1
|
Golshan M, Alavi SMH, Hatef A, Kazori N, Socha M, Milla S, Sokołowska-Mikołajczyk M, Unniappan S, Butts IAE, Linhart O. Impact of absolute food deprivation on the reproductive system in male goldfish exposed to sex steroids. J Comp Physiol B 2024; 194:411-426. [PMID: 38880793 DOI: 10.1007/s00360-024-01570-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/18/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024]
Abstract
There is a link between metabolism and reproduction as metabolic hormones affect hypothalamus-pituitary-testis (HPT) hormonal functions and vice versa. The aim of the present study was to investigate the effects of negative energy balance on the reproductive system in male goldfish exposed to testosterone (T) and 17β-estradiol (E2). Following 7 days of food deprivation (FD), ANOVA models showed significant FD × sex steroid interactions on sperm quality and circulating sex steroid levels. When FD effects were investigated, 11-ketotestosterone (11-KT) level and sperm motility and velocity decreased in food-deprived goldfish in the control group. In E2-exposed goldfish, FD decreased sperm production in addition to sperm motility and velocity that coincided with an elevation of circulating E2 level. However, FD did not significantly impact sex steroids and sperm quality in T-exposed goldfish. ANOVA models showed non-significant FD × sex steroid interactions for HSI, GSI, circulating luteinizing hormone (Lh) level, and metabolic (preproghrelin, goat and nucb2) and reproductive (kiss1, gpr54 and gnrh3) mRNAs. Furthermore, results showed that FD decreased HSI, and increased Lh levels and testicular preproghrelin and goat mRNAs, while sex steroids increased mid-brain nucb2, kiss1 and gpr54 mRNAs. Together, our results suggest that FD-induced inhibition of androgenesis resulted in diminished sperm quality associated with activation of the testicular ghrelinergic system, and negative feedback of 11-KT increased Lh level. The FD-induced testicular metabolic and hormonal system was impacted in goldfish exposed to sex steroids. However, the negative effects of FD on sperm quality were accelerated in E2-exposed goldfish due to estrogenic activity. This study provides novel information to better understand metabolic-associated reproductive disorders in fish.
Collapse
Affiliation(s)
- Mahdi Golshan
- Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization, Tehran, Iran
| | - Sayyed Mohammad Hadi Alavi
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic.
- School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Azadeh Hatef
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada
- Toxicology Centre, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B3, Canada
| | - Negar Kazori
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Magdalena Socha
- Faculty of Animal Science, University of Agriculture in Kraków, Kraków, Poland
| | - Sylvain Milla
- Research Unit Animal and Functionalities of Animal Products, INRA, University of Lorraine, Vandoeuvre-lès-Nancy, France
| | | | - Suraj Unniappan
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - Ian A E Butts
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Otomar Linhart
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| |
Collapse
|
2
|
Witley S, Edvardsson CE, Aranäs C, Tufvesson-Alm M, Stalberga D, Green H, Vestlund J, Jerlhag E. Des-acyl ghrelin reduces alcohol intake and alcohol-induced reward in rodents. Transl Psychiatry 2024; 14:277. [PMID: 38965230 PMCID: PMC11224403 DOI: 10.1038/s41398-024-02996-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
The mechanisms contributing to alcohol use disorder (AUD) are complex and the orexigenic peptide ghrelin, which enhances alcohol reward, is implied as a crucial modulator. The major proportion of circulating ghrelin is however the non-octanoylated form of ghrelin, des-acyl ghrelin (DAG), whose role in reward processes is unknown. As recent studies show that DAG decreases food intake, we hypothesize that DAG attenuates alcohol-related responses in animal models. Acute and repeated DAG treatment dose-dependently decreased alcohol drinking in male and female rats. In these alcohol-consuming male rats, repeated DAG treatment causes higher levels of dopamine metabolites in the ventral tegmental area, an area central to reward processing. The role of DAG in reward processing is further supported as DAG prevents alcohol-induced locomotor stimulation, reward in the conditioned place preference paradigm, and dopamine release in the nucleus accumbens in male rodents. On the contrary, DAG does not alter the memory of alcohol reward or affect neurotransmission in the hippocampus, an area central to memory. Further, circulating DAG levels are positively correlated with alcohol drinking in female but not male rats. Studies were conducted in attempts to identify tentative targets of DAG, which currently are unknown. Data from these recombinant cell system revealed that DAG does not bind to either of the monoamine transporters, 5HT2A, CB1, or µ-opioid receptors. Collectively, our data show that DAG attenuates alcohol-related responses in rodents, an effect opposite to that of ghrelin, and contributes towards a deeper insight into behaviors regulated by the ghrelinergic signaling pathway.
