Zoologisches Forschungsmuseum Alexander Koenig Bonn Germany
| | - Njal Rollinson
- Department of Ecology and Evolutionary Biology University of Toronto St. Toronto Ontario Canada
- School of the Environment University of Toronto Toronto Ontario Canada
| | - Sierra Spears
- Department of Zoology Ohio Wesleyan University Delaware Ohio
| | - Bao‐jun Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Rory S. Telemeco
- Department of Biology California State University Fresno California
| |
Collapse
|
16
|
Goff CB, Walls SC, Rodriguez D, Gabor CR. Changes in physiology and microbial diversity in larval ornate chorus frogs are associated with habitat quality. CONSERVATION PHYSIOLOGY 2020; 8:coaa047. [PMID: 32577287 PMCID: PMC7294888 DOI: 10.1093/conphys/coaa047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/29/2020] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
Environmental change associated with anthropogenic disturbance can lower habitat quality, especially for sensitive species such as many amphibians. Variation in environmental quality may affect an organism's physiological health and, ultimately, survival and fitness. Using multiple health measures can aid in identifying populations at increased risk of declines. Our objective was to measure environmental variables at multiple spatial scales and their effect on three indicators of health in ornate chorus frog (Pseudacris ornata) tadpoles to identify potential correlates of population declines. To accomplish this, we measured a glucocorticoid hormone (corticosterone; CORT) profile associated with the stress response, as well as the skin mucosal immune function (combined function of skin secretions and skin bacterial community) and bacterial communities of tadpoles from multiple ponds. We found that water quality characteristics associated with environmental variation, including higher water temperature, conductivity and total dissolved solids, as well as percent developed land nearby, were associated with elevated CORT release rates. However, mucosal immune function, although highly variable, was not significantly associated with water quality or environmental factors. Finally, we examined skin bacterial diversity as it aids in immunity and is affected by environmental variation. We found that skin bacterial diversity differed between ponds and was affected by land cover type, canopy cover and pond proximity. Our results indicate that both local water quality and land cover characteristics are important determinants of population health for ornate chorus frogs. Moreover, using these proactive measures of health over time may aid in early identification of at-risk populations that could prevent further declines and aid in management decisions.
Collapse
Affiliation(s)
- Cory B Goff
- Department of Biology, Texas State University, 601 University Dr.
San Marcos, TX 78666, USA
- Department of Biology and Chemistry, Liberty University, 1971
University Blvd. Lynchburg, VA 24515, USA
| | - Susan C Walls
- Wetland and Aquatic Research Center, U.S. Geological Survey, 7920
NW 71st St. Gainesville, FL 32653, USA
| | - David Rodriguez
- Department of Biology, Texas State University, 601 University Dr.
San Marcos, TX 78666, USA
| | - Caitlin R Gabor
- Department of Biology, Texas State University, 601 University Dr.
San Marcos, TX 78666, USA
| |
Collapse
|
17
|
Fischer CP, Romero LM. Chronic captivity stress in wild animals is highly species-specific. CONSERVATION PHYSIOLOGY 2019; 7:coz093. [PMID: 31824674 PMCID: PMC6892464 DOI: 10.1093/conphys/coz093] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/04/2019] [Accepted: 10/13/2019] [Indexed: 05/05/2023]
Abstract
Wild animals are brought into captivity for many reasons-conservation, research, agriculture and the exotic pet trade. While the physical needs of animals are met in captivity, the conditions of confinement and exposure to humans can result in physiological stress. The stress response consists of the suite of hormonal and physiological reactions to help an animal survive potentially harmful stimuli. The adrenomedullary response results in increased heart rate and muscle tone (among other effects); elevated glucocorticoid (GC) hormones help to direct resources towards immediate survival. While these responses are adaptive, overexposure to stress can cause physiological problems, such as weight loss, changes to the immune system and decreased reproductive capacity. Many people who work with wild animals in captivity assume that they will eventually adjust to their new circumstances. However, captivity may have long-term or permanent impacts on physiology if the stress response is chronically activated. We reviewed the literature on the effects of introduction to captivity in wild-caught individuals on the physiological systems impacted by stress, particularly weight changes, GC regulation, adrenomedullary regulation and the immune and reproductive systems. This paper did not review studies on captive-born animals. Adjustment to captivity has been reported for some physiological systems in some species. However, for many species, permanent alterations to physiology may occur with captivity. For example, captive animals may have elevated GCs and/or reduced reproductive capacity compared to free-living animals even after months in captivity. Full adjustment to captivity may occur only in some species, and may be dependent on time of year or other variables. We discuss some of the methods that can be used to reduce chronic captivity stress.
