1
|
Menon N, Wang C, Carr JA. Sub-chronic administration of fluoxetine does not alter prey-capture or predator avoidance behaviors in adult South African clawed frogs (Xenopus laevis). Behav Brain Res 2023; 442:114317. [PMID: 36709047 DOI: 10.1016/j.bbr.2023.114317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/23/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Animals will halt foraging efforts and engage defensive behaviors in response to predator cues. Some researchers have proposed that the switch from appetitive to avoidance behavior resembles anxiety, but most work on this has been performed in a limited number of animal models, primarily zebrafish and rodents. We used adult South African clawed frogs (Xenopus laevis) to determine if the canonical anxiolytic fluoxetine alters predator-induced changes in appetitive and avoidance behavior in a laboratory-based trade-off task that mimics foraging/predator avoidance tradeoffs in the wild. We hypothesized that sub-chronic fluoxetine treatment (20 d) would not affect baseline behavior but would reverse predator-induced changes in food intake, appetitive and avoidance behavior, and the abundance of anxiety related gene transcripts in the optic tectum, a brain area central to ecological decision making in frogs. We found that fluoxetine significantly reduced baseline locomotion compared to vehicle-treated animals. Fluoxetine had no effect on appetitive and avoidance behaviors that were sensitive to predator cues in this assay and did not alter any of the anxiety-related transcripts in the tectum. We conclude that while peripheral sub-chronic administration of fluoxetine significantly reduces locomotion, it does not modify predator-induced changes in approach and avoidance behaviors in this assay. Our findings are not consistent with visual predator cues causing state anxiety in adult frogs.
Collapse
Affiliation(s)
- Nikhil Menon
- Texas Tech University, Department of Biological Sciences, 2901 Main St, Lubbock, TX 79409, USA
| | - Caoyuanhui Wang
- Texas Tech University, Department of Biological Sciences, 2901 Main St, Lubbock, TX 79409, USA
| | - James A Carr
- Texas Tech University, Department of Biological Sciences, 2901 Main St, Lubbock, TX 79409, USA.
| |
Collapse
|
2
|
Menon NM, Carr JA. Anxiety-like behavior and tectal gene expression in a foraging/predator avoidance tradeoff task using adult African clawed frogs Xenopus laevis. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03219-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Prater CM, Harris BN, Carr JA. Tectal CRFR1 receptor involvement in avoidance and approach behaviors in the South African clawed frog, Xenopus laevis. Horm Behav 2020; 120:104707. [PMID: 32001211 DOI: 10.1016/j.yhbeh.2020.104707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 10/25/2022]
Abstract
Animals in the wild must balance food intake with vigilance for predators in order to survive. The optic tectum plays an important role in the integration of external (predators) and internal (energy status) cues related to predator defense and prey capture. However, the role of neuromodulators involved in tectal sensorimotor processing is poorly studied. Recently we showed that tectal CRFR1 receptor activation decreases food intake in the South African clawed frog, Xenopus laevis, suggesting that CRF may modulate food intake/predator avoidance tradeoffs. Here we use a behavioral assay modeling food intake and predator avoidance to test the role of CRFR1 receptors and energy status in this tradeoff. We tested the predictions that 1) administering the CRFR1 antagonist NBI-27914 via the optic tecta will increase food intake and feeding-related behaviors in the presence of a predator, and 2) that prior food deprivation, which lowers tectal CRF content, will increase food intake and feeding-related behaviors in the presence of a predator. Pre-treatment with NBI-27914 did not prevent predator-induced reductions in food intake. Predator exposure altered feeding-related behaviors in a predictable manner. Pretreatment with NBI-27914 reduced the response of certain behaviors to a predator but also altered behaviors irrelevant of predator presence. Although 1-wk of food deprivation altered some non-feeding behaviors related to energy conservation strategy, food intake in the presence of a predator was not altered by prior food deprivation. Collectively, our data support a role for tectal CRFR1 in modulating discrete behavioral responses during predator avoidance/foraging tradeoffs.