Collapse
Affiliation(s)
- Sarah Witley
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Christian E Edvardsson
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Cajsa Aranäs
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Maximilian Tufvesson-Alm
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Darta Stalberga
- Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, Linköping, Sweden
| | - Henrik Green
- Division of Clinical Chemistry and Pharmacology, Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, Linköping, Sweden
- Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, Linköping, Sweden
| | - Jesper Vestlund
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Elisabet Jerlhag
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
3
|
Zhang XD, Luo Q, Du Y, Yang L, Yu LC, Feng L, Rao D, Tang JX, Tan HM, Guo XY, Tang SS, Liu T, Yue F, Huang HX. The allostery and modification of hGHRH molecules and specific dimer produced significant fertility effect by proliferating and activating in-situ ovarian mesenchymal stem cells. Eur J Pharm Sci 2024; 197:106768. [PMID: 38643940 DOI: 10.1016/j.ejps.2024.106768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/23/2024] [Accepted: 04/13/2024] [Indexed: 04/23/2024]
Abstract
The negative coordination of growth hormone secretagogue receptor (GHS-R) and growth hormone-releasing hormone receptor (GHRH-R) involves in the repair processes of cellular injury. The allosteric U- or H-like modified GHRH dimer Grinodin and 2Y were comparatively evaluated in normal Kunming mice and hamster infertility models induced by CPA treatment. 1-3-9 µg of Grinodin or 2Y per hamster stem-cell-exhaustion model was subcutaneously administered once a week, respectively inducing 75-69-46 or 45-13-50 % of birth rates. In comparison, the similar mole of human menopausal gonadotropin (hMG) or human growth hormone (hGH) was administered once a day but caused just 25 or 20 % of birth rates. Grinodin induced more big ovarian follicles and corpora lutea than 2Y, hMG, hGH. The hMG-treated group was observed many distorted interstitial cells and more connective tissues and the hGH-treated group had few ovarian follicles. 2Y had a plasma lifetime of 21 days and higher GH release in mice, inducing lower birth rate and stronger individual specificity in reproduction as well as only promoting the proliferation of mesenchymal-stem-cells (MSCs) in the models. In comparison, Grinodin had a plasma lifetime of 30 days and much lower GH release in mice. It significantly promoted the proliferation and activation of ovarian MSCs together with the development of follicles in the models by increasing Ki67 and GHS-R expressions, and decreasing GHRH-R expression in a dose-dependent manner. However, the high GH and excessive estrogen levels in the models showed a dose-dependent reduction in fertility. Therefore, unlike 2Y, the low dose of Grinodin specifically shows low GHS-R and high GHRH-R expressions thus evades GH and estrogen release and improves functions of organs, resulting in an increase of fertility.
Collapse
Affiliation(s)
- Xu-Dong Zhang
- Department of Clinical Laboratories & Pathology, Guangdong Provincial Cops Hospital of Chinese People's Armed Police Forces, Guangzhou 510507, China
| | - Qun Luo
- Research & Development Department, Shenzhen Nafe Biopharmaceutical Company LTD, Shenzhen 518107, China
| | - Yan Du
- Department of Clinical Laboratories & Pathology, Guangdong Provincial Cops Hospital of Chinese People's Armed Police Forces, Guangzhou 510507, China
| | - Li Yang
- Department of Digestive & Endocrinology, Guangdong Provincial Cops Hospital of Chinese People's Armed Police Forces, Guangzhou 510507, China
| | - Li-Cheng Yu
- Department of Clinical Laboratories & Pathology, Guangdong Provincial Cops Hospital of Chinese People's Armed Police Forces, Guangzhou 510507, China
| | - Lan Feng
- Department of Biochemistry and Molecular Biology, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dan Rao
- Department of Biochemistry and Molecular Biology, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jing-Xuan Tang
- Department of Chemistry, College of Literature, Science, and the Arts, University of Michigan-Ann Arbor, Ann Arbor 48109, United States
| | - Hong-Mei Tan
- Department of Clinical Laboratories, Luopu Street Lijiang Community Health Service Station, Guangzhou 511431, China
| | - Xiao-Yuan Guo
- Department of Pathology, Sanya People's Hospital, Sanya City 572000, Hainan Province, China
| | - Song-Shan Tang
- Department of Biochemistry and Molecular Biology, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Tao Liu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Feng Yue
- Department of Clinical Laboratories, Guangzhou Tianhe District Hospital of Traditional Chinese Medicine, Guangzhou 510655, China
| | - Hui-Xian Huang
- Department of Clinical Laboratories & Pathology, Guangdong Provincial Cops Hospital of Chinese People's Armed Police Forces, Guangzhou 510507, China
| |
Collapse
|
4
|
Dotania K, Tripathy M, Rai U. Ovarian nesfatin-1 in Hemidactylus flaviviridis: Reproductive phase-dependent expression, role and hormonal regulation. Comp Biochem Physiol A Mol Integr Physiol 2024; 288:111556. [PMID: 38016591 DOI: 10.1016/j.cbpa.2023.111556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
Nesfatin-1 has recently emerged as a modulator of ovarian functions in mammals. Studies in non-mammalian vertebrates, though limited and majorly restricted to fishes, have evidenced a role of this peptide in the regulation of ovarian steroidogenesis and oocyte maturation. Interestingly, nesfatin-1 remains completely unexplored in reptiles. Therefore, the present study aimed to identify nesfatin-1 and elucidate its role and regulation in the ovary of Hemidactylus flaviviridis. Ovarian expression of nucb2/nesfatin-1 was highest during late recrudescence and breeding while it was lowest during regression. Follicular stage-dependent expression analysis showed significantly high expression of nucb2/nesfatin-1 in previtellogenic follicles. Further, in vitro treatment of recrudescent wall lizard ovaries with nesfatin-1 resulted in increased expression of anti-apoptotic gene, bcl-2, along with a concomitant decline in the pro-apoptotic gene, caspase-3. In addition, proliferation/differentiation markers like scf, c-kit, pcna, and bmp-15 were stimulated in ovaries incubated with the peptide. Ovarian steroidogenesis was also positively influenced by nesfatin-1 as treatment with the peptide resulted in heightened star expression as well as increased estradiol and progesterone production. Also, all concentrations of nesfatin-1 stimulated glucose uptake and metabolism in wall lizard ovary. Our observations provide the first evidence of ovarian functions of nesfatin-1 in a reptile. Further, ovarian nucb2/nesfatin-1 was differentially regulated by gonadotropin and sex steroids wherein its expression was stimulated by dihydrotestosterone (DHT) and 17β-estradiol (E2) but inhibited by follicle-stimulating hormone (FSH). In summary, this is the first report of the presence, reproductive stage-dependent expression, role, and regulation of ovarian nucb2/nesfatin-1 in H. flaviviridis.