Collapse
Affiliation(s)
| | - L Michael Romero
- Department of Biology, 200 College Ave. Tufts University, Medford, MA 02155 USA
- Corresponding author: Department of Biology, Medford, MA 02155, USA.
| |
Collapse
|
18
|
de Bruijn R, Romero LM. The role of glucocorticoids in the vertebrate response to weather. Gen Comp Endocrinol 2018; 269:11-32. [PMID: 30012539 DOI: 10.1016/j.ygcen.2018.07.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/29/2018] [Accepted: 07/13/2018] [Indexed: 12/18/2022]
Abstract
Changes in the environment related to inclement weather can threaten survival and reproductive success both through direct adverse exposure and indirectly by decreasing food availability. Glucocorticoids, released during activation of the hypothalamic-pituitary-adrenal axis as part of the stress response, are an important candidate for linking vertebrate coping mechanisms to weather. This review attempts to determine if there is a consensus response of glucocorticoids to exposure to weather-related stimuli, including food availability, precipitation, temperature and barometric pressure. The included studies cover field and laboratory studies for all vertebrate taxa, and are separated into four exposure periods, e.g., hours, days, weeks and months. Each reported result was assigned a score based on the glucocorticoid response, e.g., increased, no change, or decreased. Short-term exposure to weather-related stimuli, of up to 24 h, is generally associated with increased glucocorticoids (79% of studies), suggesting that these stimuli are perceived as stressors by most animals. In contrast, the pattern for exposures longer than 24 h shows more variation, even though a majority of studies still report an increase (64%). Lack of glucocorticoid increases appeared to result from instances where: (1) prolonged exposure was a predictable part of the life history of an animal; (2) environmental context was important for the ultimate effect of a stimulus (e.g., precipitation limited food availability in one environment, but increased food in another); (3) prolonged exposure induced chronic stress; and (4) long-term responses appeared to reflect adaptations to seasonal shifts, instead of to short-term weather. However, there is a strong bias towards studies in domesticated laboratory species and wild animals held in captivity, indicating a need for field studies, especially in reptiles and amphibians. In conclusion, the accumulated literature supports the hypothesis that glucocorticoids can serve as the physiological mechanism promoting fitness during inclement weather.
Collapse
Affiliation(s)
- Robert de Bruijn
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| | - L Michael Romero
- Department of Biology, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
19
|
Hernandez SE, Strona ALS, Leiner NO, Suzán G, Romano MC. Seasonal changes of faecal cortisol metabolite levels in Gracilinanus agilis (Didelphimorphia: Didelphidae) and its association to life histories variables and parasite loads. CONSERVATION PHYSIOLOGY 2018; 6:coy021. [PMID: 30151195 PMCID: PMC6101548 DOI: 10.1093/conphys/coy021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/30/2018] [Accepted: 07/09/2018] [Indexed: 05/20/2023]
Abstract
The aim of this study was to evaluate the role of environmental (dry versus wet season) and individual (sex, body mass and reproductive status) factors in the levels of faecal cortisol metabolites (FGCs) in Gracilinanus agilis faecal samples as an index of stress levels in this species; as well as its association with abundance of Eimeria spp, as an indicator of immunocompetence against parasites. Our study found that FGCFGCs are a reliable indicator of adrenal activity in G. agilis. We found that FGCFGCs increase considerably by environmental stressors like the dry season. Moreover, the observed positive association between FGCs and body mass is the result of the effect of season and reproduction in both variables. We also demonstrated that an increase in FGC levels among G. agilis during the dry season is associated with a rise in the probability of being infected by Eimeria spp. Hence, our finding supports the corticosteroid-fitness hypothesis, which predicts that increased glucocorticoids as a response to stressors usually results in decreased fitness of individuals, translated into low future survival and reproductive success, and higher parasite infection. To our knowledge, this is the first study that integrates environmental changes, hormone responses and parasite loads in a US marsupial in both empirical and experimental approaches.
Collapse
Affiliation(s)
- S E Hernandez
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, CP, México
| | - A L S Strona
- Programa de Pós-Graduação em Ecologia e Conservação de Recursos Naturais, Universidade Federal de Uberlândia, MG, Brazil
- Laboratório de Ecologia de Mamíferos, Instituto de Biologia, Universidade Federal de Uberlândia, MG, Brazil
| | - N O Leiner
- Laboratório de Ecologia de Mamíferos, Instituto de Biologia, Universidade Federal de Uberlândia, MG, Brazil
| | - G Suzán
- Departamento de Etología, Fauna Silvestre y Animales de Laboratorio, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad de México, CP, México
| | - M C Romano
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV-IPN, Ciudad de México, CP, México
| |
Collapse
|
20
|
Fischer CP, Wright-Lichter J, Romero LM. Chronic stress and the introduction to captivity: How wild house sparrows (Passer domesticus) adjust to laboratory conditions. Gen Comp Endocrinol 2018; 259:85-92. [PMID: 29170021 DOI: 10.1016/j.ygcen.2017.11.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/11/2017] [Accepted: 11/15/2017] [Indexed: 01/28/2023]
Abstract
The conditions of captivity can cause chronic stress in wild animals. Newly-captured animals may experience weight loss, elevated glucocorticoid hormones, increased heart rate, increased resting adrenomedullary activation, and an altered heart rate response to acute stressors. As captivity conditions persist, chronic stress may decrease as animals adjust to the stressors of captivity. In this study, house sparrows (Passer domesticus) were captured from the wild, fitted with heart rate transmitters in a minor surgical process, and individually housed in an indoor bird facility. Mass, baseline corticosterone, resting heart rate, resting adrenomedullary activation, and the acute heart rate response to a sudden noise were measured over the course of the first 6 weeks of captivity. Birds lost weight during the first weeks of captivity, which was regained by week 5. Baseline corticosterone peaked at day 7, decreased sharply by day 11, and continued to decrease throughout the 6 weeks. Although heart rate in the first 24 h could not be collected, daytime heart rate decreased from day 1 through day 20, where it reached a stable plateau. Daytime heart rate variability decreased through the entire 6 weeks, which may indicate a gradual shift from sympathetic to parasympathetic nervous system regulation of heart rate. The acute heart rate response to a sudden noise lasted longer at day 6 than earlier or later in captivity. In conclusion, the data indicate that the different physiological systems associated with chronic stress adjust to captivity over different timelines.
