1
|
Champagne CD, Kellar NM, Trego ML, Delehanty B, Boonstra R, Wasser SK, Booth RK, Crocker DE, Houser DS. Comprehensive endocrine response to acute stress in the bottlenose dolphin from serum, blubber, and feces. Gen Comp Endocrinol 2018; 266:178-193. [PMID: 29852162 DOI: 10.1016/j.ygcen.2018.05.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 05/11/2018] [Accepted: 05/13/2018] [Indexed: 10/16/2022]
Abstract
Several hormones are potential indicators of stress in free-ranging animals and provide information on animal health in managed-care settings. In response to stress, glucocorticoids (GC, e.g. cortisol) first appear in circulation but are later incorporated into other tissues (e.g. adipose) or excreted in feces or urine. These alternative matrices can be sampled remotely, or by less invasive means, than required for blood collection and are especially valuable in highly mobile species, like marine mammals. We characterized the timing and magnitude of several hormones in response to a stressor in bottlenose dolphins (Tursiops truncatus) and the subsequent incorporation of cortisol into blubber, and its metabolites excreted in feces. We evaluated the endocrine response to an acute stressor in bottlenose dolphins under managed care. We used a standardized stress protocol where dolphins voluntarily beached onto a padded platform and remained out of water for two hours; during the stress test blood samples were collected every 15 min and blubber biopsies were collected every hour (0, 60, and 120 min). Each subject was studied over five days: voluntary blood samples were collected on each of two days prior to the stress test; 1 and 2 h after the conclusion of the out-of-water stress test; and on the following two days after the stress test. Fecal samples were collected daily, each afternoon. The acute stressor resulted in increases in circulating ACTH, cortisol, and aldosterone during the stress test, and each returned to baseline levels within 2 h of the dolphin's return to water. Both cortisol and aldosterone concentrations were correlated with ACTH, suggesting both corticosteroids are at least partly regulated by ACTH. Thyroid hormone concentrations were generally unaffected by the acute stressor. Blubber cortisol increased during the stress test, and fecal GC excretion was elevated on the day of the stress test. We found that GCs in bottlenose dolphins can recover within hours of acute stress, and that cortisol release can be detected in alternate matrices within a few hours-within 2 h in blubber, and 3.5-5 h in fecal samples.
Collapse
Affiliation(s)
- Cory D Champagne
- National Marine Mammal Foundation, 2240 Shelter Island Dr Suite 200, San Diego, CA 92106, United States.
| | - Nicholas M Kellar
- Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 8901 La Jolla Shores Dr, La Jolla, CA 92037, United States
| | - Marisa L Trego
- Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 8901 La Jolla Shores Dr, La Jolla, CA 92037, United States; Ocean Associates, Inc., 4007 N Abingdon St, Arlington, VA 22207, United States
| | - Brendan Delehanty
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Rudy Boonstra
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Samuel K Wasser
- Center for Conservation Biology Box 351800, University of Washington, Seattle, WA 98195, United States
| | - Rebecca K Booth
- Center for Conservation Biology Box 351800, University of Washington, Seattle, WA 98195, United States
| | - Daniel E Crocker
- Department of Biology, Sonoma State University. 1801 E. Cotati Ave, Rohnert Park, CA 94928, United States
| | - Dorian S Houser
- National Marine Mammal Foundation, 2240 Shelter Island Dr Suite 200, San Diego, CA 92106, United States
| |
Collapse
|
2
|
Suzuki M, Yoshioka M, Ohno Y, Akune Y. Plasma metabolomic analysis in mature female common bottlenose dolphins: profiling the characteristics of metabolites after overnight fasting by comparison with data in beagle dogs. Sci Rep 2018; 8:12030. [PMID: 30104643 PMCID: PMC6089887 DOI: 10.1038/s41598-018-30563-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 08/02/2018] [Indexed: 12/14/2022] Open
Abstract
The present study was aimed at determining the characteristics of plasma metabolites in bottlenose dolphins to provide a greater understanding of their metabolism and to obtain information for the health management of cetaceans. Capillary electrophoresis-time-of-flight mass spectrometry (CE-TOFMS) and liquid chromatograph-time-of-flight mass spectrometry (LC-TOFMS) were conducted on plasma samples after overnight fasting from three common bottlenose dolphins as well as three beagle dogs (representative terrestrial carnivores) for comparison. In total, 257 and 227 plasma metabolites were identified in the dolphins and the dogs, respectively. Although a small number of animals were used for each species, the heatmap patterns, a principal component analysis and a cluster analysis confirmed that the composition of metabolites could be segregated from each other. Of 257 compounds detected in dolphin plasma, 24 compounds including branched amino acids, creatinine, urea, and methylhistidine were more abundant than in dogs; 26 compounds including long-chained acyl-carnitines and fatty acids, astaxanthin, and pantothenic acid were detected only in dolphins. In contrast, 25 compounds containing lactic acid and glycerol 3-phosphate were lower in dolphins compared to dogs. These data imply active protein metabolism, differences in usage of lipids, a unique urea cycle, and a low activity of the glycolytic pathway in dolphins.
Collapse
Affiliation(s)
- Miwa Suzuki
- Department of Marine Resources and Sciences, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, 252-0880, Japan.
| | - Motoi Yoshioka
- Cetacean Research Center, Graduate School of Bioresources, Mie University, Kurimamachiya, Tsu, Mie, 514-8507, Japan.
| | - Yoshito Ohno
- Port of Nagoya Public Aquarium, Minato, Nagoya, Aichi, 455-0033, Japan
| | - Yuichiro Akune
- Port of Nagoya Public Aquarium, Minato, Nagoya, Aichi, 455-0033, Japan
| |
Collapse
|