Collapse
Affiliation(s)
- Christine M Prater
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, United States of America.
| | - Breanna N Harris
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, United States of America
| | - James A Carr
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, United States of America
| |
Collapse
|
4
|
Prater CM, Harris BN, Carr JA. Tectal CRFR1 receptors modulate food intake and feeding behavior in the South African clawed frog Xenopus laevis. Horm Behav 2018; 105:86-94. [PMID: 30077740 DOI: 10.1016/j.yhbeh.2018.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/13/2018] [Accepted: 07/30/2018] [Indexed: 12/11/2022]
Abstract
The optic tectum and superior colliculus rapidly inhibit food intake when a visual threat is present. Previous work indicates that CRF, acting on CRFR1 receptors, may play a role in tectal inhibition of feeding behavior and food intake. Here we test the hypothesis that tectal CRFR1 receptors modulate food intake and feeding behavior in juvenile Xenopus laevis. We performed five experiments to test the following questions: 1) Does tectal CRF injection decrease food intake/feeding behavior? 2) Does a selective CRFR1 antagonist block CRF effects on feeding/feeding behavior? 3) Does a reactive stressor decrease food intake/feeding behavior? 4) Does a selective CRFR1 antagonist block reactive stress-induced decrease in feeding/feeding behavior? 5) Does food deprivation increase food intake/feeding behavior? Tectal CRF injections reduced food intake and influenced exploratory behavior, hindlimb kicks, and time in contact with food. These effects were blocked by the selective R1 antagonist NBI-27914. Exposure to a reactive stressor decreased food intake and this effect was blocked by NBI-27914. Neither food intake or feeding behavior changed following 1 wk of food deprivation. Overall, we conclude that activation of tectal CRFR1 inhibits food intake in juvenile X. laevis. Furthermore, tectal CRFR1 receptors appear to be involved in the reduction of food intake that occurs in response to a reactive stressor.
Collapse
Affiliation(s)
- Christine M Prater
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, United States of America
| | - Breanna N Harris
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, United States of America
| | - James A Carr
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131, United States of America.
| |
Collapse
|
5
|
Koorneef LL, Bogaards M, Reinders MJT, Meijer OC, Mahfouz A. How Metabolic State May Regulate Fear: Presence of Metabolic Receptors in the Fear Circuitry. Front Neurosci 2018; 12:594. [PMID: 30210279 PMCID: PMC6119828 DOI: 10.3389/fnins.2018.00594] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/07/2018] [Indexed: 12/13/2022] Open
Abstract
Metabolic status impacts on the emotional brain to induce behavior that maintains energy balance. While hunger suppresses the fear circuitry to promote explorative food-seeking behavior, satiety or obesity may increase fear to prevent unnecessary risk-taking. Here we aimed to unravel which metabolic factors, that transfer information about the acute and the chronic metabolic status, are of primary importance to regulate fear, and to identify their sites of action within fear-related brain regions. We performed a de novo analysis of central and peripheral metabolic factors that can penetrate the blood–brain barrier using genome-wide expression data across the mouse brain from the Allen Brain Atlas (ABA). The central fear circuitry, as defined by subnuclei of the amygdala, the afferent hippocampus, the medial prefrontal cortex and the efferent periaqueductal gray, was enriched with metabolic receptors. Some of their corresponding ligands were known to modulate fear (e.g., estrogen and thyroid hormones) while others had not been associated with fear before (e.g., glucagon, ACTH). Additionally, several of these enriched metabolic receptors were coexpressed with well-described fear-modulating genes (Crh, Crhr1, or Crhr2). Co-expression analysis of monoamine markers and metabolic receptors suggested that monoaminergic nuclei have differential sensitivity to metabolic alterations. Serotonergic neurons expressed a large number of metabolic receptors (e.g., estrogen receptors, fatty acid receptors), suggesting a wide responsivity to metabolic changes. The noradrenergic system seemed to be specifically sensitive to hypocretin/orexin modulation. Taken together, we identified a number of novel metabolic factors (glucagon, ACTH) that have the potential to modulate the fear response. We additionally propose novel cerebral targets for metabolic factors (e.g., thyroid hormones) that modulate fear, but of which the sites of action are (largely) unknown.