Collapse
Affiliation(s)
- Clare Parker Fischer
- Tufts University, Department of Biology, 163 Packard Ave., Medford, MA 02155, United States.
| | - Jessica Wright-Lichter
- Tufts University, Department of Biology, 163 Packard Ave., Medford, MA 02155, United States
| | - L Michael Romero
- Tufts University, Department of Biology, 163 Packard Ave., Medford, MA 02155, United States
| |
Collapse
|
21
|
Novarro AJ, Gabor CR, Goff CB, Mezebish TD, Thompson LM, Grayson KL. Physiological responses to elevated temperature across the geographic range of a terrestrial salamander. J Exp Biol 2018; 221:jeb.178236. [DOI: 10.1242/jeb.178236] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 07/31/2018] [Indexed: 01/18/2023]
Abstract
Widespread species often possess physiological mechanisms for coping with thermal heterogeneity, and uncovering these mechanisms provides insight into species responses to climate change. The emergence of non-invasive corticosterone (CORT) assays allows us to rapidly assess physiological responses to environmental change on a large scale. We lack, however, a basic understanding of how temperature affects CORT, and whether temperature and CORT interactively affect performance. Here, we examine the effects of elevated temperature on CORT and whole-organism performance in a terrestrial salamander, Plethodon cinereus, across a latitudinal gradient. Using water-borne hormone assays, we found that raising ambient temperature from 15 to 25°C increased CORT release at a similar rate for salamanders from all sites. However, CORT release rate was higher overall in the warmest, southernmost site. Elevated temperatures also affected physiological performance, but the effects differed among sites. Ingestion rate increased in salamanders from the warmer sites but remained the same for those from cooler sites. Mass gain was reduced for most individuals, though this reduction was more dramatic in salamanders from the cooler sites. We also found a temperature-dependent relationship between CORT and food conversion efficiency (i.e., the amount of mass gained per unit food ingested). CORT was negatively related to food conversion efficiency at 25°C but was unrelated at 15°C. Thus, the energetic gains of elevated ingestion rates may be counteracted by elevated CORT release rates experienced by salamanders in warmer environments. By integrating multiple physiological metrics, we highlight the complex relationships between temperature and individual responses to warming climates.
Collapse
Affiliation(s)
| | - Caitlin R. Gabor
- Department of Biology, Texas State University, San Marcos, TX 78666, USA
| | - Cory B. Goff
- Department of Biology, Texas State University, San Marcos, TX 78666, USA
| | - Tori D. Mezebish
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | - Lily M. Thompson
- Department of Biology, University of Richmond, Richmond, VA 23173, USA
| | | |
Collapse
|
22
|
The impact of transportation and translocation on dispersal behaviour in the invasive cane toad. Oecologia 2017; 184:411-422. [PMID: 28432445 DOI: 10.1007/s00442-017-3871-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 04/10/2017] [Indexed: 10/19/2022]
Abstract
Biological invasions transport organisms to novel environments; but how does the translocation process influence movement patterns of the invader? Plausibly, the stress of encountering a novel environment, or of the transport process, might induce rapid dispersal from the release site-potentially enhancing (or reducing) invader success and spread. We investigated the effect of transportation and release to novel environments on dispersal-relevant traits of one of the world's most notorious invaders, the cane toad (Rhinella marina). We collected toads in northern New South Wales from heath and woodland habitats, manipulated the level of transport stress and either returned toads to their exact collection point (residents) or reciprocally translocated them to a novel site. Both translocation and the level of transport stress drastically altered toad dispersal rates for at least 5 days post-release. Translocated toads (depending on their level of transport stress and release habitat) moved on average two to five times further per day (mean range 67-148 m) than did residents (mean range 22-34 m). Translocated toads also moved on more days, and moved further from their release point than did resident toads, but did not move in straighter lines. A higher level of transport stress (simulating long-distance translocation) had no significant effect on movements of resident toads but amplified the dispersal of translocated toads only when released into woodland habitat. These behavioural shifts induced by translocation and transportation may affect an invader's ability to colonise novel sites, and need to be incorporated into plans for invader control.
Collapse
|
23
|
Titon SCM, de Assis VR, Titon B, Barsotti AMG, Flanagan SP, Gomes FR. Calling rate, corticosterone plasma levels and immunocompetence of Hypsiboas albopunctatus. Comp Biochem Physiol A Mol Integr Physiol 2016; 201:53-60. [DOI: 10.1016/j.cbpa.2016.06.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 10/21/2022]
|
24
|
Angelier F, Parenteau C, Ruault S, Angelier N. Endocrine consequences of an acute stress under different thermal conditions: A study of corticosterone, prolactin, and thyroid hormones in the pigeon (Columbia livia). Comp Biochem Physiol A Mol Integr Physiol 2016; 196:38-45. [PMID: 26924044 DOI: 10.1016/j.cbpa.2016.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 02/17/2016] [Accepted: 02/17/2016] [Indexed: 12/01/2022]
Abstract
In the context of global change, the physiological and hormonal stress responses have received much attention because of their implications in terms of allostasis. However, most studies have focused on glucocorticoids only as the "common" response to stressors while neglecting other endocrine axes and hormones (e.g. prolactin, thyroid hormones) that play a crucial role in metabolic adjustments. Interestingly, the responsiveness of all these endocrine axes to stress may depend on the energetic context and this context-dependent stress response has been overlooked so far. In the wild, temperature can vary to a large extent within a short time window and ambient temperature may affect these metabolic-related endocrine axes, and potentially, their responsiveness to an acute stressor. Here, we explicitly tested this hypothesis by examining the effect of a standardized stress protocol on multiple hormonal responses in the rock pigeon (Columbia livia). We tested the effect of an acute restraint stress on (1) corticosterone levels, (2) prolactin levels, and (3) thyroid hormone levels (triiodothyronine, thyroxine) in pigeons that were held either at cool temperature (experimental birds) or at room temperature (control birds) during the stress protocol. Although we found a significant influence of restraint stress on most hormone levels (corticosterone, prolactin, and thyroxine), triiodothyronine levels were not affected by the restraint stress. This demonstrates that stressors can have significant impact on multiple endocrine mechanisms. Importantly, all of these hormonal responses to stress were not affected by temperature, demonstrating that the exposure to cold temperature does not affect the way these hormone levels change in response to handling stress. This suggests that some endocrine responses to temperature decreases may be overridden by the endocrine responses to an acute restraint stress.
Collapse
Affiliation(s)
- Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, CNRS-Université de La Rochelle, UMR 7372, 79360 Villiers en Bois, France.
| | - Charline Parenteau
- Centre d'Etudes Biologiques de Chizé, CNRS-Université de La Rochelle, UMR 7372, 79360 Villiers en Bois, France
| | - Stéphanie Ruault
- Centre d'Etudes Biologiques de Chizé, CNRS-Université de La Rochelle, UMR 7372, 79360 Villiers en Bois, France
| | - Nicole Angelier
- Centre d'Etudes Biologiques de Chizé, CNRS-Université de La Rochelle, UMR 7372, 79360 Villiers en Bois, France
| |
Collapse
|
25
|
Gabor CR, Fisher MC, Bosch J. Elevated Corticosterone Levels and Changes in Amphibian Behavior Are Associated with Batrachochytrium dendrobatidis (Bd) Infection and Bd Lineage. PLoS One 2015; 10:e0122685. [PMID: 25893675 PMCID: PMC4404099 DOI: 10.1371/journal.pone.0122685] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 02/06/2015] [Indexed: 11/24/2022] Open
Abstract
Few studies have examined the role hormones play in mediating clinical changes associated with infection by the parasite Batrachochytrium dendrobatidis (Bd). Glucocorticoid (GC) hormones such as corticosteroids (CORT) regulate homeostasis and likely play a key role in response to infection in amphibians. We explore the relationship between CORT release rates and Bd infection in tadpoles of the common midwife toad, Alytes obstetricians, using a non-invasive water-borne hormone collection method across seven populations. We further examined whether tadpoles of A. muletensis infected with a hypervirulent lineage of Bd, BdGPL, had greater CORT release rates than those infected with a hypovirulent lineage, BdCAPE. Finally, we examined the relationship between righting reflex and CORT release rates in infected metamorphic toads of A. obstetricans. We found an interaction between elevation and Bd infection status confirming that altitude is associated with the overall severity of infection. In tandem, increasing elevation was associated with increasing CORT release rates. Tadpoles infected with the hypervirulent BdGPL had significantly higher CORT release rates than tadpoles infected with BdCAPE showing that more aggressive infections lead to increased CORT release rates. Infected metamorphs with higher CORT levels had an impaired righting reflex, our defined experimental endpoint. These results provide evidence that CORT is associated with an amphibian’s vulnerability to Bd infection, and that CORT is also affected by the aggressiveness of infection by Bd. Together these results indicate that CORT is a viable biomarker of amphibian stress.
Collapse
Affiliation(s)
- Caitlin R. Gabor
- Department of Biology, Texas State University, San Marcos, Texas, United States of America
| | - Matthew C. Fisher
- Department of Infectious Disease Epidemiology, Imperial College London, Norfolk Place, London, United Kingdom
- * E-mail:
| | - Jaime Bosch
- Museo Nacional de Ciencias Naturales, CSIC, c/ José Gutiérrez Abascal 2, Madrid, Spain
| |
Collapse
|
26
|
Kaiser K, Devito J, Jones CG, Marentes A, Perez R, Umeh L, Weickum RM, McGovern KE, Wilson EH, Saltzman W. Effects of anthropogenic noise on endocrine and reproductive function in White's treefrog, Litoria caerulea. CONSERVATION PHYSIOLOGY 2015; 3:cou061. [PMID: 27293682 PMCID: PMC4778486 DOI: 10.1093/conphys/cou061] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/05/2014] [Accepted: 12/08/2014] [Indexed: 05/23/2023]
Abstract
Urbanization is a major driver of ecological change and comes with a suite of habitat modifications, including alterations to the local temperature, precipitation, light and noise regimes. Although many recent studies have investigated the behavioural and ecological ramifications of urbanization, physiological work in this area has lagged. We tested the hypothesis that anthropogenic noise is a stressor for amphibians and that chronic exposure to such noise leads to reproductive suppression. In the laboratory, we exposed male White's treefrogs, Litoria caerulea, to conspecific chorus noise either alone or coupled with pre-recorded traffic noise nightly for 1 week. Frogs presented with anthropogenic noise had significantly higher circulating concentrations of corticosterone and significantly decreased sperm count and sperm viability than did control frogs. These results suggest that in addition to having behavioural and ecological effects, anthropogenic change might alter physiology and Darwinian fitness. Future work should integrate disparate fields such as behaviour, ecology and physiology to elucidate fully organisms' responses to habitat change.
