1
|
Tang J, Yuan M, Wang J, Li Q, Huang B, Wei L, Liu Y, Han Y, Zhang X, Wang X, Zhang M, Wang X. Identification and characterization of gonadotropin-releasing hormone (GnRH) in Zhikong scallop Chlamys farreri during gonadal development. Front Physiol 2023; 14:1180725. [PMID: 37324384 PMCID: PMC10264684 DOI: 10.3389/fphys.2023.1180725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/16/2023] [Indexed: 06/17/2023] Open
Abstract
Gonadotropin-releasing hormone (GnRH) controls synthesis of sex steroid hormones through hypothalamic-pituitary-gonadal (HPG) axis in vertebrates. But in mollusks, research on neuroendocrine control of gonadal function, such as the function of GnRH during gonadal development is limited. In this study, we investigated the morphology and structure of the nerve ganglia of Zhikong scallop Chlamys farreri by physiological and histological observations. We also cloned the ORF and studied the expression patterns of GnRH in the scallop. Tissue expression analysis showed that GnRH was highly expressed in parietovisceral ganglion (PVG). The in situ hybridization result further confirmed that GnRH mRNA only distributed in some good-sized neurons in the posterior lobe (PL) and some pint-sized neurons in the lateral lobe (LL). In addition, by examining the expression of GnRH during gonadal development in ganglia, we found GnRH displayed higher expression in the female scallops, and showed significant high expression at the growing stage of female scallops in PVG. This study would contribute to gaining insight into the mechanism underlying reproduction regulation by GnRH in the scallop and help to provide a better understanding of reproductive neuroendocrine in mollusks.
Collapse
Affiliation(s)
- Juyan Tang
- School of Agriculture, Ludong University, Yantai, China
| | | | - Jia Wang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Qianqian Li
- School of Agriculture, Ludong University, Yantai, China
| | - Baoyu Huang
- School of Agriculture, Ludong University, Yantai, China
| | - Lei Wei
- School of Agriculture, Ludong University, Yantai, China
| | - Yaqiong Liu
- School of Agriculture, Ludong University, Yantai, China
| | - Yijing Han
- School of Agriculture, Ludong University, Yantai, China
| | - Xuekai Zhang
- School of Agriculture, Ludong University, Yantai, China
| | - Xiaona Wang
- School of Agriculture, Ludong University, Yantai, China
| | - Meiwei Zhang
- School of Agriculture, Ludong University, Yantai, China
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, China
| |
Collapse
|
2
|
Fodor I, Pirger Z. From Dark to Light - An Overview of Over 70 Years of Endocrine Disruption Research on Marine Mollusks. Front Endocrinol (Lausanne) 2022; 13:903575. [PMID: 35872980 PMCID: PMC9301197 DOI: 10.3389/fendo.2022.903575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
|
3
|
Taubenheim J, Kortmann C, Fraune S. Function and Evolution of Nuclear Receptors in Environmental-Dependent Postembryonic Development. Front Cell Dev Biol 2021; 9:653792. [PMID: 34178983 PMCID: PMC8222990 DOI: 10.3389/fcell.2021.653792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Nuclear receptors (NRs) fulfill key roles in the coordination of postembryonal developmental transitions in animal species. They control the metamorphosis and sexual maturation in virtually all animals and by that the two main environmental-dependent developmental decision points. Sexual maturation and metamorphosis are controlled by steroid receptors and thyroid receptors, respectively in vertebrates, while both processes are orchestrated by the ecdysone receptor (EcR) in insects. The regulation of these processes depends on environmental factors like nutrition, temperature, or photoperiods and by that NRs form evolutionary conserved mediators of phenotypic plasticity. While the mechanism of action for metamorphosis and sexual maturation are well studied in model organisms, the evolution of these systems is not entirely understood and requires further investigation. We here review the current knowledge of NR involvement in metamorphosis and sexual maturation across the animal tree of life with special attention to environmental integration and evolution of the signaling mechanism. Furthermore, we compare commonalities and differences of the different signaling systems. Finally, we identify key gaps in our knowledge of NR evolution, which, if sufficiently investigated, would lead to an importantly improved understanding of the evolution of complex signaling systems, the evolution of life history decision points, and, ultimately, speciation events in the metazoan kingdom.
