1
|
Smaga CR, Bock SL, Johnson JM, Parrott BB. Sex Determination and Ovarian Development in Reptiles and Amphibians: From Genetic Pathways to Environmental Influences. Sex Dev 2022; 17:99-119. [PMID: 36380624 DOI: 10.1159/000526009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Reptiles and amphibians provide untapped potential for discovering how a diversity of genetic pathways and environmental conditions are incorporated into developmental processes that can lead to similar functional outcomes. These groups display a multitude of reproductive strategies, and whereas many attributes are conserved within groups and even across vertebrates, several aspects of sexual development show considerable variation. SUMMARY In this review, we focus our attention on the development of the reptilian and amphibian ovary. First, we review and describe the events leading to ovarian development, including sex determination and ovarian maturation, through a comparative lens. We then describe how these events are influenced by environmental factors, focusing on temperature and exposure to anthropogenic chemicals. Lastly, we identify critical knowledge gaps and future research directions that will be crucial to moving forward in our understanding of ovarian development and the influences of the environment in reptiles and amphibians. KEY MESSAGES Reptiles and amphibians provide excellent models for understanding the diversity of sex determination strategies and reproductive development. However, a greater understanding of the basic biology of these systems is necessary for deciphering the adaptive and potentially disruptive implications of embryo-by-environment interactions in a rapidly changing world.
Collapse
Affiliation(s)
- Christopher R Smaga
- Eugene P. Odum School of Ecology, University of Georgia, Athens, Georgia, USA
- Savannah River Ecology Laboratory, Aiken, South Carolina, USA
| | - Samantha L Bock
- Eugene P. Odum School of Ecology, University of Georgia, Athens, Georgia, USA
- Savannah River Ecology Laboratory, Aiken, South Carolina, USA
| | - Josiah M Johnson
- Eugene P. Odum School of Ecology, University of Georgia, Athens, Georgia, USA
- Savannah River Ecology Laboratory, Aiken, South Carolina, USA
| | - Benjamin B Parrott
- Eugene P. Odum School of Ecology, University of Georgia, Athens, Georgia, USA
- Savannah River Ecology Laboratory, Aiken, South Carolina, USA
| |
Collapse
|
2
|
Tavalieri YE, Alarcón R, Tschopp MV, Canesini G, Luque EH, Muñoz-de-Toro M, Galoppo GH. Exposure to xenoestrogens alters the expression of key morphoregulatory proteins of oviduct adenogenesis in the broad-snouted caiman (Caiman latirostris). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 235:105817. [PMID: 33853019 DOI: 10.1016/j.aquatox.2021.105817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 03/08/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Endocrine disrupting compounds (EDCs) are contaminants ubiquitously found in the environment, which pose a potential threat to aquatic and wetland ecosystems. Caiman latirostris, a crocodilian species that inhabits South American wetlands, is highly sensitive to EDC exposure. Previously, we reported that early postnatal exposure to EDCs such as Bisphenol A (BPA) and 17β-Estradiol (E2) alters C. latirostris oviduct differentiation. The aim of this work was to elucidate the molecular mechanisms behind this alteration. To accomplish this, we established the ontogenic changes in histological features and the expression of Wnt-7a, Wnt-5a, β-catenin, FoxA2, desmin, and alpha smooth muscle actin (α-SMA) in the oviduct of C. latirostris. Then, we evaluated the effects of BPA and E2 exposure on these histological features and protein expressions. Our results showed that during the postnatal differentiation of the oviduct the presence of histological features related to adenogenesis is associated with the levels of expression of FoxA2, β-catenin, Wnt-5a and Wnt-7a. Early postnatal exposure to BPA and E2 decreased the presence of histological features related to adenogenesis and altered the levels of expression of FoxA2, β-catenin, Wnt-5a and Wnt-7a, as well as the desmin/α-SMA ratio. These findings suggest that altered levels of Wnt-7a, Wnt-5a, β-catenin and FoxA2 could play a role in the BPA and E2-induced alteration in oviduct differentiation in C. latirostris. Thus, impaired adenogenesis and, probably, impaired reproduction in wildlife naturally exposed to BPA and other estrogenic agonists cannot be completely ruled out.
Collapse
Affiliation(s)
- Y E Tavalieri
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria s/n, 4to piso, CP3000 Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria s/n, 4to piso, CP3000 Santa Fe, Argentina
| | - R Alarcón
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria s/n, 4to piso, CP3000 Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria s/n, 4to piso, CP3000 Santa Fe, Argentina
| | - M V Tschopp
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria s/n, 4to piso, CP3000 Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria s/n, 4to piso, CP3000 Santa Fe, Argentina
| | - G Canesini
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria s/n, 4to piso, CP3000 Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria s/n, 4to piso, CP3000 Santa Fe, Argentina
| | - E H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria s/n, 4to piso, CP3000 Santa Fe, Argentina; Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria s/n, 4to piso, CP3000 Santa Fe, Argentina
| | - M Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria s/n, 4to piso, CP3000 Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria s/n, 4to piso, CP3000 Santa Fe, Argentina
| | - G H Galoppo
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria s/n, 4to piso, CP3000 Santa Fe, Argentina; Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria s/n, 4to piso, CP3000 Santa Fe, Argentina.
| |
Collapse
|
3
|
Zeng M, Ren Y, Zhang B, Wang S, Liu M, Jia J, Guo P, Zhang Q, Zheng X, Feng W. In vitro Non-Small Cell Lung Cancer Inhibitory Effect by New Diphenylethane Isolated From Stems and Leaves of Dioscorea oppositifolia L. via ERβ-STAT3 Pathway. Front Pharmacol 2021; 12:622681. [PMID: 33708130 PMCID: PMC7941213 DOI: 10.3389/fphar.2021.622681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/06/2021] [Indexed: 12/22/2022] Open
Abstract
Lung cancer is the most leading cause of cancer mortality throughout the world, of which about 85% cases comprise the non-small cell lung cancer (NSCLC). Estrogen and estrogen receptors are known to be involved in the pathogenesis and development of lung cancer. Dioscorea oppositifolia L. is a traditional Chinese medicine and a nutritious food, and can be an excellent candidate as an anti-cancer agent owing to its estrogen-like effects. However, the stems and leaves of D. oppositifolia L. are piled up in the field as a waste, causing environmental pollution and waste of resources. In the present study, a new diphenylethane (D1) was isolated from the stems and leaves of D. oppositifolia L. It was observed that D1 reduced the cell viability, migration, energy metabolism, and induced apoptosis in the A549 cells. Mechanistic studies showed that D1 reduced the STAT3 nuclear localization and downregulated the expression of the STAT3 target genes like Mcl-1, Bcl-xL and MMP-2 that are involved in the cell survival and mobility. Moreover, our results indicated that D1 exhibited estrogenic activities mediated by ERβ, and antagonising ERβ decreased the cytotoxic effect of D1 in A549 cells. In addition, inhibition of the nuclear translocation of STAT3 did not interfere with the binding of D1 and ERβ. However, after antagonizing ERβ, the nuclear translocation of STAT3 increased, thereby demonstrating that STAT3 was the downstream signaling molecule of ERβ. In conclusion, the D1 mediated anti-NSCLC in vitro effects or at least in part can be attributed to the ERβ-STAT3 signaling. Our findings suggest the role of D1 in treating NSCLC on a molecular level, and can help to improve the comprehensive utilization rate of D. oppositifolia L.
Collapse
Affiliation(s)
- Mengnan Zeng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China.,Henan University of Chinese Medicine, Co-construction of Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou, China
| | - Yingjie Ren
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Beibei Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Shengchao Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Meng Liu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Jufang Jia
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Pengli Guo
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Qinqin Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China.,Henan University of Chinese Medicine, Co-construction of Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou, China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China.,The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou, China.,Henan University of Chinese Medicine, Co-construction of Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou, China
| |
Collapse
|
4
|
Kohno S, Vang D, Ang E, Brunell AM, Lowers RH, Schoenfuss HL. Estrogen-induced ovarian development is time-limited during the temperature-dependent sex determination of the American alligator. Gen Comp Endocrinol 2020; 291:113397. [PMID: 31991099 DOI: 10.1016/j.ygcen.2020.113397] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/14/2019] [Accepted: 01/20/2020] [Indexed: 11/16/2022]
Abstract
Many reptiles, including the American alligator, exhibit temperature-dependent sex determination (TSD), whose thermo-sensitive period for the female alligator begins at stages-15 and ends at stage-24. Estrogen signaling plays a central role in TSD, which can be overridden by an estrogen-exposure during the thermo-sensitive period. As some environmental contaminants are estrogenic, there is growing concern about their effects on the sex ratio and reproductive health of TSD-species. It is crucial to identify the timing of gonadal commitment to either ovary or testis for a better understanding of TSD and estrogen-signals. In the current study, eggs were exposed to 5 µg/g egg of 17β-estradiol (E2) or vehicle ethanol alone at three developmental stages-22, 24, and 26 at a male-promoting temperature, which produced 81% testis in all controls. E2-exposure at stages-22 and 24 induced more ovaries than the control group, whereas the exposure at stage-26 did not induce the same outcome. These results indicated that there is a critical commitment in the testicular development between the developmental stage 24 (100% ovary in E2 Exposure) and 26 (39% ovary with E2). Based on these results, we estimated a pivotal stage as stage-25.28. Thus, a gonadal commitment to testis could be later than a known temperature-sensitive period for promoting male in TSD.
Collapse
Affiliation(s)
- Satomi Kohno
- Aquatic Toxicology Lab, St. Cloud State University, St. Cloud, MN, USA.
| | - Donna Vang
- Aquatic Toxicology Lab, St. Cloud State University, St. Cloud, MN, USA; School of Health Science, Mayo Clinic, Rochester, MN, USA
| | - Edric Ang
- Aquatic Toxicology Lab, St. Cloud State University, St. Cloud, MN, USA
| | - Arnold M Brunell
- Fish and Wildlife Research Institute, Florida Fish and Wildlife Conservation Commission, Eustis, FL, USA
| | | | | |
Collapse
|
5
|
Martínez-Juárez A, Moreno-Mendoza N. Mechanisms related to sexual determination by temperature in reptiles. J Therm Biol 2019; 85:102400. [PMID: 31657741 DOI: 10.1016/j.jtherbio.2019.102400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 08/12/2019] [Accepted: 08/21/2019] [Indexed: 01/08/2023]
Abstract
A number of strategies have emerged that appear to relate to the evolution of mechanisms for sexual determination in vertebrates, among which are genetic sex determination caused by sex chromosomes and environmental sex determination, where environmental factors influence the phenotype of the sex of an individual. Within the reptile group, some orders such as: Chelonia, Crocodylia, Squamata and Rhynchocephalia, manifest one of the most intriguing and exciting environmental sexual determination mechanisms that exists, comprising temperature-dependent sex determination (TSD), where the temperature of incubation that the embryo experiences during its development is fundamental to establishing the sex of the individual. This makes them an excellent model for the study of sexual determination at the molecular, cellular and physiological level, as well as in terms of their implications at an evolutionary and ecological level. There are different hypotheses concerning how this process is triggered and this review aims to describe any new contributions to particular TSD hypotheses, analyzing them from the "eco-evo-devo" perspective.
Collapse
Affiliation(s)
- Adriana Martínez-Juárez
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70228 México, D.F. 04510, Mexico
| | - Norma Moreno-Mendoza
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70228 México, D.F. 04510, Mexico.
| |
Collapse
|
6
|
Hale MD, McCoy JA, Doheny BM, Galligan TM, Guillette LJ, Parrott BB. Embryonic estrogen exposure recapitulates persistent ovarian transcriptional programs in a model of environmental endocrine disruption†. Biol Reprod 2018; 100:149-161. [DOI: 10.1093/biolre/ioy165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/12/2018] [Indexed: 11/15/2022] Open
Affiliation(s)
- Matthew D Hale
- Savannah River Ecology Laboratory, Aiken, South Carolina, USA
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA
| | | | - Brenna M Doheny
- School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Thomas M Galligan
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, Virginia, USA
| | - Louis J Guillette
- Marine Biomedicine and Environmental Sciences Program, Hollings Marine Laboratory, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Benjamin B Parrott
- Savannah River Ecology Laboratory, Aiken, South Carolina, USA
- Odum School of Ecology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
7
|
Galoppo GH, Canesini G, Tavalieri YE, Stoker C, Kass L, Luque EH, Muñoz-de-Toro M. Bisphenol A disrupts the temporal pattern of histofunctional changes in the female reproductive tract of Caiman latirostris. Gen Comp Endocrinol 2017; 254:75-85. [PMID: 28947387 DOI: 10.1016/j.ygcen.2017.09.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/15/2017] [Accepted: 09/21/2017] [Indexed: 11/18/2022]
Abstract
Recently, we have described the ontogeny of histofunctional differentiation changes in the oviduct of Caiman latirostris. The expression of estrogen receptor alpha and progesterone receptor shows that the caiman oviduct could be a target of the action of xenoestrogens such as the widely environmentally present Bisphenol A (BPA), early in life. The aims of this study were: to complement oviduct characterization by establishing the ontogenetic changes in androgen receptor (AR) expression and assessing the effects of early postnatal exposure to 17-β-estradiol (E2) or BPA on the histofunctional features of the oviduct. AR was expressed in all the stages studied. The spatial pattern of AR immunostaining changed from neonatal to juvenile caimans. In the luminal epithelium, changes were at the subcellular level, from cytoplasmic to nuclear. In the subepithelium, although both cytoplasmic and nuclear AR expression was observed, changes were mainly at tissue level, from the subepithelial compartment to the outer muscular layer. The oviduct was highly sensitive to E2 and BPA at the early postnatal developmental stage. E2- and BPA-exposed caimans showed increased luminal epithelial height and higher proliferative activity. Changes in histomorphological features (measured by a scoring system), steroid hormone receptors, collagen remodeling and muscle-associated proteins suggest a precocious oviduct histofunctional differentiation in E2- and BPA-exposed caimans. The modification of the temporal pattern of oviductal biomarkers suggests that organizational changes could impair C. latirostris reproductive health later in life. The alterations in the caiman female reproductive tract exposed to BPA highlight the importance of preserving aquatic environments from plastic pollution.