Collapse
Affiliation(s)
| | - Mamta Tripathy
- Department of Zoology, University of Delhi, Delhi 110007, India.
| | - Umesh Rai
- University of Jammu, Jammu and Kashmir, 180006, India.
| |
Collapse
|
5
|
Ha J, Shin J, Seok E, Kim S, Sun S, Yang H. Estradiol and progesterone regulate NUCB2/nesfatin-1 expression and function in GH3 pituitary cells and THESC endometrial cells. Anim Cells Syst (Seoul) 2023; 27:129-137. [PMID: 37351263 PMCID: PMC10283468 DOI: 10.1080/19768354.2023.2226735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023] Open
Abstract
Estradiol (E2) and progesterone (P4) are essential sex steroid hormones that play critical roles in the pituitary gland and uterus. Recently, nesfatin-1, a polypeptide hormone that regulates appetite and energy homeostasis in the hypothalamus, was found to be expressed in the pituitary gland and uterus. In this study, we aimed to investigate the relationship between these two steroid hormones and the expression and function of nesfatin-1 in the pituitary gland and uterus using GH3 cells, a lacto-somatotroph cell line, and THESC cells, an endometrial stromal cell line. First, we verified the presence of nesfatin-1 and nesfatin-1 binding sites in GH3 and THESC cells. E2 increased the mRNA expression of NUCB2, the gene encoding the nesfatin-1 protein, in GH3 cells, while P4 had no significant effect. In THESC cells, NUCB2 mRNA expression was decreased by E2 but increased by P4. In addition, nesfatin-1 significantly increased growth hormone (GH) and prolactin (PRL) mRNA expression in GH3 cells, and E2 enhanced this effect. In THESC cells, nesfatin-1 significantly increased the mRNA expression of insulin-like growth factor binding protein 1 (IGFBP1) and PRL, which are decidualization marker genes, and P4 further enhanced this effect. These results suggest that nesfatin-1 may act as a local regulator of GH and PRL production in the pituitary gland and decidualization in the uterus, modulating its effects in response to E2 and P4.
Collapse
Affiliation(s)
- Jinah Ha
- Department of Biohealth Convergence, College of Natural Sciences, Seoul Women's University, Seoul, Korea
| | - Jungwoo Shin
- Department of Biohealth Convergence, College of Natural Sciences, Seoul Women's University, Seoul, Korea
| | - Eunji Seok
- Department of Biohealth Convergence, College of Natural Sciences, Seoul Women's University, Seoul, Korea
| | - Soohyun Kim
- Department of Biohealth Convergence, College of Natural Sciences, Seoul Women's University, Seoul, Korea
| | - Sojung Sun
- Department of Biohealth Convergence, College of Natural Sciences, Seoul Women's University, Seoul, Korea
| | - Hyunwon Yang
- Department of Biohealth Convergence, College of Natural Sciences, Seoul Women's University, Seoul, Korea
| |
Collapse
|
6
|
Canosa LF, Bertucci JI. The effect of environmental stressors on growth in fish and its endocrine control. Front Endocrinol (Lausanne) 2023; 14:1109461. [PMID: 37065755 PMCID: PMC10098185 DOI: 10.3389/fendo.2023.1109461] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Fish body growth is a trait of major importance for individual survival and reproduction. It has implications in population, ecology, and evolution. Somatic growth is controlled by the GH/IGF endocrine axis and is influenced by nutrition, feeding, and reproductive-regulating hormones as well as abiotic factors such as temperature, oxygen levels, and salinity. Global climate change and anthropogenic pollutants will modify environmental conditions affecting directly or indirectly fish growth performance. In the present review, we offer an overview of somatic growth and its interplay with the feeding regulatory axis and summarize the effects of global warming and the main anthropogenic pollutants on these endocrine axes.
Collapse
Affiliation(s)
- Luis Fabián Canosa
- Instituto Tecnológico Chascomús (INTECH), CONICET-EByNT-UNSAM, Chascomús, Argentina
- *Correspondence: Luis Fabián Canosa, ; Juan Ignacio Bertucci,
| | - Juan Ignacio Bertucci
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía - Consejo Superior de Investigaciones Científicas (IEO-CSIC), Vigo, Spain
- *Correspondence: Luis Fabián Canosa, ; Juan Ignacio Bertucci,
| |
Collapse
|
7
|
Weibert E, Hofmann T, Elbelt U, Rose M, Stengel A. NUCB2/nesfatin-1 is associated with severity of eating disorder symptoms in female patients with obesity. Psychoneuroendocrinology 2022; 143:105842. [PMID: 35752057 DOI: 10.1016/j.psyneuen.2022.105842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Nesfatin-1 has been described as an anorexigenic peptide. Comprehensive evidence also points towards an involvement of nesfatin-1 in the modulation of emotional pathways with a sex-specific regulation of nesfatin-1 in association with anxiety. Although the implication of nesfatin-1 in the regulation of food intake is well-established in animals, data in humans are lacking. Therefore, we investigated a possible association of circulating NUCB2/nesfatin-1 with eating disorder symptoms in female and male patients displaying a wide range of body weight. METHODS We enrolled 243 inpatients (177 female, 66 male) hospitalized due to anorexia nervosa (n = 66) or obesity (n = 144) or with normal weight and suffering from somatoform, adjustment, depressive or anxiety disorders (n = 33). Plasma samples (NUCB2/nesfatin-1 levels measured by ELISA) and measures of eating disorder symptoms (by EDI-2, range 0-100) were obtained within three days after admission. RESULTS The study population displayed a distinct prevalence of eating disorder symptoms with female patients with anorexia nervosa (+ 77.0%, p < 0.001) and obesity (+ 87.9%, p < 0.001) reported significantly higher EDI-2 scores than normal weight patients of the same sex. Accordingly, males with anorexia nervosa (+ 39.7%, p < 0.05) and obesity (+ 51.7%, p < 0.001) had significantly higher EDI-2 scores than males with normal weight. Within the same BMI group, women displayed significantly higher scores than men (+ 21.4%, p < 0.05 in patients with anorexia nervosa, + 18.8%, p < 0.001 in participants with obesity). We observed a positive correlation between NUCB2/nesfatin-1 levels and EDI-2 total scores in female patients with obesity (r = 0.285, p = 0.015), whereas no associations were found in other subgroups. A positive correlation between NUCB2/nesfatin-1 levels and BMI was only observed in the male study population (r = 0.315, p = 0.018). CONCLUSIONS NUCB2/nesfatin-1 plasma levels were positively associated with EDI-2 total scores in women with obesity, while no association was observable in men. The lacking association of NUCB2/nesfatin-1 and EDI-2 total scores in female patients with anorexia nervosa might be due to already low NUCB2/nesfatin-1 plasma levels. Whether NUCB2/nesfatin-1 is selectively involved in eating behavior in women with obesity will have to be further investigated.
Collapse
Affiliation(s)
- Elena Weibert
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Charité Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Tobias Hofmann
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Charité Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Ulf Elbelt
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Charité Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Division of Medicine, Department of Gastroenterology, Metabolism and Oncology, University Hospital Ruppin-Brandenburg, Brandenburg Medical School, Neuruppin, Germany; Endokrinologikum Berlin, Berlin, Germany
| | - Matthias Rose
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Charité Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Quantitative Health Sciences, Outcomes Measurement Science, University of Massachusetts Medical School, Worcester, MA, USA
| | - Andreas Stengel
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Charité Center for Internal Medicine and Dermatology, Department of Psychosomatic Medicine, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany.
| |
Collapse
|
8
|
Hatef A, Rajeswari JJ, Unniappan S. The ghrelinergic system in zebrafish gonads is suppressed during food unavailability. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
The Role of the Gastric Hormones Ghrelin and Nesfatin-1 in Reproduction. Int J Mol Sci 2021; 22:11059. [PMID: 34681721 PMCID: PMC8539660 DOI: 10.3390/ijms222011059&set/a 934136356+984013925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Ghrelin and nesfatin-1 are enteroendocrine peptide hormones expressed in rat X/A-like and human P/D1cells of the gastric mucosa. Besides their effect on food intake, both peptides are also implicated in various other physiological systems. One of these is the reproductive system. This present review illustrates the distribution of ghrelin and nesfatin-1 along the hypothalamus-pituitary-gonadal (HPG) axis, their modulation by reproductive hormones, and effects on reproductive functions as well as highlighting gaps in current knowledge to foster further research.
Collapse
|
10
|
Schalla MA, Stengel A. The Role of the Gastric Hormones Ghrelin and Nesfatin-1 in Reproduction. Int J Mol Sci 2021; 22:ijms222011059. [PMID: 34681721 PMCID: PMC8539660 DOI: 10.3390/ijms222011059] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/11/2022] Open
Abstract
Ghrelin and nesfatin-1 are enteroendocrine peptide hormones expressed in rat X/A-like and human P/D1cells of the gastric mucosa. Besides their effect on food intake, both peptides are also implicated in various other physiological systems. One of these is the reproductive system. This present review illustrates the distribution of ghrelin and nesfatin-1 along the hypothalamus–pituitary–gonadal (HPG) axis, their modulation by reproductive hormones, and effects on reproductive functions as well as highlighting gaps in current knowledge to foster further research.
Collapse
Affiliation(s)
- Martha A. Schalla
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 12203 Berlin, Germany;
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, 12203 Berlin, Germany;
- Department of Psychosomatic Medicine and Psychotherapy, Medical University Hospital Tübingen, 72076 Tübingen, Germany
- Correspondence:
| |
Collapse
|
11
|
Dotania K, Tripathy M, Rai U. A comparative account of nesfatin-1 in vertebrates. Gen Comp Endocrinol 2021; 312:113874. [PMID: 34331938 DOI: 10.1016/j.ygcen.2021.113874] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 07/14/2021] [Accepted: 07/25/2021] [Indexed: 12/17/2022]
Abstract
Nesfatin-1 was discovered as an anorexigenic peptide derived from proteolytic cleavage of the prepropeptide, nucleobindin 2 (NUCB2). It is widely expressed in central as well as peripheral tissues and is known to have pleiotropic effects such as regulation of feeding, reproduction, cardiovascular functions and maintenance of glucose homeostasis. In order to execute its multifaceted role, nesfatin-1 employs diverse signaling pathways though its receptor has not been identified till date. Further, nesfatin-1 is reported to be under the regulatory effect of feeding state, nutritional status as well as several metabolic and reproductive hormones. This peptide has also been associated with variety of human diseases, especially metabolic, reproductive, cardiovascular and mental disorders. The current review is aimed to present a consolidated picture and highlight lacunae for further investigation in order to develop a deeper comprehensive understanding on physiological significance of nesfatin-1 in vertebrates.
Collapse
Affiliation(s)
| | - Mamta Tripathy
- Department of Zoology, Kalindi College, University of Delhi, Delhi 110008, India
| | - Umesh Rai
- Department of Zoology, University of Delhi, Delhi 110007, India.
| |
Collapse
|
12
|
|
13
|
Rajeswari JJ, Hatef A, Unniappan S. Nesfatin-1-like peptide suppresses hypothalamo-pituitary-gonadal mRNAs, gonadal steroidogenesis, and oocyte maturation in fish†. Biol Reprod 2020; 103:802-816. [PMID: 32542346 DOI: 10.1093/biolre/ioaa106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/02/2020] [Accepted: 06/11/2020] [Indexed: 12/16/2022] Open
Abstract
Nucleobindin (Nucb)-1 and Nucb2 are DNA and Ca2+ binding proteins with multiple functions in vertebrates. Prohormone convertase-mediated processing of Nucb2 results in the production of biologically active nesfatin-1. Nesfatin-1 is involved in the regulation of reproduction in many vertebrates, including fish. Our lab originally reported a nesfatin-1-like peptide (Nlp) encoded in Nucb1 that exhibits nesfatin-1-like metabolic effects. We hypothesized that Nlp has a suppressive role in the reproductive physiology of fish. In this research, whether Nlp regulates reproductive hormones and oocyte maturation in fish were determined. Single intraperitoneal (IP) injection of goldfish Nlp (50 ng/g body weight) suppressed salmon and chicken gonadotropin-releasing hormone (sgnrh and cgnrh2), gonadotropin-inhibiting hormone (gnih) and its receptor (gnihr), and kisspeptin and brain aromatase mRNA expression in the hypothalamus of both male and female goldfish. In the pituitary, Nlp decreased mRNAs encoding lhb, fshb and kisspeptin and its receptor, while a significant increase in gnih and gnihr was observed. In the gonads, lh (only in male fish) and fsh receptor mRNAs were also significantly downregulated in Nlp-injected fish. Sex-specific modulation of gnih, gnihr, and kisspeptin system in the gonads was also observed. Nlp decreased sex steroidogenic enzyme encoding mRNAs and circulating levels of testosterone and estradiol. In addition, incubation of zebrafish ovarian follicles with Nlp resulted in a reduction in oocyte maturation. These results provide evidence for a robust role for Nlp in regulating reproductive hormones in goldfish and oocyte maturation in zebrafish, and these effects resemble that of nesfatin-1.
Collapse
Affiliation(s)
- Jithine Jayakumar Rajeswari
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Canada
| | - Azadeh Hatef
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Canada.,Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Canada
| |
Collapse
|
14
|
Pate AT, Schnell AL, Ennis TA, Samson WK, Yosten GLC. Expression and function of nesfatin-1 are altered by stage of the estrous cycle. Am J Physiol Regul Integr Comp Physiol 2019; 317:R328-R336. [PMID: 31141415 DOI: 10.1152/ajpregu.00249.2018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nesfatin-1 is a peptide derived from the nucleobindin 2 (Nucb2) precursor protein that has been shown to exert potent effects on appetite and cardiovascular function in male animals. Sex hormones modulate the expression of Nucb2 in several species, including goldfish, mouse, and rat, and human studies have revealed differential expression based on male or female sex. We therefore hypothesized that the ability of nesfatin-1 to increase mean arterial pressure (MAP) would be influenced by stage of the estrous cycle. Indeed, we found that in cycling female Sprague-Dawley rats, nesfatin-1 induced an increase in MAP on diestrus, when both estrogen and progesterone levels are low but not on proestrus or estrus. The effect of nesfatin-1 on MAP was dependent on functional central melanocortin receptors, because the nesfatin-1-induced increase in MAP was abolished by pretreatment with the melanocortin 3/4 receptor antagonist, SHU9119. We previously reported that nesfatin-1 inhibited angiotensin II-induced water drinking in male rats but found no effect of nesfatin-1 in females in diestrus. However, nesfatin-1 enhanced angiotensin II-induced elevations in MAP in females in diestrus but had no effect on males. Finally, in agreement with previous reports, the expression of Nucb2 mRNA in hypothalamus was significantly reduced in female rats in proestrus compared with rats in diestrus. From these data we conclude that the function and expression of nesfatin-1 are modulated by sex hormone status. Further studies are required to determine the contributions of chromosomal sex and individual sex hormones to the cardiovascular effects of nesfatin-1.