Collapse
Affiliation(s)
- Lisa L Koorneef
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden University, Leiden, Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden University, Leiden, Netherlands
| | - Marit Bogaards
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden University, Leiden, Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden University, Leiden, Netherlands
| | - Marcel J T Reinders
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden University, Leiden, Netherlands.,Delft Bioinformatics Laboratory, Delft University of Technology, Delft, Netherlands
| | - Onno C Meijer
- Division of Endocrinology, Department of Internal Medicine, Leiden University Medical Center, Leiden University, Leiden, Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden University, Leiden, Netherlands.,Leiden Institute for Brain and Cognition, Leiden University Medical Center, Leiden University, Leiden, Netherlands
| | - Ahmed Mahfouz
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden University, Leiden, Netherlands.,Delft Bioinformatics Laboratory, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
6
|
Prater CM, Garcia C, McGuire LP, Carr JA. Tectal corticotropin-releasing factor (CRF) neurons respond to fasting and a reactive stressor in the African Clawed Frog, Xenopus laevis. Gen Comp Endocrinol 2018; 258:91-98. [PMID: 28774755 DOI: 10.1016/j.ygcen.2017.07.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/05/2017] [Accepted: 07/27/2017] [Indexed: 10/19/2022]
Abstract
It is well established that hypothalamic neurons producing the peptide corticotropin-releasing factor (CRF) play a key role in stress adaptation, including reduction of food intake when a threat or stressor is present. We have previously reported on the presence of an intrinsic CRF signaling system within the optic tectum (OT), a brain area that plays a key role in visually guided prey capture/predator avoidance decisions. To better understand the potential role of tectal CRF neurons in regulating adaptive behavior and energy balance during stress we examined evidence for modulation of tectal CRF neuronal activity after stressor exposure and food deprivation in the African clawed frog Xenopus laevis. We tested two predictions, 1) that exposure to categorically distinct stressors (ether vapors and shaking) will reduce food intake and modulate the activity of tectal CRF cells, and 2) that food deprivation will modulate the activity of tectal CRF cells. Exposure to ether increased tectal content of CRF and CRF transcript, but lowed CRFR1 transcript abundance. Two weeks of food deprivation reduced total fat stores in frogs and decreased tectal content of CRF content while having no effect on CRF and CRFR1 transcript abundance. Our data are consistent with a role for tectal CRF neurons in modulating food intake in response to certain stressors.
Collapse
Affiliation(s)
| | - Carlos Garcia
- Department of Biological Sciences, Texas Tech University, United States
| | - Liam P McGuire
- Department of Biological Sciences, Texas Tech University, United States
| | - James A Carr
- Department of Biological Sciences, Texas Tech University, United States.
| |
Collapse
|
7
|
Harris BN, Carr JA. The role of the hypothalamus-pituitary-adrenal/interrenal axis in mediating predator-avoidance trade-offs. Gen Comp Endocrinol 2016; 230-231:110-42. [PMID: 27080550 DOI: 10.1016/j.ygcen.2016.04.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 04/07/2016] [Accepted: 04/09/2016] [Indexed: 11/20/2022]
Abstract
Maintaining energy balance and reproducing are important for fitness, yet animals have evolved mechanisms by which the hypothalamus-pituitary-adrenal/interrenal (HPA/HPI) axis can shut these activities off. While HPA/HPI axis inhibition of feeding and reproduction may have evolved as a predator defense, to date there has been no review across taxa of the causal evidence for such a relationship. Here we review the literature on this topic by addressing evidence for three predictions: that exposure to predators decreases reproduction and feeding, that exposure to predators activates the HPA/HPI axis, and that predator-induced activation of the HPA/HPI axis inhibits foraging and reproduction. Weight of evidence indicates that exposure to predator cues inhibits several aspects of foraging and reproduction. While the evidence from fish and mammals supports the hypothesis that predator cues activate the HPA/HPI axis, the existing data in other vertebrate taxa are equivocal. A causal role for the HPA axis in predator-induced suppression of feeding and reproduction has not been demonstrated to date, although many studies report correlative relationships between HPA activity and reproduction and/or feeding. Manipulation of HPA/HPI axis signaling will be required in future studies to demonstrate direct mediation of predator-induced inhibition of feeding and reproduction. Understanding the circuitry linking sensory pathways to their control of the HPA/HPI axis also is needed. Finally, the role that fear and anxiety pathways play in the response of the HPA axis to predator cues is needed to better understand the role that predators have played in shaping anxiety related behaviors in all species, including humans.