Collapse
Affiliation(s)
| | | | - Sebastian Fraune
- Zoology and Organismic Interactions, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
4
|
Murata R, Mushirobira Y, Tanaka Y, Soyano K. Expression profile of GnRH-like peptide during gonadal sex differentiation in the cephalopod kisslip cuttlefish, Sepia lycidas. Gen Comp Endocrinol 2021; 304:113718. [PMID: 33476661 DOI: 10.1016/j.ygcen.2021.113718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/25/2020] [Accepted: 01/14/2021] [Indexed: 11/15/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is one of the most important neuroendocrine regulators for animal reproduction. GnRH-like peptide (GnRH-like) has recently been shown to play a critical reproductive role mainly in gametogenesis or steroidogenesis in the gonads of some molluscs, including cephalopods. However, its involvement in gonadal sex differentiation remains unknown. Here, we show the expression profile of GnRH-like in the brain of the cephalopod kisslip cuttlefish, Sepia lycidas, throughout gonadal sex differentiation, by quantitative real time RT-PCR and immunohistochemistry. We found that GnRH-like could be detected in the brain at a sexually undifferentiated stage, and its expression level significantly increased upon initiation of gonadal sex differentiation. However, no significant difference in GnRH-like expression levels was observed between sexes during gonadal sex differentiation. Additionally, we demonstrated immunoreactivity of GnRH-like in glial cells or immature neurons, which are mainly distributed in the non-reproductive related area of the cephalopod brain, suggesting the immature function of the reproductive endocrine axis during early ontogenesis. Our results demonstrate for the first time, the expression profile of GnRH-like during early ontogenesis in cephalopods.
Collapse
Affiliation(s)
- Ryosuke Murata
- Institute for East China Sea Research, Organization for Marine Science and Technology, Nagasaki University, Taira-machi, Nagasaki 851-2213, Japan.
| | - Yuji Mushirobira
- Institute for East China Sea Research, Organization for Marine Science and Technology, Nagasaki University, Taira-machi, Nagasaki 851-2213, Japan
| | | | - Kiyoshi Soyano
- Institute for East China Sea Research, Organization for Marine Science and Technology, Nagasaki University, Taira-machi, Nagasaki 851-2213, Japan
| |
Collapse
|
5
|
Invertebrate Gonadotropin-Releasing Hormone Receptor Signaling and Its Relevant Biological Actions. Int J Mol Sci 2020; 21:ijms21228544. [PMID: 33198405 PMCID: PMC7697785 DOI: 10.3390/ijms21228544] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Gonadotropin-releasing hormones (GnRHs) play pivotal roles in reproduction via the hypothalamus-pituitary-gonad axis (HPG axis) in vertebrates. GnRHs and their receptors (GnRHRs) are also conserved in invertebrates lacking the HPG axis, indicating that invertebrate GnRHs do not serve as “gonadotropin-releasing factors” but, rather, function as neuropeptides that directly regulate target tissues. All vertebrate and urochordate GnRHs comprise 10 amino acids, whereas amphioxus, echinoderm, and protostome GnRH-like peptides are 11- or 12-residue peptides. Intracellular calcium mobilization is the major second messenger for GnRH signaling in cephalochordates, echinoderms, and protostomes, while urochordate GnRHRs also stimulate cAMP production pathways. Moreover, the ligand-specific modulation of signal transduction via heterodimerization between GnRHR paralogs indicates species-specific evolution in Ciona intestinalis. The characterization of authentic or putative invertebrate GnRHRs in various tissues and their in vitro and in vivo activities indicate that invertebrate GnRHs are responsible for the regulation of both reproductive and nonreproductive functions. In this review, we examine our current understanding of and perspectives on the primary sequences, tissue distribution of mRNA expression, signal transduction, and biological functions of invertebrate GnRHs and their receptors.