Collapse
Affiliation(s)
- Alicia T Pate
- Saint Louis College of Pharmacy, St. Louis, Missouri
| | - Abigayle L Schnell
- Department of Pharmacology and Physiology, St. Louis University School of Medicine, St. Louis, Missouri
| | - Teresa A Ennis
- Department of Pharmacology and Physiology, St. Louis University School of Medicine, St. Louis, Missouri
| | - Willis K Samson
- Department of Pharmacology and Physiology, St. Louis University School of Medicine, St. Louis, Missouri
| | - Gina L C Yosten
- Department of Pharmacology and Physiology, St. Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
15
|
Hatef A, Unniappan S. Metabolic hormones and the regulation of spermatogenesis in fishes. Theriogenology 2019; 134:121-128. [PMID: 31167155 DOI: 10.1016/j.theriogenology.2019.05.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 05/26/2019] [Indexed: 02/08/2023]
Abstract
Metabolic hormones play essential regulatory roles in many biological processes, including morphogenesis, growth, and reproduction through the maintenance of energy balance. Various metabolic hormones originally discovered in mammals, including ghrelin, leptin, and nesfatin-1 have been identified and characterized in fish. However, physiological roles of these metabolic hormones in regulating reproduction are largely unknown in fishes, especially in males. While the information available is restricted, this review attempts to summarize the main findings on the roles of metabolic peptides on the reproductive system in male fishes with an emphasis on testicular development and spermatogenesis. Specifically, the primary goal is to review the physiological interactions between hormones that regulate reproduction and hormones that regulate metabolism as a critical determinant of testicular function. A brief introduction to the localization of metabolic hormones in fish testis is also provided. Besides, the consequences of fasting and food deprivation on testicular development and sperm quality will be discussed with a focus on interactions between metabolic and reproductive hormones.
Collapse
Affiliation(s)
- Azadeh Hatef
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan, S7N 5B4, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, Saskatoon, Saskatchewan, S7N 5B4, Canada.
| |
Collapse
|
16
|
Ali Abulmeaty MM, Almajwal AM, ElSadek MF, Berika MY, Razak S. Metabolic Effects of Testosterone Hormone Therapy in Normal and Orchiectomized Male Rats: From Indirect Calorimetry to Lipolytic Enzymes. Int J Endocrinol 2019; 2019:7546385. [PMID: 31871453 PMCID: PMC6906878 DOI: 10.1155/2019/7546385] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 10/02/2019] [Accepted: 10/10/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND AIM Changes in total energy expenditure (TEE) and substrate metabolism may help explain the metabolic actions of testosterone (T). This study measured respiratory quotient (RQ), TEE, ghrelin, insulin, and key lipolysis enzyme concentrations in relation to body weight (wt) and food intake (FI) in both normal and bilaterally orchiectomized rats with/without T treatment. METHODS In total, thirty-two male Wistar rats (300-400 g) were divided into four groups (n = 8/group), including (a) sham-operated and vehicle-injected group (Sham), (b) T-treated sham group (T-Sham) for which sham-operated rats were injected with IM testosterone undecanoate (100 mg/kg, for one week), (c) orchiectomy and vehicle-injected group (Orch), and (d) T-replaced orchiectomy group (T-Orch). After one week, FI and wt were automatically recorded, indirect calorimetry parameters were measured, and blood samples were collected to measure T, ghrelin, insulin, growth hormone (GH), glucose, hormone-sensitive lipase (HSL), adipocyte triglyceride lipase (ATGL), free fatty acids (FFA), and lipid profiles. RESULTS Orchiectomy decreased ghrelin, GH, and insulin levels, increased TEE and RQ, and lowered FI and wt. The T-Orch group exhibited increased levels of ghrelin (3-fold), insulin, GH, blood levels of lipolysis products, TEE, and FI in addition to reduced glucose levels (P < 0.05). This group demonstrated no significant changes in wt. In the T-Sham group, T increased ghrelin and insulin levels (P < 0.05) with strong positive correlations (r = 0.663 and 0.644, respectively, P < 0.05), increased ATGL levels, RQ toward carbohydrate utilization ranges, and TEE, and reduced HSL levels (P < 0.05) with insignificant changes in FI or wt. CONCLUSIONS T administration in orchiectomized rats significantly increased orexigenic mediators such as ghrelin and insulin without inducing any significant changes in wt. The mechanism for this finding might be the increased TEE and the stimulation of lipolysis through the ATGL enzyme. The associated rise of GH might help in interference with accumulation of lipid in adipose tissue. Apart from the effect on GH, T-Sham showed similar effects of T supplementation.