Collapse
Affiliation(s)
- Breanna N Harris
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, United States
| | - James A Carr
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, United States.
| |
Collapse
|
8
|
Carr JA. I'll take the low road: the evolutionary underpinnings of visually triggered fear. Front Neurosci 2015; 9:414. [PMID: 26578871 PMCID: PMC4624861 DOI: 10.3389/fnins.2015.00414] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/15/2015] [Indexed: 11/16/2022] Open
Abstract
Although there is general agreement that the central nucleus of the amygdala (CeA) is critical for triggering the neuroendocrine response to visual threats, there is uncertainty about the role of subcortical visual pathways in this process. Primates in general appear to depend less on subcortical visual pathways than other mammals. Yet, imaging studies continue to indicate a role for the superior colliculus and pulvinar nucleus in fear activation, despite disconnects in how these brain structures communicate not only with each other but with the amygdala. Studies in fish and amphibians suggest that the neuroendocrine response to visual threats has remained relatively unchanged for hundreds of millions of years, yet there are still significant data gaps with respect to how visual information is relayed to telencephalic areas homologous to the CeA, particularly in fish. In fact ray finned fishes may have evolved an entirely different mechanism for relaying visual information to the telencephalon. In part because they lack a pathway homologous to the lateral geniculate-striate cortex pathway of mammals, amphibians continue to be an excellent model for studying how stress hormones in turn modulate fear activating visual pathways. Glucocorticoids, melanocortin peptides, and CRF all appear to play some role in modulating sensorimotor processing in the optic tectum. These observations, coupled with data showing control of the hypothalamus-pituitary-adrenal axis by the superior colliculus, suggest a fear/stress/anxiety neuroendocrine circuit that begins with first order synapses in subcortical visual pathways. Thus, comparative studies shed light not only on how fear triggering visual pathways came to be, but how hormones released as a result of this activation modulate these pathways.
Collapse
Affiliation(s)
- James A. Carr
- Department of Biological Sciences, Texas Tech UniversityLubbock, TX, USA
| |
Collapse
|
9
|
Crespi EJ, Unkefer MK. Development of food intake controls: neuroendocrine and environmental regulation of food intake during early life. Horm Behav 2014; 66:74-85. [PMID: 24727079 DOI: 10.1016/j.yhbeh.2014.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 04/01/2014] [Accepted: 04/05/2014] [Indexed: 01/18/2023]
Abstract
This article is part of a Special Issue "Energy Balance". The development of neuroendocrine regulation of food intake during early life has been shaped by natural selection to allow for optimal growth and development rates needed for survival. In vertebrates, neonates or early larval forms typically exhibit "feeding drive," characterized by a developmental delay in 1) responsiveness of the hypothalamus to satiety signals (e.g., leptin, melanocortins) and 2) sensitivity to environmental cues that suppress food intake. Homeostatic regulation of food intake develops once offspring transition to later life history stages when growth is slower, neuroendocrine systems are more mature, and appetite becomes more sensitive to environmental or social cues. Across vertebrate groups, there is a tremendous amount of developmental plasticity in both food intake regulation and stress responsiveness depending on the environmental conditions experienced during early life history stages or by pregnant/brooding mothers. This plasticity is mediated through the organizing effects of hormones acting on the food intake centers of the hypothalamus during development, which alter epigenetic expression of genes associated with ingestive behaviors. Research is still needed to reveal the mechanisms through which environmental conditions during development generate and maintain these epigenetic modifications within the lifespan or across generations. Furthermore, more research is needed to determine whether observed patterns of plasticity are adaptive or pathological. It is clear, however, that developmental programming of food intake has important effects on fitness, and therefore, has ecological and evolutionary implications.