Collapse
Affiliation(s)
- Kristine Kaiser
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Julia Devito
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Caitlin G. Jones
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Adam Marentes
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Rachel Perez
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Lisa Umeh
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Regina M. Weickum
- Department of Biology, University of California, Riverside, CA 92521, USA
| | - Kathryn E. McGovern
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Emma H. Wilson
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Wendy Saltzman
- Department of Biology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
27
|
Woodley SK, Freeman P, Ricciardella LF. Environmental acidification is not associated with altered plasma corticosterone levels in the stream-side salamander, Desmognathus ochrophaeus. Gen Comp Endocrinol 2014; 201:8-15. [PMID: 24681152 DOI: 10.1016/j.ygcen.2014.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 03/17/2014] [Accepted: 03/19/2014] [Indexed: 01/29/2023]
Abstract
As environments become increasingly altered due to anthropogenic factors, interest is growing in how endocrine systems respond to pollution and environmental degradation. Glucocorticoid hormones (GCs) are a type of stress hormones that are released upon activation of the hypothalamic-pituitary-adrenal axis and have widespread effects throughout the body. We tested the hypothesis that exposure to environmental acidification is associated with altered levels of plasma GCs in adult, stream-side Allegheny Mountain dusky salamanders (Desmognathus ochrophaeus). We compared plasma corticosterone (CORT) in salamanders living in 9 streams that differed in pH. Although capture and handling induced a robust increase in plasma CORT in all populations of salamanders, we discerned no significant effect of environmental pH on baseline CORT or handling-induced CORT levels. In a laboratory study, low pH decreased salamander locomotory activity compared to acid-neutral controls, but there was no effect of pH on plasma CORT. Decreased locomotory activity is a common amphibian response to stress, indicating that low pH has adverse effects on Allegheny Mountain dusky salamanders. Overall, we conclude that the effects of environmental pH on salamander behavior and other potential responses are not mediated by changes in plasma CORT levels. We discuss alternative explanations for our results and describe difficulties involved in searching for relationships between plasma GCs and environmental degradation.
Collapse
Affiliation(s)
- Sarah K Woodley
- Department of Biological Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, USA.
| | - Peter Freeman
- Department of Statistics, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Lauren F Ricciardella
- Department of Biological Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, USA
| |
Collapse
|
28
|
Narayan EJ, Hero JM. Repeated thermal stressor causes chronic elevation of baseline corticosterone and suppresses the physiological endocrine sensitivity to acute stressor in the cane toad (Rhinella marina). J Therm Biol 2014; 41:72-6. [DOI: 10.1016/j.jtherbio.2014.02.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/08/2014] [Accepted: 02/10/2014] [Indexed: 11/29/2022]
|
29
|
Narayan EJ, Hero JM. Acute thermal stressor increases glucocorticoid response but minimizes testosterone and locomotor performance in the cane toad (Rhinella marina). PLoS One 2014; 9:e92090. [PMID: 24643017 PMCID: PMC3958476 DOI: 10.1371/journal.pone.0092090] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 02/19/2014] [Indexed: 11/18/2022] Open
Abstract
Climatic warming is a global problem and acute thermal stressor in particular could be considered as a major stressor for wildlife. Cane toads (Rhinella marina) have expanded their range into warmer regions of Australia and they provide a suitable model species to study the sub-lethal impacts of thermal stressor on the endocrine physiology of amphibians. Presently, there is no information to show that exposure to an acute thermal stressor could initiate a physiological stress (glucocorticoid) response and secondly, the possible effects on reproductive hormones and performance. Answering these questions is important for understanding the impacts of extreme temperature on amphibians. In this study, we experimented on cane toads from Queensland, Australia by acclimating them to mildly warm temperature (25°C) and then exposing to acute temperature treatments of 30°, 35° or 40°C (hypothetical acute thermal stressors). We measured acute changes in the stress hormone corticosterone and the reproductive hormone testosterone using standard capture and handling protocol and quantified the metabolites of both hormones non-invasively using urinary enzyme-immunoassays. Furthermore, we measured performance trait (i.e. righting response score) in the control acclimated and the three treatment groups. Corticosterone stress responses increased in all toads during exposure to an acute thermal stressor. Furthermore, exposure to a thermal stressor also decreased testosterone levels in all toads. The duration of the righting response (seconds) was longer for toads that were exposed to 40°C than to 30°, 35° or 25°C. The increased corticosterone stress response with increased intensity of the acute thermal stressor suggests that the toads perceived this treatment as a stressor. Furthermore, the results also highlight a potential trade-off with performance and reproductive hormones. Ultimately, exposure acute thermal stressors due to climatic variability could impact amphibians at multiple eco-physiological levels through impacts on endocrine physiology, performance and potentially fitness traits (e.g. reproductive output).
Collapse
Affiliation(s)
- Edward J Narayan
- Environmental Futures Research Institute, School of Environment, Griffith University, Gold Coast Campus, Australia
| | - Jean-Marc Hero
- Environmental Futures Research Institute, School of Environment, Griffith University, Gold Coast Campus, Australia
| |
Collapse
|
30
|
Narayan EJ, Cockrem J, Hero JM. Changes in serum and urinary corticosterone and testosterone during short-term capture and handling in the cane toad (Rhinella marina). Gen Comp Endocrinol 2013; 191:225-30. [PMID: 23851041 DOI: 10.1016/j.ygcen.2013.06.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 05/22/2013] [Accepted: 06/15/2013] [Indexed: 11/26/2022]
Abstract
Non-invasive endocrine monitoring with minimally invasive biological samples, such as urine, is being used widely for conservation biology research on amphibians. Currently, it is unknown how closely urinary measurements correspond with the traditional serum hormone measurements. We compared urinary and serum concentrations of corticosterone (CORT) and testosterone (T) in adult male cane toads (Rhinella marina) using a standard capture and handling (short-term stressor) protocol. Free-living male cane toads were captured and sampled for baseline urine (0h) with a second urine sample taken at 0.5h and hourly between 1 and 8h. A single blood sample was collected from each toad after the final urine sampling and capture handling. The mean serum CORT concentration increased between 0 and 0.5h, reaching the highest level between 6 and 8h. The mean urinary CORT concentration increased with a lag-time of 1h and continued to increase up to 8h. The mean level of serum T decreased between 0 and 7h and increased between 7 and 8h. Mean urinary T concentration decreased with a lag-time of 0.5h. Urinary T levels did not change between 4 and 8h. Mean serum T levels reached 50% of the original 0h value at 1h while mean serum CORT levels reached 200% of the original 0h value within 0.5h. Mean urinary T levels reached 50% of the original 0h value within 3h while mean urinary CORT levels reached 200% of the original 0h value within 3h. The inter-individual variation in baseline serum and urinary CORT and T levels were highly comparable, suggesting that baseline urine sample provides a reliable indicator of the physiological status of the animal. Overall, the results have demonstrated that urine sampling and standard capture handling protocol provide reliable measures of baseline corticosterone and testosterone, as well as short-term stress hormone responses in amphibians.
Collapse
Affiliation(s)
- Edward J Narayan
- Environmental Futures Centre, School of Environment, Griffith University, Gold Coast Campus, QLD 4222, Australia.
| | | | | |
Collapse
|
31
|
Graham CM, Narayan EJ, McCallum H, Hero JM. Non-invasive monitoring of glucocorticoid physiology within highland and lowland populations of native Australian Great Barred Frog (Mixophyes fasciolatus). Gen Comp Endocrinol 2013; 191:24-30. [PMID: 23727276 DOI: 10.1016/j.ygcen.2013.05.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 05/13/2013] [Accepted: 05/15/2013] [Indexed: 11/18/2022]
Abstract
This study used non-invasive endocrinology to examine baseline corticosterone at different altitudes in a free-living Australian amphibian: the Great Barred Frog (Mixophyes fasciolatus). An enzyme immunoassay (EIA) was performed on urine samples and validated biologically using an adrenocorticotropic hormone (ACTH) challenge. Frogs were injected with ACTH on day 0 and recaptures occurred 1-10days post injection. Urine samples and body condition measurements were collected from lowland (60m) and highland (660m and 790m) sub-populations of M. fasciolatus in South East Queensland (SEQ), close to their post-breeding period during autumn 2011. We simultaneously sampled these sub-populations for Batrachochytrium dendrobatidis (Bd), a pathogenic fungus responsible for mass mortalities of amphibians worldwide. The ACTH challenge successfully validated the urinary corticosterone EIA in M. fasciolatus, with a peak urinary corticosterone response to ACTH injection on day 2 and a return to baseline levels by day 6. Polymerase chain reaction (PCR) analysis of 50 individuals returned only 1 positive result for Bd. Simple linear regression showed a strong positive relationship between baseline urinary corticosterone concentrations and altitude and no relationship with body condition. We hypothesize that higher baseline corticosterone concentrations within highland sub-populations of male M. fasciolatus could be associated with increased environmental challenge at high altitudes and geographic range limits. Whether this pattern is an indication of chronic stress in highland populations or life-time fitness and survival, warrants future investigation.
Collapse
Affiliation(s)
- Clara M Graham
- Environmental Futures Centre, School of Environment, Griffith University, Nathan Campus, QLD 4111, Australia.
| | | | | | | |
Collapse
|
32
|
Narayan EJ, Cockrem JF, Hero JM. Sight of a predator induces a corticosterone stress response and generates fear in an amphibian. PLoS One 2013; 8:e73564. [PMID: 24009756 PMCID: PMC3757005 DOI: 10.1371/journal.pone.0073564] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/20/2013] [Indexed: 11/19/2022] Open
Abstract
Amphibians, like other animals, generate corticosterone or cortisol glucocorticoid responses to stimuli perceived to be threatening. It is generally assumed that the corticosterone response of animals to capture and handling reflects the corticosterone response to stimuli such as the sight of a predator that are thought to be natural stressors. Fijian ground frogs (Platymantisvitiana) are preyed upon by the introduced cane toads (Rhinellamarina), and we used ground frogs to test the hypothesis that the sight of a predator will induce a corticosterone stress response in an amphibian. Urinary corticosterone metabolite concentrations increased in male ground frogs exposed to the sight of a toad for 1, 3 or 6 h, whereas corticosterone did not change in frogs exposed to another male ground frog, a ball, or when no stimulus was present in the test compartment. The frogs exposed to a toad initially moved towards the stimulus then moved away, whereas frogs exposed to another frog moved towards the test frog and remained closer to the frog than at the start of the test. Tonic immobility (TI) was measured as an index of fearfulness immediately after the test exposure of the frogs to a stimulus. The duration of TI was longer in frogs exposed to a toad than to another frog or to a ball. The results provide novel evidence that the sight of a predator can induce a corticosterone response and lead to increased fearfulness in amphibians. In addition, they show that endemic frogs can recognise an introduced predator as a threat.