Collapse
|
6
|
Zhang M, Wei H, Liu T, Li W, Li Y, Wang S, Xing Q, Hu X, Zhang L, Bao Z. Potential GnRH and steroidogenesis pathways in the scallop Patinopecten yessoensis. J Steroid Biochem Mol Biol 2020; 204:105756. [PMID: 32979503 DOI: 10.1016/j.jsbmb.2020.105756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/15/2020] [Accepted: 09/15/2020] [Indexed: 11/23/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) controls synthesis of sex steroid hormones through hypothalamic-pituitary-gonadal (HPG) axis in vertebrates. But in mollusks, research on GnRH and steroidogenesis pathways is still limited. In this study, we first identified two gonadotropin receptor like genes (LGR and LGR5L) and four steroidogenesis-related genes (CYP17A, HSD17B12, HSD3B1 and HSD3B2) in the scallop Patinopecten yessoensis. By examining the expression of 11 genes in the ganglia and/or gonad as well as the concentration of progesterone, testosterone and estradiol in the gonad, we postulate that a potential GnRH signaling pathway (GnRH-GnRHR-GPB5-LGR/LGR5L) in the cerebral and pedal ganglia (CPG) and steroidogenesis pathway (CYP17A, HSD17B12 and HSD3B1) in the gonad are involved in regulating sex steroid hormones. E2/T index that indicates aromatase activity is higher in the ovary than testis and is positively correlated with the expression of FOXL2 in the gonad, implying the presence of aromatase in the scallop. In addition, we confirmed that expression of most of the downstream genes in the two pathways was significantly elevated after injection of mature py-GnRH peptide. This study would contribute to a new understanding of the molecular basis underlying reproduction regulation by GnRH in mollusks.
Collapse
Affiliation(s)
- Meiwei Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Huilan Wei
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Tian Liu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Wanru Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Yajuan Li
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Lingling Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
7
|
Funayama S, Kawashima Y, Saito T, Furukawa S, Kodera Y, Moriyama S. Identification and Function of GnRH-like Peptide in the Pacific Abalone, Haliotis discus hannai. Zoolog Sci 2019; 36:339-347. [PMID: 34664905 DOI: 10.2108/zs180189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/26/2019] [Indexed: 11/17/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is an important regulator of reproductive function in various vertebrates and invertebrates. In the present study, we have identified the GnRH-like peptide cDNA and peptide from the cerebral ganglion (CG) of the Pacific abalone, Haliotis discus hannai. Pacific abalone GnRH-like peptide (hdhGnRH-like peptide) cDNA encodes precursor, which possesses the typical organization of the known mollusk GnRH-like peptide precursors, including a hydrophobic signal peptide, GnRH-like peptide, and a cleavage site followed by a GAP-like peptide region. Three hdhGnRH-like peptides, pQNYHFSNGWHAamide (hdhGnRH-11amide), pQNYHFSNGWHA (hdhGnRH-11OH), and pQNYHFSNGWHAG (hdhGnRH-12OH), were determined from the acid/acetone extract of the CG by mass spectrometry (LC-MS/MS) analysis. The hdhGnRH-like peptide mRNA expression was detected not only in the CG but also in gonads, and hdhGnRH-11amide was also detected in the extract of gonads. The mRNA expression of hdhGnRH-like peptide in the CG was lower in spawned males than in non-spawned animals, while no change in hdhGnRH-like peptide mRNA expression was shown in both ovulated and non-ovulated abalone. The hdhGnRH-11amide induces spawning and ovulation of both mature males and females in a concentration-dependent fashion following intramuscular injection. These results indicate that three hdhGnRH-like peptides are yielded from a single hdhGnRH-like peptide precursor, and that at least hdhGnRH-11amide is involved in the control of reproduction of the Pacific abalone.
Collapse
Affiliation(s)
- Shohei Funayama
- Laboratory of Functional Biology of Aquaculture, School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Yusuke Kawashima
- Department of Physics, School of Science, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan.,Department of Genome Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Tatsuya Saito
- Department of Physics, School of Science, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan.,BioMedix Co. Ltd., Tokyo 104-0033, Japan
| | | | - Yoshio Kodera
- Department of Physics, School of Science, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan
| | - Shunsuke Moriyama
- Laboratory of Functional Biology of Aquaculture, School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa 252-0373, Japan,
| |
Collapse
|
8
|
Abstract
Gonadotropin-releasing hormone (GnRH) was first discovered in mammals on account of its effect in triggering pituitary release of gonadotropins and the importance of this discovery was recognized forty years ago in the award of the 1977 Nobel Prize for Physiology or Medicine. Investigation of the evolution of GnRH revealed that GnRH-type signaling systems occur throughout the chordates, including agnathans (e.g. lampreys) and urochordates (e.g. sea squirts). Furthermore, the discovery that adipokinetic hormone (AKH) is the ligand for a GnRH-type receptor in the arthropod Drosophila melanogaster provided evidence of the antiquity of GnRH-type signaling. However, the occurrence of other AKH-like peptides in arthropods, which include corazonin and AKH/corazonin-related peptide (ACP), has complicated efforts to reconstruct the evolutionary history of this family of related neuropeptides. Genome/transcriptome sequencing has revealed that both GnRH-type receptors and corazonin-type receptors occur in lophotrochozoan protostomes (annelids, mollusks) and in deuterostomian invertebrates (cephalochordates, hemichordates, echinoderms). Furthermore, peptides that act as ligands for GnRH-type and corazonin-type receptors have been identified in mollusks. However, what has been lacking is experimental evidence that distinct GnRH-type and corazonin-type peptide-receptor signaling pathways occur in deuterostomes. Importantly, we recently reported the identification of two neuropeptides that act as ligands for either a GnRH-type receptor or a corazonin-type receptor in an echinoderm species - the common European starfish Asterias rubens. Discovery of distinct GnRH-type and corazonin-type signaling pathways in this deuterostomian invertebrate has demonstrated for the first time that the evolutionarily origin of these paralogous systems can be traced to the common ancestor of protostomes and deuterostomes. Furthermore, lineage-specific losses of corazonin signaling (in vertebrates, urochordates and nematodes) and duplication of the GnRH signaling system in arthropods (giving rise to the AKH and ACP signaling systems) and quadruplication of the GnRH signaling system in vertebrates (followed by lineage-specific losses or duplications) accounts for the phylogenetic distribution of GnRH/corazonin-type peptide-receptor pathways in extant animals. Informed by these new insights, here we review the history of research on the evolution of GnRH/corazonin-type neuropeptide signaling. Furthermore, we propose a standardized nomenclature for GnRH/corazonin-type neuropeptides wherein peptides are either named "GnRH" or "corazonin", with the exception of the paralogous GnRH-type peptides that have arisen by gene duplication in the arthropod lineage and which are referred to as "AKH" (or red pigment concentrating hormone, "RCPH", in crustaceans) and "ACP".
Collapse
Affiliation(s)
- Meet Zandawala
- Stockholm University, Department of Zoology, Stockholm, Sweden
| | - Shi Tian
- Queen Mary University of London, School of Biological & Chemical Sciences, Mile End Road, London E1 4NS, UK
| | - Maurice R Elphick
- Queen Mary University of London, School of Biological & Chemical Sciences, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
9
|
Characterization and spatiotemporal expression of gonadotropin-releasing hormone in the Pacific abalone, Haliotis discus hannai. Comp Biochem Physiol A Mol Integr Physiol 2017; 209:1-9. [PMID: 28408352 DOI: 10.1016/j.cbpa.2017.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/23/2017] [Accepted: 04/03/2017] [Indexed: 11/20/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is a key neuropeptide regulating reproduction in humans and other vertebrates. Recently, GnRH-like cDNAs and peptides were reported in marine mollusks, implying that GnRH-mediated reproduction is an ancient neuroendocrine system that arose prior to the divergence of protostomes and deuterostomes. Here, we evaluated the reproductive control system mediated by GnRH in the Pacific abalone Haliotis discus hannai. We cloned a prepro-GnRH cDNA (Hdh-GnRH) from the pleural-pedal ganglion (PPG) in H. discus hannai, and analyzed its spatiotemporal gene expression pattern. The open reading frame of Hdh-GnRH encodes a protein of 101 amino acids, consisting of a signal peptide, a GnRH dodecapeptide, a cleavage site, and a GnRH-associated peptide. This structure and sequence are highly similar to GnRH-like peptides reported for mollusks and other invertebrates. Quantitative polymerase chain reaction demonstrated that Hdh-GnRH mRNA was more strongly expressed in the ganglions (PPG and cerebral ganglion [CG]) than in other tissues (gonads, gills, intestine, hemocytes, muscle, and mantle) in both sexes. In females, the expression levels of Hdh-GnRH mRNA in the PPG and branchial ganglion (BG) were significantly higher at the ripe and partial spent stages than at the early and late active stages. In males, Hdh-GnRH mRNA levels in the BG showed a significant increase in the partial spent stage. Unexpectedly, Hdh-GnRH levels in the CG were not significantly different among the examined stages in both sexes. These results suggest that Hdh-GnRH mRNA expression profiles in the BG and possibly the PPG are tightly correlated with abalone reproductive activities.
Collapse
|
10
|
Morthorst JE. A field study of hemolymph yolk protein levels in a bivalve (Unio tumidus) and future considerations for bivalve yolk protein as endocrine biomarker. Comp Biochem Physiol C Toxicol Pharmacol 2017; 192:16-22. [PMID: 27890716 DOI: 10.1016/j.cbpc.2016.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/16/2016] [Accepted: 11/22/2016] [Indexed: 11/18/2022]
Abstract
Induction of yolk protein in male fish is a recognized biomarker for estrogenic exposure because the estrogen-dependent induction mechanism is well investigated and there is a clear difference in yolk protein levels of unexposed males and females. Attempts have been made to use induction of bivalve yolk protein as biomarker for estrogenic exposure. However, several biomarker validation criteria have not yet been investigated e.g. an in-depth understanding of the induction mechanism and background variability is needed and reliable detection assays are yet to be developed. To obtain background knowledge about yolk protein levels freshwater bivalves (Unio tumidus) were collected in an uncontaminated Danish lake over the course of a year (33 collection dates). The hemolymph yolk protein concentration of 569 individuals was determined by a species specific enzyme-linked immunosorbent assay (ELISA) and male and female gonadal development cycles were established. The average yolk protein levels of males and females collected at each sampling date overlapped in some periods; the male and female range was 66,946 - 169,692 ng/mL and 88,731 - 681,667 ng/mL, respectively. Because male and female hemolymph yolk protein levels overlap, great care should be taken if yolk protein induction in bivalve hemolymph is considered as endocrine biomarker.
Collapse
Affiliation(s)
- Jane E Morthorst
- Department of Biology, University of Southern Denmark, Campusvej 55, DK-5220, Odense M, Denmark.
| |
Collapse
|
11
|
Kavanaugh SI, Tsai PS. Functional Authentication of a Novel Gastropod Gonadotropin-Releasing Hormone Receptor Reveals Unusual Features and Evolutionary Insight. PLoS One 2016; 11:e0160292. [PMID: 27467252 PMCID: PMC4964986 DOI: 10.1371/journal.pone.0160292] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 07/15/2016] [Indexed: 01/16/2023] Open
Abstract
A gonadotropin-releasing hormone (GnRH)-like molecule was previously identified in a gastropod, Aplysia californica, and named ap-GnRH. In this study, we cloned the full-length cDNA of a putative ap-GnRH receptor (ap-GnRHR) and functionally authenticated this receptor as a bona fide ap-GnRHR. This receptor contains two potential translation start sites, each accompanied by a Kozak sequence, suggesting the translation of a long and a short form of the receptor is possible. The putative ap-GnRHR maintains the conserved structural motifs of GnRHR-like receptors and shares 45% sequence identity with the octopus GnRHR. The expression of the putative ap-GnRHR short form is ubiquitous in all tissues examined, whereas the long form is only expressed in parts of the central nervous system, osphradium, small hermaphroditic duct, and ovotestis. The cDNA encoding the long or the short receptor was transfected into the Drosophila S2 cell line and subject to a radioreceptor assay using 125I-labeled ap-GnRH as the radioligand. Further, the transfected cells were treated with various concentrations of ap-GnRH and measured for the accumulation of cAMP and inositol monophosphate (IP1). Radioreceptor assay revealed that only the long receptor bound specifically to the radioligand. Further, only the long receptor responded to ap-GnRH with an increased accumulation of IP1, but not cAMP. Our studies show that despite the more prevalent expression of the short receptor, only the long receptor is the functional ap-GnRHR. Importantly, this is only the second report on the authentication of a protostome GnRHR, and based on the function and the phylogenetic grouping of ap-GnRHR, we suggest that this receptor is more similar to protostome corazonin receptors than chordate GnRHRs.
Collapse
Affiliation(s)
- Scott I. Kavanaugh
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado, Boulder, Colorado, United States of America
| | - Pei-San Tsai
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado, Boulder, Colorado, United States of America
- * E-mail:
| |
Collapse
|