Collapse
Affiliation(s)
- Erica J Crespi
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA.
| | - Margaret K Unkefer
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
10
|
Tennessen JB, Parks SE, Langkilde T. Traffic noise causes physiological stress and impairs breeding migration behaviour in frogs. CONSERVATION PHYSIOLOGY 2014; 2:cou032. [PMID: 27293653 PMCID: PMC4806738 DOI: 10.1093/conphys/cou032] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 06/29/2014] [Accepted: 07/05/2014] [Indexed: 05/21/2023]
Abstract
Human-generated noise has profoundly changed natural soundscapes in aquatic and terrestrial ecosystems, imposing novel pressures on ecological processes. Despite interest in identifying the ecological consequences of these altered soundscapes, little is known about the sublethal impacts on wildlife population health and individual fitness. We present evidence that noise induces a physiological stress response in an amphibian and impairs mate attraction in the natural environment. Traffic noise increased levels of a stress-relevant glucocorticoid hormone (corticosterone) in female wood frogs (Lithobates sylvaticus) and impaired female travel towards a male breeding chorus in the field, providing insight into the sublethal consequences of acoustic habitat loss. Given that prolonged elevated levels of corticosterone can have deleterious consequences on survival and reproduction and that impaired mate attraction can impact population persistence, our results suggest a novel pathway by which human activities may be imposing population-level impacts on globally declining amphibians.
Collapse
Affiliation(s)
- Jennifer B. Tennessen
- Department of Biology, Intercollege Graduate Degree Program in Ecology, Center for Brain, Behavior and Cognition, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA
- Corresponding author: Department of Biology, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA. Tel: 1 814 867 2252.
| | - Susan E. Parks
- Department of Biology, Syracuse University, 258 Life Sciences Complex, 107 College Place, Syracuse, NY 13244, USA
| | - Tracy Langkilde
- Department of Biology, Intercollege Graduate Degree Program in Ecology, Center for Brain, Behavior and Cognition, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA 16802, USA
| |
Collapse
|
11
|
Ortega VA, Lovejoy DA, Bernier NJ. Appetite-suppressing effects and interactions of centrally administered corticotropin-releasing factor, urotensin I and serotonin in rainbow trout (Oncorhynchus mykiss). Front Neurosci 2013; 7:196. [PMID: 24194695 PMCID: PMC3810612 DOI: 10.3389/fnins.2013.00196] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 10/08/2013] [Indexed: 01/03/2023] Open
Abstract
Corticotropin-releasing factor (CRF), urotensin I (UI) and serotonin (5-HT) are generally recognized as key regulators of the anorexigenic stress response in vertebrates, yet the proximal effects and potential interactions of these central messengers on food intake in salmonids are not known. Moreover, no study to date in fishes has compared the appetite-suppressing effects of CRF and UI using species-specific peptides. Therefore, the objectives of this study were to (1) assess the individual effects of synthesized rainbow trout CRF (rtCRF), rtUI as well as 5-HT on food intake in rainbow trout, and (2) determine whether the CRF and serotonergic systems interact in the regulation of food intake in this species. Intracerebroventricular (icv) injections of rtCRF and rtUI both suppressed food intake in a dose-related manner but rtUI [ED50 = 17.4 ng/g body weight (BW)] was significantly more potent than rtCRF (ED50 = 105.9 ng/g BW). Co-injection of either rtCRF or rtUI with the CRF receptor antagonist α-hCRF(9–41) blocked the reduction in food intake induced by CRF-related peptides. Icv injections of 5-HT also inhibited feeding in a dose-related manner (ED50 = 14.7 ng/g BW) and these effects were blocked by the serotonergic receptor antagonist methysergide. While the anorexigenic effects of 5-HT were reversed by α-hCRF(9–41) co-injection, the appetite-suppressing effects of either rtCRF or rtUI were not affected by methysergide co-injection. These results identify CRF, UI and 5-HT as anorexigenic agents in rainbow trout, and suggest that 5-HT-induced anorexia may be at least partially mediated by CRF- and/or UI-secreting neurons.
Collapse
Affiliation(s)
- Van A Ortega
- Department of Integrative Biology, University of Guelph Guelph, ON, Canada
| | | | | |
Collapse
|