Collapse
Affiliation(s)
- Mahmoud Mustafa Ali Abulmeaty
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- Medical Physiology Department, School of Medicine, Zagazig University, Zagazig, Egypt
| | - Ali Madi Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohamed Farouk ElSadek
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- Nutrition and Food Science Department, Faculty of Home Economics, Helwan University, Helwan, Egypt
| | - Mohamed Y Berika
- Rehabilitation Sciences Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
- Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
17
|
Bertucci JI, Blanco AM, Sánchez‐Bretaño A, Unniappan S, Canosa LF. Ghrelin and NUCB2/Nesfatin‐1 Co‐Localization With Digestive Enzymes in the Intestine of Pejerrey (
Odontesthes bonariensis
). Anat Rec (Hoboken) 2018; 302:973-982. [DOI: 10.1002/ar.24012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 07/30/2018] [Accepted: 09/11/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Juan Ignacio Bertucci
- Instituto Tecnológico de Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)‐Universidad Nacional de San Martín (UNSAM) Buenos Aires Argentina
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical SciencesWestern College of Veterinary Medicine, University of Saskatchewan Saskatoon Saskatchewan Canada
| | - Ayelén Melisa Blanco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical SciencesWestern College of Veterinary Medicine, University of Saskatchewan Saskatoon Saskatchewan Canada
- Departamento de Fisiología (Fisiología Animal II), Facultad de BiologíaUniversidad Complutense de Madrid Madrid Spain
| | - Aida Sánchez‐Bretaño
- Department of Pharmacology and Toxicology, and Neuroscience InstituteMorehouse School of Medicine 720 Westview Drive, GA, 30310 Atlanta Georgia
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical SciencesWestern College of Veterinary Medicine, University of Saskatchewan Saskatoon Saskatchewan Canada
| | - Luis Fabián Canosa
- Instituto Tecnológico de Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)‐Universidad Nacional de San Martín (UNSAM) Buenos Aires Argentina
| |
Collapse
|
18
|
Blanco AM, Sundarrajan L, Bertucci JI, Unniappan S. Why goldfish? Merits and challenges in employing goldfish as a model organism in comparative endocrinology research. Gen Comp Endocrinol 2018; 257:13-28. [PMID: 28185936 DOI: 10.1016/j.ygcen.2017.02.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 01/31/2017] [Accepted: 02/04/2017] [Indexed: 02/07/2023]
Abstract
Goldfish has been used as an unconventional model organism to study a number of biological processes. For example, goldfish is a well-characterized and widely used model in comparative endocrinology, especially in neuroendocrinology. Several decades of research has established and validated an array of tools to study hormones in goldfish. The detailed brain atlas of goldfish, together with the stereotaxic apparatus, are invaluable tools for the neuroanatomic localization and central administration of endocrine factors. In vitro techniques, such as organ and primary cell cultures, have been developed using goldfish. In vivo approaches using goldfish were used to measure endogenous hormonal milieu, feeding, behaviour and stress. While there are many benefits in using goldfish as a model organism in research, there are also challenges associated with it. One example is its tetraploid genome that results in the existence of multiple isoforms of endocrine factors. The presence of extra endogenous forms of peptides and its receptors adds further complexity to the already redundant multifactorial endocrine milieu. This review will attempt to discuss the importance of goldfish as a model organism in comparative endocrinology. It will highlight some of the merits and challenges in employing goldfish as an animal model for hormone research in the post-genomic era.
Collapse
Affiliation(s)
- Ayelén Melisa Blanco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, S7N 5B4 Saskatoon, Saskatchewan, Canada; Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de Madrid, José Antonio Nováis 12, 28040 Madrid, Spain.
| | - Lakshminarasimhan Sundarrajan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, S7N 5B4 Saskatoon, Saskatchewan, Canada.
| | - Juan Ignacio Bertucci
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, S7N 5B4 Saskatoon, Saskatchewan, Canada; Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Avenida Intendente Marinos Km. 8,2, 7130 Chascomús, Buenos Aires, Argentina.
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, 52 Campus Drive, S7N 5B4 Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
19
|
Perelló-Amorós M, Vélez EJ, Vela-Albesa J, Sánchez-Moya A, Riera-Heredia N, Hedén I, Fernández-Borràs J, Blasco J, Calduch-Giner JA, Navarro I, Capilla E, Jönsson E, Pérez-Sánchez J, Gutiérrez J. Ghrelin and Its Receptors in Gilthead Sea Bream: Nutritional Regulation. Front Endocrinol (Lausanne) 2018; 9:399. [PMID: 30105002 PMCID: PMC6077198 DOI: 10.3389/fendo.2018.00399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022] Open
Abstract
Ghrelin is involved in the regulation of growth in vertebrates through controlling different functions, such as feed intake, metabolism, intestinal activity or growth hormone (Gh) secretion. The aim of this work was to identify the sequences of preproghrelin and Ghrelin receptors (ghsrs), and to study their responses to different nutritional conditions in gilthead sea bream (Sparus aurata) juveniles. The structure and phylogeny of S. aurata preproghrelin was analyzed, and a tissue screening was performed. The effects of 21 days of fasting and 2, 5, 24 h, and 7 days of refeeding on plasma levels of Ghrelin, Gh and Igf-1, and the gene expression of preproghrelin, ghsrs and members of the Gh/Igf-1 system were determined in key tissues. preproghrelin and the receptors are well conserved, being expressed mainly in stomach, and in the pituitary and brain, respectively. Twenty-one days of fasting resulted in a decrease in growth while Ghrelin plasma levels were elevated to decrease at 5 h post-prandial when pituitary ghsrs expression was minimum. Gh in plasma increased during fasting and slowly felt upon refeeding, while plasma Igf-1 showed an inverse profile. Pituitary gh expression augmented during fasting reaching maximum levels at 1 day post-feeding while liver igf-1 expression and that of its splice variants decreased to lowest levels. Liver Gh receptors expression was down-regulated during fasting and recovered after refeeding. This study demonstrates the important role of Ghrelin during fasting, its acute down-regulation in the post-prandial stage and its interaction with pituitary Ghsrs and Gh/Igf-1 axis.
Collapse
Affiliation(s)
- Miquel Perelló-Amorós
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Emilio J. Vélez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Jaume Vela-Albesa
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Albert Sánchez-Moya
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Natàlia Riera-Heredia
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Ida Hedén
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Jaume Fernández-Borràs
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Josefina Blasco
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Josep A. Calduch-Giner
- Nutrition and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal (CSIC), Castellón, Spain
| | - Isabel Navarro
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Encarnación Capilla
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Elisabeth Jönsson
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Jaume Pérez-Sánchez
- Nutrition and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal (CSIC), Castellón, Spain
| | - Joaquim Gutiérrez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- *Correspondence: Joaquim Gutiérrez
| |
Collapse
|
20
|
Alkan I, Altunkaynak BZ, Altun G, Erener E. The investigation of the effects of topiramate on the hypothalamic levels of fat mass/obesity-associated protein and neuropeptide Y in obese female rats. Nutr Neurosci 2017; 22:243-252. [DOI: 10.1080/1028415x.2017.1374033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Işınsu Alkan
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Berrin Zuhal Altunkaynak
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Gamze Altun
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Erkan Erener
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
21
|
Prinz P, Stengel A. Expression and regulation of peripheral NUCB2/nesfatin-1. Curr Opin Pharmacol 2016; 31:25-30. [PMID: 27589697 DOI: 10.1016/j.coph.2016.08.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/05/2016] [Accepted: 08/12/2016] [Indexed: 12/16/2022]
Abstract
Nesfatin-1, an 82 amino acid peptide was discovered in 2006 in the rat hypothalamus and described as a centrally acting anorexigenic peptide. Besides its central expression and actions, NUCB2/nesfatin-1 has been subsequently described to be predominantly expressed in the periphery and to exert several peripheral effects. The current review focuses on the expression sites of NUCB2/nesfatin-1 in peripheral tissues of different species and its regulation by nutrition, body weight and various other parameters such as fetal development and sex.
Collapse
Affiliation(s)
- Philip Prinz
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Stengel
- Charité Center for Internal Medicine and Dermatology, Department for Psychosomatic Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
22
|
Nesfatin-1-Like Peptide Encoded in Nucleobindin-1 in Goldfish is a Novel Anorexigen Modulated by Sex Steroids, Macronutrients and Daily Rhythm. Sci Rep 2016; 6:28377. [PMID: 27329836 PMCID: PMC4916606 DOI: 10.1038/srep28377] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 06/03/2016] [Indexed: 12/22/2022] Open
Abstract
Nesfatin-1 is an 82 amino acid anorexigen encoded in a secreted precursor nucleobindin-2 (NUCB2). NUCB2 was named so due to its high sequence similarity with nucleobindin-1 (NUCB1). It was recently reported that NUCB1 encodes an insulinotropic nesfatin-1-like peptide (NLP) in mice. Here, we aimed to characterize NLP in fish. RT- qPCR showed NUCB1 expression in both central and peripheral tissues. Western blot analysis and/or fluorescence immunohistochemistry determined NUCB1/NLP in the brain, pituitary, testis, ovary and gut of goldfish. NUCB1 mRNA expression in goldfish pituitary and gut displayed a daily rhythmic pattern of expression. Pituitary NUCB1 mRNA expression was downregulated by estradiol, while testosterone upregulated its expression in female goldfish brain. High carbohydrate and fat suppressed NUCB1 mRNA expression in the brain and gut. Intraperitoneal injection of synthetic rat NLP and goldfish NLP at 10 and 100 ng/g body weight doses caused potent inhibition of food intake in goldfish. NLP injection also downregulated the expression of mRNAs encoding orexigens, preproghrelin and orexin-A, and upregulated anorexigen cocaine and amphetamine regulated transcript mRNA in goldfish brain. Collectively, these results provide the first set of results supporting the anorectic action of NLP, and the regulation of tissue specific expression of goldfish NUCB1.
Collapse
|