1
|
Murillo Ramos AM, Wilson JY. Is there potential for estradiol receptor signaling in lophotrochozoans? Gen Comp Endocrinol 2024; 354:114519. [PMID: 38677339 DOI: 10.1016/j.ygcen.2024.114519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/29/2024]
Abstract
Estrogen receptors (ERs) are thought to be the ancestor of all steroid receptors and are present in most lophotrochozoans studied to date, including molluscs, annelids, and rotifers. A number of studies have investigated the functional role of estrogen receptors in invertebrate species, although most are in molluscs, where the receptor is constitutively active. In vitro experiments provided evidence for ligand-activated estrogen receptors in annelids, raising important questions about the role of estrogen signalling in lophotrochozoan lineages. Here, we review the concordant and discordant evidence of estradiol receptor signalling in lophotrochozoans, with a focus on annelids and rotifers. We explore the de novo synthesis of estrogens, the evolution and expression of estrogen receptors, and physiological responses to activation of estrogen receptors in the lophotrochozoan phyla Annelida and Rotifera. Key data are missing to determine if de novo biosynthesis of estradiol in non-molluscan lophotrochozoans is likely. For example, an ortholog for the CYP11 gene is present, but confirmation of substrate conversion and measured tissue products is lacking. Orthologs CYP17 and CYP19 are lacking, yet intermediates or products (e.g. estradiol) in tissues have been measured. Estrogen receptors are present in multiple species, and for a limited number, in vitro data show agonist binding of estradiol and/or transcriptional activation. The expression patterns of the lophotrochozoan ERs suggest developmental, reproductive, and digestive roles but are highly species dependent. E2 exposures suggest that lophotrochozoan ERs may play a role in reproduction, but no strong dose-response relationship has been established. Therefore, we expect most lophotrochozoan species, outside of perhaps platyhelminths, to have an ER but their physiological role remains elusive. Mining genomes for orthologs gene families responsible for steroidogenesis, coupled with in vitro and in vivo studies of the steroid pathway are needed to better assess whether lophotrochozoans are capable of estradiol biosynthesis. One major challenge is that much of the data are divided across a diversity of species. We propose that the polychaetes Capitella teleta or Platyneris dumerilii, and rotifer Brachionus manjavacas may be strong species choices for studies of estrogen receptor signalling, because of available genomic data, established laboratory culture techniques, and gene knockout potential.
Collapse
Affiliation(s)
- A M Murillo Ramos
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada.
| | - J Y Wilson
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
2
|
Hashimshony T, Levin L, Fröbius AC, Dahan N, Chalifa-Caspi V, Hamo R, Gabai-Almog O, Blais I, Assaraf YG, Lubzens E. A transcriptomic examination of encased rotifer embryos reveals the developmental trajectory leading to long-term dormancy; are they "animal seeds"? BMC Genomics 2024; 25:119. [PMID: 38281016 PMCID: PMC10821554 DOI: 10.1186/s12864-024-09961-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/02/2024] [Indexed: 01/29/2024] Open
Abstract
BACKGROUND Organisms from many distinct evolutionary lineages acquired the capacity to enter a dormant state in response to environmental conditions incompatible with maintaining normal life activities. Most studied organisms exhibit seasonal or annual episodes of dormancy, but numerous less studied organisms enter long-term dormancy, lasting decades or even centuries. Intriguingly, many planktonic animals produce encased embryos known as resting eggs or cysts that, like plant seeds, may remain dormant for decades. Herein, we studied a rotifer Brachionus plicatilis as a model planktonic species that forms encased dormant embryos via sexual reproduction and non-dormant embryos via asexual reproduction and raised the following questions: Which genes are expressed at which time points during embryogenesis? How do temporal transcript abundance profiles differ between the two types of embryos? When does the cell cycle arrest? How do dormant embryos manage energy? RESULTS As the molecular developmental kinetics of encased embryos remain unknown, we employed single embryo RNA sequencing (CEL-seq) of samples collected during dormant and non-dormant embryogenesis. We identified comprehensive and temporal transcript abundance patterns of genes and their associated enriched functional pathways. Striking differences were uncovered between dormant and non-dormant embryos. In early development, the cell cycle-associated pathways were enriched in both embryo types but terminated with fewer nuclei in dormant embryos. As development progressed, the gene transcript abundance profiles became increasingly divergent between dormant and non-dormant embryos. Organogenesis was suspended in dormant embryos, concomitant with low transcript abundance of homeobox genes, and was replaced with an ATP-poor preparatory phase characterized by very high transcript abundance of genes encoding for hallmark dormancy proteins (e.g., LEA proteins, sHSP, and anti-ROS proteins, also found in plant seeds) and proteins involved in dormancy exit. Surprisingly, this period appeared analogous to the late maturation phase of plant seeds. CONCLUSIONS The study highlights novel divergent temporal transcript abundance patterns between dormant and non-dormant embryos. Remarkably, several convergent functional solutions appear during the development of resting eggs and plant seeds, suggesting a similar preparatory phase for long-term dormancy. This study accentuated the broad novel molecular features of long-term dormancy in encased animal embryos that behave like "animal seeds".
Collapse
Affiliation(s)
- Tamar Hashimshony
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Liron Levin
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Andreas C Fröbius
- Molecular Andrology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Gießen, Gießen, Germany.
| | - Nitsan Dahan
- Interdisciplinary Center for Life Sciences and Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Vered Chalifa-Caspi
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Reini Hamo
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Oshri Gabai-Almog
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Idit Blais
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and IVF, Lady Davis Carmel Medical Center, Haifa, Israel
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Esther Lubzens
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
- (Retired) Israel Oceanographic and Limnological Research, Haifa, Israel.
| |
Collapse
|
3
|
Wu W, LoVerde PT. Updated knowledge and a proposed nomenclature for nuclear receptors with two DNA binding domains (2DBD-NRs). PLoS One 2023; 18:e0286107. [PMID: 37699039 PMCID: PMC10497141 DOI: 10.1371/journal.pone.0286107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/27/2023] [Indexed: 09/14/2023] Open
Abstract
Nuclear receptors (NRs) are important transcriptional modulators in metazoans. Typical NRs possess a conserved DNA binding domain (DBD) and a ligand binding domain (LBD). Since we discovered a type of novel NRs each of them has two DBDs and single LBD (2DBD-NRs) more than decade ago, there has been very few studies about 2DBD-NRs. Recently, 2DBD-NRs have been only reported in Platyhelminths and Mollusca and are thought to be specific NRs to lophotrochozoan. In this study, we searched different databases and identified 2DBD-NRs in different animals from both protostomes and deuterostomes. Phylogenetic analysis shows that at least two ancient 2DBD-NR genes were present in the urbilaterian, a common ancestor of protostomes and deuterostomes. 2DBD-NRs underwent gene duplication and loss after the split of different animal phyla, most of them in a certain animal phylum are paralogues, rather than orthologues, like in other animal phyla. Amino acid sequence analysis shows that the conserved motifs in typical NRs are also present in 2DBD-NRs and they are gene specific. From our phylogenetic analysis of 2DBD-NRs and following the rule of Nomenclature System for the Nuclear Receptors, a nomenclature for 2DBD-NRs is proposed.
Collapse
Affiliation(s)
- Wenjie Wu
- Departments of Biochemistry and Structural Biology University of Texas Health, San Antonio, Texas, United States of America
| | - Philip T. LoVerde
- Departments of Biochemistry and Structural Biology University of Texas Health, San Antonio, