1
|
Tao M, Zhou H, Wei J, Xu Q. Effects of Astaxanthin on Ovarian Development of Largemouth Bass ( Micropterus salmoides). AQUACULTURE NUTRITION 2024; 2024:2662809. [PMID: 39640927 PMCID: PMC11620815 DOI: 10.1155/anu/2662809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024]
Abstract
The purpose of the study was to investigate the effects of astaxanthin on ovarian development of largemouth bass (Micropterus salmoides) female. Five isonitrogenous and isolipidic feeds with varying levels of astaxanthin (0.8, 19, 41, 97, and 200 mg/kg) were grouped as AS0, AS20, AS40, AS100, and AS200, respectively. The results indicated that the gonadosomatic index (GSI) was significantly greater in the AS40 and AS100 than in AS0 and AS200 (p < 0.05). The AS40 and AS100 exhibited a dramatically lower hepatosomatic index (HSI) compared to the other groups (p < 0.05). The content of vitellogenin (VTG) was significantly increased in AS100 compared to the AS0, AS20, and AS200 (p < 0.05). Testosterone (T) levels were significantly lower in the AS200 compared to the other groups (p < 0.05). The AS40, AS100, and AS200 groups exhibited significantly greater follicle-stimulating hormone (FSH) levels than the AS0 and AS20 group (p < 0.05). The luteinizing hormone (LH) level was significantly higher in AS100 compared to the other groups (p < 0.05). The estradiol (E2) levels were significantly higher in AS40 compared to the AS0 and AS200 groups (p < 0.05). The total antioxidant capacity (T-AOC) was significantly higher in AS100 than the AS0 and AS20 groups (p < 0.05). The superoxide dismutase (SOD) activity was significantly higher in AS40 compared to the AS0 and AS200 groups (p < 0.05). The malondialdehyde (MDA) level was significantly decreased in AS40 than the other groups (p < 0.05). Transcriptomic analysis of ovarian tissue revealed that differentially expressed genes primarily involved in pathways such as "ovarian steroidogenesis," "steroid hormone biosynthesis," and "arachidonic acid metabolism." The expression of genes involved in ovarian steroidogenesis and arachidonic acid metabolism, such as cytochrome P450 family 2 subfamily J member (cyp2j), insulin-like growth factor 1 (igf1), phospholipase A2 group (pla2g), FSH receptor (fshr), and acute regulatory protein (star), was significantly upregulated in the AS40 group (p < 0.05). In summary, appropriate amount of astaxanthin supplementation in the diet enhance gonadal development, antioxidant capacity, and sex hormone levels, promote the expression of genes related to gonadal development, and consequently, enhance reproductive performance of largemouth bass.
Collapse
Affiliation(s)
- Mingwei Tao
- College of Life Science, Huzhou University, Huzhou, China
- Nation Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Zhejiang Provincial Key Laboratory of Aquatic Bioresource Conservation and Development Technology, Huzhou, China
| | - Hangxian Zhou
- College of Life Science, Huzhou University, Huzhou, China
- Nation Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Zhejiang Provincial Key Laboratory of Aquatic Bioresource Conservation and Development Technology, Huzhou, China
| | - Jie Wei
- College of Life Science, Huzhou University, Huzhou, China
- Nation Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Zhejiang Provincial Key Laboratory of Aquatic Bioresource Conservation and Development Technology, Huzhou, China
| | - Qiyou Xu
- College of Life Science, Huzhou University, Huzhou, China
- Nation Local Joint Engineering Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Zhejiang Provincial Key Laboratory of Aquatic Bioresource Conservation and Development Technology, Huzhou, China
| |
Collapse
|
2
|
Yotbuntueng P, Jiemsup S, Deenarn P, Tobwor P, Yongkiettrakul S, Vichai V, Pruksatrakul T, Sittikankaew K, Karoonuthaisiri N, Leelatanawit R, Wimuttisuk W. Differential distribution of eicosanoids and polyunsaturated fatty acids in the Penaeus monodon male reproductive tract and their effects on total sperm counts. PLoS One 2022; 17:e0275134. [PMID: 36137117 PMCID: PMC9499254 DOI: 10.1371/journal.pone.0275134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022] Open
Abstract
Eicosanoids, which are oxygenated derivatives of polyunsaturated fatty acids (PUFAs), serve as signaling molecules that regulate spermatogenesis in mammals. However, their roles in crustacean sperm development remain unknown. In this study, the testis and vas deferens of the black tiger shrimp Penaeus monodon were analyzed using ultra-high performance liquid chromatography coupled with Orbitrap high resolution mass spectrometry. This led to the identification of three PUFAs and ten eicosanoids, including 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) and (±)15-hydroxyeicosapentaenoic acid ((±)15-HEPE), both of which have not previously been reported in crustaceans. The comparison between wild-caught and domesticated shrimp revealed that wild-caught shrimp had higher sperm counts, higher levels of (±)8-HEPE in testes, and higher levels of prostaglandin E2 (PGE2) and prostaglandin F2α in vas deferens than domesticated shrimp. In contrast, domesticated shrimp contained higher levels of (±)12-HEPE, (±)18-HEPE, and eicosapentaenoic acid (EPA) in testes and higher levels of 15d-PGJ2, (±)12-HEPE, EPA, arachidonic acid (ARA), and docosahexaenoic acid (DHA) in vas deferens than wild-caught shrimp. To improve total sperm counts in domesticated shrimp, these broodstocks were fed with polychaetes, which contained higher levels of PUFAs than commercial feed pellets. Polychaete-fed shrimp produced higher total sperm counts and higher levels of PGE2 in vas deferens than pellet-fed shrimp. In contrast, pellet-fed shrimp contained higher levels of (±)12-HEPE, (±)18-HEPE, and EPA in testes and higher levels of (±)12-HEPE in vas deferens than polychaete-fed shrimp. These data suggest a positive correlation between high levels of PGE2 in vas deferens and high total sperm counts as well as a negative correlation between (±)12-HEPE in both shrimp testis and vas deferens and total sperm counts. Our analysis not only confirms the presence of PUFAs and eicosanoids in crustacean male reproductive organs, but also suggests that the eicosanoid biosynthesis pathway may serve as a potential target to improve sperm production in shrimp.
Collapse
Affiliation(s)
- Pisut Yotbuntueng
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
| | - Surasak Jiemsup
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
| | - Pacharawan Deenarn
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
| | - Punsa Tobwor
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
| | - Suganya Yongkiettrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
| | - Vanicha Vichai
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
| | - Thapanee Pruksatrakul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
| | - Kanchana Sittikankaew
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
| | - Nitsara Karoonuthaisiri
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
- Institute for Global Food Security, Queen’s University, Belfast, United Kingdom
- International Joint Research Center on Food Security, Khlong Luang, Pathum Thani, Thailand
| | - Rungnapa Leelatanawit
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
| | - Wananit Wimuttisuk
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Pathum Thani, Thailand
- * E-mail:
| |
Collapse
|
3
|
Liang X, Luo X, Lin H, Han F, Qin JG, Chen L, Xu C, Li E. Effects and Mechanism of Different Phospholipid Diets on Ovary Development in Female Broodstock Pacific White Shrimp, Litopenaeus vannamei. Front Nutr 2022; 9:830934. [PMID: 35252307 PMCID: PMC8894211 DOI: 10.3389/fnut.2022.830934] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/19/2022] [Indexed: 01/15/2023] Open
Abstract
Research on nutrition and feed development for the broodstock of the Pacific white shrimp, Litopenaeus vannamei, is rare, and a poor broodstock quality is a critical factor restricting the seed supply in shrimp farming. As an essential nutrient for the gonadal development of L. vannamei, one control diet (no phospholipid) and three typical phospholipids (soybean lecithin, egg yolk lecithin, and krill oil) were evaluated in a semipurified diet of 4% phospholipid for a 28-day trial (initial weight 34.7 ± 4.2 g). Dietary phospholipid supplementation significantly promoted the ovarian maturation of female L. vannamei. Compared with soybean lecithin and egg yolk lecithin, krill oil showed the best positive results. Shrimp fed with a diet krill oil has obtained a significantly higher gonadosomatic index, yolk particle deposition, lipid accumulation, and estrogen secretion than from other sources. Ovary lipidomic analysis showed that the krill oil enriched the lipid composition of the ovary. The “glycerophospholipid metabolism” and “sphingolipid metabolism” pathways were significantly varied via topological pathway analysis. Genes and hub genes, with significantly different expression levels, were significantly enriched in the “fatty acid metabolism pathway,” “glycerophospholipid metabolism,” and “arachidonic acid metabolism” pathways by transcriptomic analysis. Correlation analysis of the transcriptome and lipidomics showed that the differential gene “hormone-sensitive lipase-like” (HSL) was positively correlated with various lipids [triglycerides (TG), phosphatidic acid (PA), phosphatidylserine (P), phosphatidylethanolamine (PE), glucosylceramide (GlcCer), phosphatidylglycerol (PG), and phosphatidylinositol (PI)] but was negatively correlated with diacylglycerol (DG), lysophosphatidylethanolamine (LPE), and sphingomyelin (SM). In conclusion, the dietary phospholipids, especially krill oil as a phospholipid source, can promote the development of L. vannamei ovaries by increasing the accumulation of nutrients such as triglycerides and sterols, and the secretion of estrogen or related hormones, such as estradiol and methylfarneside, by affecting the metabolism of glycerol phospholipids and some key fatty acids.
Collapse
Affiliation(s)
- Xiaolong Liang
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, China
| | - Xiaolong Luo
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, China
| | - Hongxing Lin
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, China
| | - Fenglu Han
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, China
| | - Jian G Qin
- School of Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Liqiao Chen
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Chang Xu
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, China
| | - Erchao Li
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou, China
| |
Collapse
|
4
|
Yang H, Chen X, Li Z, Wu X, Zhou M, Zhang X, Liu Y, Sun Y, Zhu C, Guo Q, Chen T, Zhang J. Genome-Wide Analysis Indicates a Complete Prostaglandin Pathway from Synthesis to Inactivation in Pacific White Shrimp, Litopenaeus vannamei. Int J Mol Sci 2022; 23:ijms23031654. [PMID: 35163575 PMCID: PMC8835781 DOI: 10.3390/ijms23031654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 02/02/2023] Open
Abstract
Prostaglandins (PGs) play many essential roles in the development, immunity, metabolism, and reproduction of animals. In vertebrates, arachidonic acid (ARA) is generally converted to prostaglandin G2 (PGG2) and H2 (PGH2) by cyclooxygenase (COX); then, various biologically active PGs are produced through different downstream prostaglandin synthases (PGSs), while PGs are inactivated by 15-hydroxyprostaglandin dehydrogenase (PGDH). However, there is very limited knowledge of the PG biochemical pathways in invertebrates, particularly for crustaceans. In this study, nine genes involved in the prostaglandin pathway, including a COX, seven PGSs (PGES, PGES2, PGDS1/2, PGFS, AKR1C3, and TXA2S), and a PGDH were identified based on the Pacific white shrimp (Litopenaeus vannamei) genome, indicating a more complete PG pathway from synthesis to inactivation in crustaceans than in insects and mollusks. The homologous genes are conserved in amino acid sequences and structural domains, similar to those of related species. The expression patterns of these genes were further analyzed in a variety of tissues and developmental processes by RNA sequencing and quantitative real-time PCR. The mRNA expression of PGES was relatively stable in various tissues, while other genes were specifically expressed in distant tissues. During embryo development to post-larvae, COX, PGDS1, GDS2, and AKR1C3 expressions increased significantly, and increasing trends were also observed on PGES, PGDS2, and AKR1C3 at the post-molting stage. During the ovarian maturation, decreasing trends were found on PGES1, PGDS2, and PGDH in the hepatopancreas, but all gene expressions remained relatively stable in ovaries. In conclusion, this study provides basic knowledge for the synthesis and inactivation pathway of PG in crustaceans, which may contribute to the understanding of their regulatory mechanism in ontogenetic development and reproduction.
Collapse
Affiliation(s)
- Hao Yang
- Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China; (H.Y.); (Y.L.); (Y.S.)
| | - Xiaoli Chen
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (X.C.); (C.Z.)
| | - Zhi Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; (Z.L.); (X.W.); (M.Z.)
| | - Xugan Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; (Z.L.); (X.W.); (M.Z.)
| | - Mingyu Zhou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China; (Z.L.); (X.W.); (M.Z.)
| | - Xin Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China;
| | - Yujie Liu
- Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China; (H.Y.); (Y.L.); (Y.S.)
| | - Yuying Sun
- Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China; (H.Y.); (Y.L.); (Y.S.)
| | - Chunhua Zhu
- Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; (X.C.); (C.Z.)
| | - Qiuhui Guo
- EasyATGC Limited Liability Company, Shenzhen 518081, China;
| | - Ting Chen
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China;
- Correspondence: (T.C.); (J.Z.)
| | - Jiquan Zhang
- Laboratory of Zoological Systematics and Application of Hebei Province, College of Life Sciences, Hebei University, Baoding 071002, China; (H.Y.); (Y.L.); (Y.S.)
- Correspondence: (T.C.); (J.Z.)
| |
Collapse
|
5
|
Ramachandran PD, Muniyappa MD, Kanapadinchareveetil S, Nair SN, Ajithkumar KG, Samraj S, Rajappan A, Varghese A, Kalarickal DC, Ravindran R, Ghosh S, Juliet S. Modulation of the PGE 2-Mediated Pathway in the Eclosion Blocking Effect of Flumethrin and Terpenoid Subfraction Isolated from Artemesia nilagirica in Rhipicephalus annulatus. Molecules 2021; 26:molecules26164905. [PMID: 34443500 PMCID: PMC8401071 DOI: 10.3390/molecules26164905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/02/2022] Open
Abstract
Prostaglandins are a group of important cell-signaling molecules involved in the regulation of ovarian maturation, oocyte development, egg laying and associated behaviors in invertebrates. However, the presence of prostaglandin E2 (PGE2), the key enzymes for PGE2 biosynthesis and its interference by drugs were not investigated previously in the ovary of ticks. The present study was undertaken to assess the modulation of the PGE2-mediated pathway in the eclosion blocking effect of flumethrin and terpenoid subfraction isolated from Artemisia nilagirica in Rhipicephalus annulatus ticks. The acaricidal activities and chemical profiling of the terpenoid subfraction were performed. The localization of the cyclooxygenase1 (COX1) and prostaglandin E synthase (PGES) enzymes and the quantification of PGE2 in the ovaries of the ticks treated with methanol (control), flumethrin and terpenoid subfraction were also undertaken. In addition, the vitellogenin concentration in hemolymph was also assayed. Both flumethrin and the terpenoid subfraction of A. nilagirica elicited a concentration-dependent inhibition of fecundity and blocking of hatching of the eggs. The COX1 could not be detected in the ovaries of treated and control ticks, while there was no significant difference observed in the concentration of vitellogenin (Vg) in them. The presence of PGES in the oocytes of control ticks was confirmed while the immunoreactivities against PGES were absent in the vitellogenic oocytes of ticks treated with flumethrin and terpenoid subfraction. The levels of PGE2 were below the detection limit in the ovaries of the flumethrin-treated ticks, while it was significantly lower in the ovaries of the terpenoid subfraction-treated ticks. Hence, the prostaglandin E synthase and PGE2 were identified as very important mediators for the signaling pathway for ovarian maturation and oviposition in ticks. In addition, the key enzyme for prostaglandin biosynthesis, PGES and the receptors for PGE2 can be exploited as potential drug targets for tick control. The detection of PGES by immunohistochemistry and quantification of PGE2 by LC-MSMS can be employed as valuable tools for screening newer compounds for their eclosion blocking acaricidal effects.
Collapse
Affiliation(s)
- Panicker Devyani Ramachandran
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Lakkidi, P. O., Wayanad 673576, Kerala, India; (P.D.R.); (M.D.M.); (S.K.); (S.N.N.); (S.S.); (S.J.)
| | - Mahesh Doddadasarahalli Muniyappa
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Lakkidi, P. O., Wayanad 673576, Kerala, India; (P.D.R.); (M.D.M.); (S.K.); (S.N.N.); (S.S.); (S.J.)
| | - Sreelekha Kanapadinchareveetil
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Lakkidi, P. O., Wayanad 673576, Kerala, India; (P.D.R.); (M.D.M.); (S.K.); (S.N.N.); (S.S.); (S.J.)
| | - Suresh Narayanan Nair
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Lakkidi, P. O., Wayanad 673576, Kerala, India; (P.D.R.); (M.D.M.); (S.K.); (S.N.N.); (S.S.); (S.J.)
| | - Karapparambu Gopalan Ajithkumar
- Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Lakkidi, P. O., Wayanad 673576, Kerala, India; (K.G.A.); (A.V.); (D.C.K.)
| | - Sujith Samraj
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Lakkidi, P. O., Wayanad 673576, Kerala, India; (P.D.R.); (M.D.M.); (S.K.); (S.N.N.); (S.S.); (S.J.)
| | - Anoopraj Rajappan
- Department of Veterinary Pathology, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Lakkidi, P. O., Wayanad 673576, Kerala, India;
| | - Anju Varghese
- Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Lakkidi, P. O., Wayanad 673576, Kerala, India; (K.G.A.); (A.V.); (D.C.K.)
| | - Deepa Chundayil Kalarickal
- Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Lakkidi, P. O., Wayanad 673576, Kerala, India; (K.G.A.); (A.V.); (D.C.K.)
| | - Reghu Ravindran
- Department of Veterinary Parasitology, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Lakkidi, P. O., Wayanad 673576, Kerala, India; (K.G.A.); (A.V.); (D.C.K.)
- Correspondence: or ; Tel.: +91-9447713422
| | - Srikanta Ghosh
- Division of Parasitology, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, Bareilly, India;
| | - Sanis Juliet
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Lakkidi, P. O., Wayanad 673576, Kerala, India; (P.D.R.); (M.D.M.); (S.K.); (S.N.N.); (S.S.); (S.J.)
- Center for Ethnopharmacology, College of Veterinary and Animal Sciences, Pookode, Kerala Veterinary and Animal Sciences University, Lakkidi, P. O., Wayanad 673576, Kerala, India
| |
Collapse
|
6
|
Biochemical characterization of the cyclooxygenase enzyme in penaeid shrimp. PLoS One 2021; 16:e0250276. [PMID: 33886622 PMCID: PMC8062024 DOI: 10.1371/journal.pone.0250276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/01/2021] [Indexed: 11/24/2022] Open
Abstract
Cyclooxygenase (COX) is a two-step enzyme that converts arachidonic acid into prostaglandin H2, a labile intermediate used in the production of prostaglandin E2 (PGE2) and prostaglandin F2α (PGF2α). In vertebrates and corals, COX must be N-glycosylated on at least two asparagine residues in the N-(X)-S/T motif to be catalytically active. Although COX glycosylation requirement is well-characterized in many species, whether crustacean COXs require N-glycosylation for their enzymatic function have not been investigated. In this study, a 1,842-base pair cox gene was obtained from ovarian cDNA of the black tiger shrimp Penaeus monodon. Sequence analysis revealed that essential catalytic residues and putative catalytic domains of P. monodon COX (PmCOX) were well-conserved in relation to other vertebrate and crustacean COXs. Expression of PmCOX in 293T cells increased levels of secreted PGE2 and PGF2α up to 60- and 77-fold, respectively, compared to control cells. Incubation of purified PmCOX with endoglycosidase H, which cleaves oligosaccharides from N-linked glycoproteins, reduced the molecular mass of PmCOX. Similarly, addition of tunicamycin, which inhibits N-linked glycosylation, in PmCOX-expressing cells resulted in PmCOX protein with lower molecular mass than those obtained from untreated cells, suggesting that PmCOX was N-glycosylated. Three potential glycosylation sites of PmCOX were identified at N79, N170 and N424. Mutational analysis revealed that although all three residues were glycosylated, only mutations at N170 and N424 completely abolished catalytic function. Inhibition of COX activity by ibuprofen treatment also decreased the levels of PGE2 in shrimp haemolymph. This study not only establishes the presence of the COX enzyme in penaeid shrimp, but also reveals that N-glycosylation sites are highly conserved and required for COX function in crustaceans.
Collapse
|
7
|
Dalvin S, Eichner C, Dondrup M, Øvergård AC. Roles of three putative salmon louse (Lepeophtheirus salmonis) prostaglandin E 2 synthases in physiology and host-parasite interactions. Parasit Vectors 2021; 14:206. [PMID: 33874988 PMCID: PMC8056522 DOI: 10.1186/s13071-021-04690-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/16/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The salmon louse (Lepeophtheirus salmonis) is a parasite of salmonid fish. Atlantic salmon (Salmo salar) exhibit only a limited and ineffective immune response when infested with this parasite. Prostaglandins (PGs) have many biological functions in both invertebrates and vertebrates, one of which is the regulation of immune responses. This has led to the suggestion that prostaglandin E2 (PGE2) is important in the salmon louse host-parasite interaction, although studies of a salmon louse prostaglandin E2 synthase (PGES) 2 gene have not enabled conformation of this hypothesis. The aim of the present study was, therefore, to characterize two additional PGES-like genes. METHODS Lepeophtheirus salmonis microsomal glutathione S-transferase 1 like (LsMGST1L) and LsPGES3L were investigated by sequencing, phylogenetics, transcript localization and expression studies. Moreover, the function of these putative PGES genes in addition to the previously identified LsPGES2 gene was analyzed in double stranded (ds) RNA-mediated knockdown (KD) salmon louse. RESULTS Analysis of the three putative LsPGES genes showed a rather constitutive transcript level throughout development from nauplius to the adult stages, and in a range of tissues, with the highest levels in the ovaries or gut. DsRNA-mediated KD of these transcripts did not produce any characteristic changes in phenotype, and KD animals displayed a normal reproductive output. The ability of the parasite to infect or modulate the immune response of the host fish was also not affected by KD. CONCLUSIONS Salmon louse prostaglandins may play endogenous roles in the management of reproduction and oxidative stress and may be a product of salmon louse blood digestions.
Collapse
Affiliation(s)
- Sussie Dalvin
- Institute of Marine Research, SLCR-Sea Lice Research Centre, Nordnes, P. box 1870, 5817, Bergen, Norway
| | - Christiane Eichner
- Department of Biological Sciences, SLCR-Sea Lice Research Centre, University of Bergen, P. box 7803, 5020, Bergen, Norway
| | - Michael Dondrup
- Department of Informatics, SLRC-Sea Lice Research Centre, University of Bergen, P. box 7803, 5020, Bergen, Norway
| | - Aina-Cathrine Øvergård
- Department of Biological Sciences, SLCR-Sea Lice Research Centre, University of Bergen, P. box 7803, 5020, Bergen, Norway.
| |
Collapse
|
8
|
Characterization of prostanoid pathway and the control of its activity by the eyestalk optic ganglion in the female giant freshwater prawn, Macrobrachium rosenbergii. Heliyon 2021; 7:e05898. [PMID: 33553720 PMCID: PMC7851786 DOI: 10.1016/j.heliyon.2021.e05898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/24/2020] [Accepted: 12/31/2020] [Indexed: 12/28/2022] Open
Abstract
The giant freshwater prawn, Macrobrachium rosenbergii, is an economically valuable species that are distributed throughout the Asia-Pacific region. With the natural population declining due to overfishing, aquaculture of this species is deemed necessary. Hence, it is essential to understand the mechanisms regulating reproduction in order to increase their production. Prostaglandins (PGs) play an important role in reproduction in most vertebrates and several invertebrates. It has been proposed that crustaceans have PGs but the prostanoids pathway in the giant freshwater prawn is still unclear. In this study, we identified 25 prostanoid-related genes involved in the biosynthesis of active prostanoids in M. rosenbergii using in silico searches of transcriptome data. Comparative analysis of encoded proteins for the MroPGES2 gene with other species was performed to confirm their evolutionary conservation. Gene expression analysis revealed the correlation of MroPGES2 gene expression level with the progress of ovarian development. Eyestalk ablation increased the expression level of MroPGES2 gene compared to intact groups during the ovary maturation stages. Collectively, this study confirmed the existence of prostanoids in the giant freshwater prawn, as well as characterizing key gene MroPGES2 associated with the prostanoid pathway. We propose that MroPGES2 may play an important role in M. rosenbergii ovarian maturation and its expression is under the inhibitory control from the eyestalk optic ganglion hormones. Identification of genes in prostanoid pathway and their expressions enables future functional studies to be performed, which may lead to applications in the aquaculture of this species.
Collapse
|
9
|
Viet Nguyen T, Ryan LW, Nocillado J, Le Groumellec M, Elizur A, Ventura T. Transcriptomic changes across vitellogenesis in the black tiger prawn (Penaeus monodon), neuropeptides and G protein-coupled receptors repertoire curation. Gen Comp Endocrinol 2020; 298:113585. [PMID: 32822704 DOI: 10.1016/j.ygcen.2020.113585] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 07/20/2020] [Accepted: 08/08/2020] [Indexed: 12/23/2022]
Abstract
The black tiger prawn (Penaeus monodon) is one of the most commercially important prawn species world-wide, yet there are currently key issues that hinder aquaculture of this species, such as low spawning capacity of captive-reared broodstock females and lack of globally available fully domesticated strains. In this study, we analysed the molecular changes that occur from vitellogenesis to spawning of a fully domesticated population of P.monodon (Madagascar) using four tissues [brain and thoracic ganglia (central nervous system - CNS), eyestalks, antennal gland, and ovary] highlighting differentially expressed genes that could be involved in the sexual maturation. In addition, due to their key role in regulating multiple physiological processes including reproduction, transcripts encoding P.monodon neuropeptides and G protein-coupled receptors (GPCRs) were identified and their expression pattern was assessed. A few neuropeptides and their putative GPCRs which were previously implicated in reproduction are discussed. We identified 573 differentially expressed transcripts between previtellogenic and vitellogenic stages, across the four analysed tissues. Multiple transcripts that have been linked to ovarian maturation were highlighted throughout the study, these include vitellogenin, Wnt, heat shock protein 21, heat shock protein 90, teneurin, Fs(1)M3, hemolymph clottable proteins and some other candidates. Seventy neuropeptide transcripts were also characterized from our de novo assembly. In addition, a hybrid approach that involved clustering and phylogenetics analysis was used to annotate all P. monodon GPCRs, revealing 223 Rhodopsin, 100 Secretin and 27 Metabotropic glutamate GPCRs. Given the key commercial significance of P.monodon and the industry requirements for developing better genomic tools to control reproduction in this species, our findings provide a foundation for future gene-based studies, setting the scene for developing innovative tools for reproduction and/or sexual maturation control in P. monodon.
Collapse
Affiliation(s)
- Tuan Viet Nguyen
- GeneCology Research Centre, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia; Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, Victoria 3083, Australia
| | - Luke W Ryan
- GeneCology Research Centre, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
| | - Josephine Nocillado
- GeneCology Research Centre, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia
| | | | - Abigail Elizur
- GeneCology Research Centre, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia.
| | - Tomer Ventura
- GeneCology Research Centre, University of the Sunshine Coast, Sunshine Coast, Queensland, Australia.
| |
Collapse
|
10
|
Swetha CH, Girish BP, Hemalatha M, Reddy PS. Induction of vitellogenesis, methyl farnesoate synthesis and ecdysteroidogenesis in two edible crabs by arachidonic acid and prostaglandins. ACTA ACUST UNITED AC 2020; 223:jeb.212381. [PMID: 31953363 DOI: 10.1242/jeb.212381] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/09/2020] [Indexed: 01/05/2023]
Abstract
The present study investigated the effect of arachidonic acid (AA) and selected prostaglandins on the regulation of vitellogenesis, ecdysteroidogenesis and methyl farnesoate (MF) synthesis in the freshwater crab Oziotelphusa senex senex and the giant mud crab, Scylla serrata Administration of AA and prostaglandin F2α (PGF2α) and prostaglandin E2 (PGE2) significantly increased ovarian index, oocyte diameter and ovarian vitellogenin levels and ecdysteroid and MF levels in the hemolymph of crabs. Secretions of MF and ecdysteroids from in vitro cultured mandibular organs (MO) and Y-organs (YO) isolated from intermolt crabs injected with AA, PGF2α and PGE2 were greater when compared with controls. In contrast, injection of prostaglandin D2 (PGD2) had no effect on vitellogenesis, ecdysteroid and MF levels in circulation. In vitro secretion of MF from MO explants isolated from avitellogenic crabs incubated with AA, PGF2α and PGE2 increased in a time-dependent manner. Conversely, incubation of YOs isolated from avitellogenic crabs with AA, PGF2α and PGE2 had no effect on secretion of ecdsyteroids. These results implicate prostaglandins in the regulation of reproduction by inducing the synthesis of MF and consequent ecdysteroid synthesis in brachyuran crabs, and provide an alternative molecular intervention mechanism to the traditional eyestalk ablation methodology to induce vitellogenesis and ovarian maturation in crustaceans.