Collapse
Affiliation(s)
- Germán H Galoppo
- Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), UNL-CONICET, FBCB-UNL, Santa Fe, Argentina
| | - Guillermina Canesini
- Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), UNL-CONICET, FBCB-UNL, Santa Fe, Argentina
| | - Yamil E Tavalieri
- Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina
| | - Cora Stoker
- Instituto de Salud y Ambiente del Litoral (ISAL), UNL-CONICET, FBCB-UNL, Santa Fe, Argentina
| | - Laura Kass
- Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), UNL-CONICET, FBCB-UNL, Santa Fe, Argentina
| | - Enrique H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), UNL-CONICET, FBCB-UNL, Santa Fe, Argentina
| | - Mónica Muñoz-de-Toro
- Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas (FBCB), Universidad Nacional del Litoral (UNL), Santa Fe, Argentina; Instituto de Salud y Ambiente del Litoral (ISAL), UNL-CONICET, FBCB-UNL, Santa Fe, Argentina.
| |
Collapse
|
8
|
Galoppo GH, Stoker C, Canesini G, Schierano-Marotti G, Durando M, Luque EH, Muñoz-de-Toro M. Postnatal development and histofunctional differentiation of the oviduct in the broad-snouted caiman (Caiman latirostris). Gen Comp Endocrinol 2016; 236:42-53. [PMID: 27388661 DOI: 10.1016/j.ygcen.2016.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/23/2016] [Accepted: 07/03/2016] [Indexed: 12/12/2022]
Abstract
Caiman latirostris is a South American crocodilian species characterized as a sentinel of the presence of endocrine-disrupting compounds (EDCs). Evaluating developmental events in hormone-dependent organs, such as the oviduct, is crucial to understand physiological postnatal development, to identify putative periods of exposure sensitive to EDCs, and/or to identify biomarkers useful to evaluate the effects of EDC exposure. In this study, we describe the histomorphological features of C. latirostris oviducts by establishing the ontogeny of changes at cellular, tissue and molecular levels from the neonatal to the pre-pubertal juvenile stages. Since the histological diagnosis of the adenogenic oviduct lies on a group of features, here we defined a histofunctional score system and a cut-off value to distinguish between preadenogenic and adenogenic oviducts. Our results showed that the maturation of the C. latirostris oviduct is completed postnatally and characterized by changes that mimic the pattern of histological modifications described for the mammalian uterus. Ontogenic changes in the oviductal epithelium parallel changes at subepithelial level, and include collagen remodeling and characteristic spatial-temporal patterns of α-actin and desmin. The expression pattern of estrogen receptor alpha and progesterone receptor evidenced that, even at early postnatal developmental stages, the oviduct of C. latirostris is a target organ of endogenous and environmental hormones. Besides, oviductal adenogenesis seems to be an estrogen-dependent process. Results presented here provide not only insights into the histophysiological aspect of caiman female reproductive ducts but also new tools to better characterize caimans as sentinels of endocrine disruption.
Collapse
Affiliation(s)
- G H Galoppo
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina
| | - C Stoker
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina
| | - G Canesini
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina
| | - G Schierano-Marotti
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina
| | - M Durando
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina
| | - E H Luque
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina
| | - M Muñoz-de-Toro
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Bioquímica y Ciencias Biológicas, Santa Fe, Argentina.
| |
Collapse
|