Collapse
Affiliation(s)
- Edward J Narayan
- Environmental Futures Centre, School of Environment, Griffith University, Gold Coast Campus, Southport, Australia.
| | | | | |
Collapse
|
33
|
Narayan EJ, Cockrem JF, Hero JM. Repeatability of baseline corticosterone and short-term corticosterone stress responses, and their correlation with testosterone and body condition in a terrestrial breeding anuran (Platymantis vitiana). Comp Biochem Physiol A Mol Integr Physiol 2013; 165:304-12. [DOI: 10.1016/j.cbpa.2013.03.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/26/2013] [Accepted: 03/26/2013] [Indexed: 10/27/2022]
|
34
|
Navas CA, Carvajalino-Fernández JM, Saboyá-Acosta LP, Rueda-Solano LA, Carvajalino-Fernández MA. The body temperature of active amphibians along a tropical elevation gradient: patterns of mean and variance and inference from environmental data. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12106] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Carlos Arturo Navas
- Department of Physiology; Biosciences Institute; University of São Paulo; São Paulo; Brazil
| | | | | | | | | |
Collapse
|
35
|
Cockrem JF. Individual variation in glucocorticoid stress responses in animals. Gen Comp Endocrinol 2013; 181:45-58. [PMID: 23298571 DOI: 10.1016/j.ygcen.2012.11.025] [Citation(s) in RCA: 227] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 11/15/2012] [Accepted: 11/18/2012] [Indexed: 12/30/2022]
Abstract
When stimuli from the environment are perceived to be a threat or potential threat then animals initiate stress responses, with activation of the hypothalamo-pituitary-adrenal axis and secretion of glucocorticoid hormones (cortisol and corticosterone). Whilst standard deviation or standard error values are always reported, it is only when graphs of individual responses are shown that the extensive variation between animals is apparent. Some animals have little or no response to a stressor that evokes a relatively large response in others. Glucocorticoid responses of fish, amphibian, reptiles, birds, and mammals are considered in this review. Comparisons of responses between animals and groups of animals focused on responses to restraint or confinement as relatively standard stressors. Individual graphs could not be found in the literature for glucocorticoid responses to capture or restraint in fish or reptiles, with just one graph in mammals with the first sample was collected when animals were initially restrained. Coefficients of variation (CVs) calculated for parameters of glucocorticoid stress responses showed that the relative magnitudes of variation were similar in different vertebrate groups. The overall mean CV for glucocorticoid concentrations in initial (0 min) samples was 74.5%, and CVs for samples collected over various times up to 4 h were consistently between 50% and 60%. The factors that lead to the observed individual variation and the extent to which this variation is adaptive or non-adaptive are little known in most animals, and future studies of glucocorticoid responses in animals can focus on individual responses and their origins and significance.
Collapse
Affiliation(s)
- John F Cockrem
- Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North 4442, New Zealand.
| |
Collapse
|
36
|
Narayan EJ. Non-invasive reproductive and stress endocrinology in amphibian conservation physiology. CONSERVATION PHYSIOLOGY 2013; 1:cot011. [PMID: 27293595 PMCID: PMC4806611 DOI: 10.1093/conphys/cot011] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 04/18/2013] [Accepted: 04/18/2013] [Indexed: 05/03/2023]
Abstract
Non-invasive endocrinology utilizes non-invasive biological samples (such as faeces, urine, hair, aquatic media, and saliva) for the quantification of hormones in wildlife. Urinary-based enzyme immunoassay (EIA) and radio-immunoassay have enabled the rapid quantification of reproductive and stress hormones in amphibians (Anura: Amphibia). With minimal disturbance, these methods can be used to assess the ovarian and testicular endocrine functions as well as physiological stress in captive and free-living populations. Non-invasive endocrine monitoring has therefore greatly advanced our knowledge of the functioning of the stress endocrine system (the hypothalamo-pituitary-interrenal axis) and the reproductive endocrine system (the hypothalamo-pituitary-gonadal axis) in the amphibian physiological stress response, reproductive ecology, health and welfare, and survival. Biological (physiological) validation is necessary for obtaining the excretory lag time of hormone metabolites. Urinary-based EIA for the major reproductive hormones, estradiol and progesterone in females and testosterone in males, can be used to track the reproductive hormone profiles in relationship to reproductive behaviour and environmental data in free-living anurans. Urinary-based corticosterone metabolite EIA can be used to assess the sublethal impacts of biological stressors (such as invasive species and pathogenic diseases) as well as anthropogenic induced environmental stressors (e.g. extreme temperatures) on free-living populations. Non-invasive endocrine methods can also assist in the diagnosis of success or failure of captive breeding programmes by measuring the longitudinal patterns of changes in reproductive hormones and corticosterone within captive anurans and comparing the endocrine profiles with health records and reproductive behaviour. This review paper focuses on the reproductive and the stress endocrinology of anurans and demonstrates the uses of non-invasive endocrinology for advancing amphibian conservation physiology. It also provides key technical considerations for future research that will increase the accuracy and reliability of the data and the value of non-invasive endocrinology within the conceptual framework of conservation physiology.
Collapse
Affiliation(s)
- E. J. Narayan
- Corresponding author: Environmental Futures Centre, School of Environment, Griffith University, Gold Coast Campus, QLD 4222, Australia. Tel: +61 (0)4 0169 7287. ;
| |
Collapse
|
37
|
Narayan EJ, Hero JM, Cockrem JF. Inverse urinary corticosterone and testosterone metabolite responses to different durations of restraint in the cane toad (Rhinella marina). Gen Comp Endocrinol 2012; 179:345-9. [PMID: 23036735 DOI: 10.1016/j.ygcen.2012.09.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 08/28/2012] [Accepted: 09/13/2012] [Indexed: 10/27/2022]
Abstract
Non-invasive measurement of urinary corticosterone and testosterone metabolites in amphibians provides opportunities for endocrine studies of responses to physiological and psychological stressors. Typically, corticosterone metabolite concentrations increase in frog urine within 1-2h of a mild capture and handling stress protocol. However, no study has investigated the effect of duration of manual restraint on the changes in corticosterone and reproductive hormones in amphibians. We quantified urinary corticosterone and testosterone metabolite responses for 8h following various durations of manual restraint (control, 5, 15 or 30min) in adult male cane toads (Rhinella marina) under controlled laboratory conditions. All toads had a corticosterone stress response over 8h to our standard capture and handling stressor. The mean corticosterone stress response was significantly higher after 15 or 30min restraint in comparison to the control (no restraint) or to 5min restraint. Manual restraint for 5, 15 or 30min caused a significant reduction in urinary testosterone concentrations over 8h. We also provide a novel method of quantifying plasticity in corticosterone stress responses in amphibians with respect to restraint duration using the concept of a "reaction norm". The reaction norm, which was calculated as slope of the regression line of integrated corticosterone response against restraint duration, was 9.69 (pg corticosterone/μg creatinineh)/min for male toads. In summary, corticosterone and testosterone responses to restraint are affected by restraint duration in male toads. Glucocorticoid reaction norms can be applied to study the change in physiological stress hormonal response with respect to restraint duration in other amphibian species.
Collapse
Affiliation(s)
- Edward J Narayan
- Environmental Futures Centre, School of Environment, Griffith University, Gold Coast Campus, QLD 4222, Australia.
| | | | | |
Collapse
|
38
|
Narayan EJ, Cockrem JF, Hero JM. Are baseline and short-term corticosterone stress responses in free-living amphibians repeatable? Comp Biochem Physiol A Mol Integr Physiol 2012; 164:21-8. [PMID: 23047053 DOI: 10.1016/j.cbpa.2012.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 09/30/2012] [Accepted: 10/01/2012] [Indexed: 10/27/2022]
Abstract
Amphibians respond to environmental stressors by secreting corticosterone, a stress hormone which promotes physiological and behavioral responses. Capture handling can be used to stimulate physiological stress response in amphibians. The use of single blood sampling and presentation of mean data often limits the quantification of within and between individual variation in baseline and short-term corticosterone stress responses in amphibians. It is important for studies of amphibian physiological ecology to determine whether baseline and short-term corticosterone stress responses are consistent or not. We quantified repeatability (r), a statistical measure of consistency, in baseline and short-term corticosterone stress responses to a standard capture and handling stress protocol in free-living adult male cane toads (Rhinella marina). Corticosterone metabolite concentrations were measured entirely non-invasively in male toad urine samples via an enzyme-immunoassay. During the first sampling occasion, urine samples were collected manually from individual male toads (n=20) immediately upon field capture. Toads were handled for 5min then transferred to plastic bags (constituting a mild stressor), and urine samples were collected hourly over 8h in the field. The toads were resampled for baseline (0h) urine corticosterone with hourly urine sampling over 8h (for quantification of the stress induced corticosterone) at 14 day intervals on three consecutive occasions. Within and between sample variations in urinary corticosterone metabolite concentrations were also quantified. All toads expressed a corticosterone stress response over 8h to our standard capture and handling stress protocol. Variations both within and between toads was higher for corrected integrated corticosterone concentrations than corticosterone concentrations at baseline, 3 or 6h. Baseline urinary corticosterone metabolite concentration of the male toads was highly repeatable (r=0.877) together with high statistical repeatabilities for 3h (r=0.695), 6h (r=0.428) and 8h (r=0.775) corticosterone metabolite concentrations, and for the total and corrected integrated corticosterone responses (r=0.807; r=0.743 respectively). This study highlights that baseline and short-term corticosterone stress responses are repeatable in free-living amphibians. Future studies should utilize this non-invasive tool to explore repeatability among seasons and across years, and determine its functional significance in relation to behavioral ecology and reproduction in amphibians generally.
Collapse
Affiliation(s)
- Edward J Narayan
- Environmental Futures Centre, School of Environment, Griffith University, Gold Coast campus, QLD 4222, Australia.
| | | | | |
Collapse
|