Collapse
Affiliation(s)
- C H Swetha
- Department of Biotechnology, Sri Venkateswara University, Tirupati 517 502, India
| | - B P Girish
- Department of Biotechnology, Sri Venkateswara University, Tirupati 517 502, India
| | - M Hemalatha
- Department of Zoology, Sri Venkateswara University, Tirupati 517 502, India
| | | |
Collapse
|
11
|
Garreta-Lara E, Checa A, Fuchs D, Tauler R, Lacorte S, Wheelock CE, Barata C. Effect of psychiatric drugs on Daphnia magna oxylipin profiles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:1101-1109. [PMID: 30743823 DOI: 10.1016/j.scitotenv.2018.06.333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 06/09/2023]
Abstract
Neuro-active pharmaceuticals have been reported to act as endocrine disruptors enhancing reproduction in the model crustacean Daphnia manga at environmental concentrations of ng/L. Oxylipins and more specifically eicosanoids, which are lipid mediators formed from polyunsaturated fatty acids (PUFAs), are known to regulate reproduction together with other physiological processes in insects. In D. magna, the biosynthesis of eicosanoids and their putative role in the regulation of reproduction has been studied using transcriptomics, genomics and exposures to cyclooxygenase inhibitors. Quantification of eicosanoids and oxylipins derived from PUFAs upon exposure to pharmaceuticals is therefore crucial for a better understanding of the mode of action of neuro-active pharmaceuticals on aquatic invertebrates. The aim of this study was to investigate shifts in the oxylipin profile in D. magna adults upon exposure to environmental concentrations of the three psychiatric drugs, fluoxetine, diazepam and carbamazepine, with known effects of enhancing offspring production. Oxylipin profiles were determined in whole organism tissues using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Up to 28 different oxylipins belonging to arachidonic (AA), linoleic acid (LA), α-linoleic acid (α-LA) and eicosapentaenoic acid (EPA) pathways were detected and quantified in D. magna adults. Exposure to the selected psychiatric drugs showed that fluoxetine enhanced the accumulation of the cyclooxygenase (COX) product 12-hydroxyheptadecatrienoic acid (12-HHTrE), whereas diazepam increased the concentration of eicosanoids belonging to the lipoxygenase (LOX) and cytochrome P450 (CYP) pathways (HETEs, EpOMEs, HODEs, HOTrEs and HEPEs) from the AA, LA, αLA and EPA pathways. Carbamazepine had little effect and only one LA-derived compound from the LOX pathway (13-HODE) increased significantly. This means that despite having different modes of action in humans, fluoxetine and diazepam up-regulated eicosanoid pathways in D. magna, closely related to known biologically active products that regulate reproduction in insects.
Collapse
Affiliation(s)
- Elba Garreta-Lara
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona 08034, Catalonia, Spain
| | - Antonio Checa
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - David Fuchs
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Romà Tauler
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona 08034, Catalonia, Spain
| | - Silvia Lacorte
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona 08034, Catalonia, Spain
| | - Craig E Wheelock
- Division of Physiological Chemistry 2, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Carlos Barata
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona 08034, Catalonia, Spain.
| |
Collapse
|
12
|
Duangprom S, Ampansri W, Suwansa-Ard S, Chotwiwatthanakun C, Sobhon P, Kornthong N. Identification and expression of prostaglandin E synthase (PGES) gene in the central nervous system and ovary during ovarian maturation of the female mud crab, Scylla olivacea. Anim Reprod Sci 2018; 198:220-232. [PMID: 30292571 DOI: 10.1016/j.anireprosci.2018.09.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 09/19/2018] [Accepted: 09/27/2018] [Indexed: 01/16/2023]
Abstract
Prostaglandins have important physiological roles in marine invertebrates, including larval development and reproduction. The prostaglandin E concentration fluctuates during the ovarian development of crustaceans. The biosynthetic pathway of prostaglandin, however, has not been well studied in portunid crabs, including in the mud crab, Scylla olivacea. In this study, the aim was to investigate the presence of prostaglandin E synthase (PGES), enzyme that catalyzes the terminal conversion in the prostaglandin E2 (PGE2) biosynthesis, and its gene expression in the central nervous system (CNS) and ovary during ovarian maturation of S. olivacea. cDNA sequence encoding PGES was cloned from the S. olivacea ovary. The PGES transcript of S. olivacea (Scyol-PGES) consists of 1258 nucleotides, which encodes for 420 amino acid PGES protein precursor. Investigation of gene expression by RT-PCR indicated that Scyol-PGES was detected in all organs studied. Based on in situ hybridization, Scyol-PGES was detected in the I to III stages for oocyte development of Stage 3 of ovarian development, and in the CNS, including the various neuronal clusters of the brain. In the ventral nerve cord, the Scyol-PGES gene was expressed in the neurons within the subesophageal, thoracic and abdominal ganglia. The Scyol-PGES gene expression as indicated by relative abundance of mRNA in the Stage 4 of ovarian development was greater than that at Stages 1 to 3 of ovarian development. This is the first report on PGES in the mud crab, S. olivacea, and its gene expression suggested the involvement of PGES in the ovarian development of this species.
Collapse
Affiliation(s)
- Supawadee Duangprom
- Chulabhorn International Collage of Medicine, Thammasat University, Rangsit Campus, Pathumthani, Thailand
| | - Wilailuk Ampansri
- Chulabhorn International Collage of Medicine, Thammasat University, Rangsit Campus, Pathumthani, Thailand
| | - Saowaros Suwansa-Ard
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Charoonroj Chotwiwatthanakun
- Mahidol University, Nakhonsawan Campus, Nakhonsawan, Thailand; Center of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi, Bangkok, Thailand; Faculty of Allied Health Sciences, Burapha University, Long-Hard Bangsaen Rd., SeanSook Sub-District, Mueang District, Chonburi, Thailand
| | - Napamanee Kornthong
- Chulabhorn International Collage of Medicine, Thammasat University, Rangsit Campus, Pathumthani, Thailand.
| |
Collapse
|
13
|
Kankuan W, Wanichanon C, Titone R, Engsusophon A, Sumpownon C, Suphamungmee W, Morani F, Masini M, Novelli M, Isidoro C, Sobhon P. Starvation Promotes Autophagy-Associated Maturation of the Ovary in the Giant Freshwater Prawn, Macrobrachium rosenbergii. Front Physiol 2017; 8:300. [PMID: 28553234 PMCID: PMC5427116 DOI: 10.3389/fphys.2017.00300] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/25/2017] [Indexed: 01/20/2023] Open
Abstract
Limitation of food availability (starvation) is known to influence the reproductive ability of animals. Autophagy is a lysosomal driven degradation process that protects the cell under metabolic stress conditions, such as during nutrient shortage. Whether, and how starvation-induced autophagy impacts on the maturation and function of reproductive organs in animals are still open questions. In this study, we have investigated the effects of starvation on histological and cellular changes that may be associated with autophagy in the ovary of the giant freshwater prawn, Macrobachium rosenbergii. To this end, the female prawns were daily fed (controls) or unfed (starvation condition) for up to 12 days, and the ovary tissue was analyzed at different time-points. Starvation triggered ovarian maturation, and concomitantly increased the expression of autophagy markers in vitellogenic oocytes. The immunoreactivities for autophagy markers, including Beclin1, LC3-II, and Lamp1, were enhanced in the late oocytes within the mature ovaries, especially at the vitellogenic stages. These markers co-localized with vitellin in the yolk granules within the oocytes, suggesting that autophagy induced by starvation could drive vitellin utilization, thus promoting ovarian maturation.
Collapse
Affiliation(s)
- Wilairat Kankuan
- Department of Anatomy, Faculty of Science, Mahidol UniversityBangkok, Thailand.,Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "Amedeo Avogadro"Novara, Italy
| | - Chaitip Wanichanon
- Department of Anatomy, Faculty of Science, Mahidol UniversityBangkok, Thailand
| | - Rossella Titone
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "Amedeo Avogadro"Novara, Italy
| | | | | | | | - Federica Morani
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "Amedeo Avogadro"Novara, Italy
| | - Matilde Masini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of PisaPisa, Italy
| | - Michela Novelli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of PisaPisa, Italy
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences, Università del Piemonte Orientale "Amedeo Avogadro"Novara, Italy
| | - Prasert Sobhon
- Department of Anatomy, Faculty of Science, Mahidol UniversityBangkok, Thailand.,Faculty of Allied Health Sciences, Burapha UniversityChonburi, Thailand
| |
Collapse
|
14
|
Kangpanich C, Pratoomyot J, Siranonthana N, Senanan W. Effects of arachidonic acid supplementation in maturation diet on female reproductive performance and larval quality of giant river prawn ( Macrobrachium rosenbergii). PeerJ 2016; 4:e2735. [PMID: 27917321 PMCID: PMC5131618 DOI: 10.7717/peerj.2735] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/29/2016] [Indexed: 11/26/2022] Open
Abstract
The giant river prawn (Macrobrachium rosenbergii) is one of the most farmed freshwater crustaceans in the world. Its global production has been stalling in the past decade due to the inconsistent quality of broodstock and hatchery-produced seeds. A better understanding of the role of nutrition in maturation diets will help overcome some of the production challenges. Arachidonic acid (20:4 n-6, ARA) is a fatty acid precursor of signaling molecules important for crustacean reproduction, prostaglandins E and F of the series II (PGE2 and PGF2α), and is often lacking in maturation diets of shrimp and prawns. We examined the effects of ARA in a combination of different fish oil (FO) and soybean oil (SO) blends on females’ reproductive performance and larval quality. Adult females (15.22 ± 0.13 g and 11.12 ± 0.09 cm) were fed six isonitrogenous and isolipidic diets containing one of two different base compositions (A or B), supplemented with one of three levels of Mortierella alpine-derived ARA (containing 40% active ARA): 0, 1 or 2% by ingredient weight. The two base diets differed in the percentages of (FO and SO with diet A containing 2% SO and 2% FO and diet B containing 2.5% SO and 1.5% FO, resulting in differences in proportional contents of dietary linoleic acid (18:2n-6, LOA) and docosahexaenoic acid (22:6n-3, DHA)). After the eight-week experiment, prawns fed diet B with 1 and 2% ARA supplement (B1 and B2) exhibited the highest gonadosomatic index (GSI), hepatosomatic index (HSI), egg clutch weight, fecundity, hatching rate, number of larvae, and reproductive effort compared to those fed other diets (p ≤ 0.05). Larvae from these two dietary treatments also had higher tolerance to low salinity (2 ppt). The maturation period was not significantly different among most treatments (p ≥ 0.05). ARA supplementation, regardless of the base diet, significantly improved GSI, HSI, egg clutch weight and fecundity. However, the diets with an enhanced ARA and LOA (B1 and B2) resulted in the best reproductive performance, egg hatchability and larval tolerance to low salinity. These dietary treatments also allow for effective accumulation of ARA and an n-3 lcPUFA, DHA in eggs and larvae.
Collapse
Affiliation(s)
- Chanpim Kangpanich
- Department of Fisheries, Faculty of Agriculture and Natural Resources, Rajamangala University of Technology Tawan-ok, Chonburi, Thailand; Department of Aquatic Science, Faculty of Science, Burapha University, Chonburi, Thailand
| | | | - Nisa Siranonthana
- Institute of Marine Science, Burapha University , Chonburi , Thailand
| | - Wansuk Senanan
- Department of Aquatic Science, Faculty of Science, Burapha University , Chonburi , Thailand
| |
Collapse
|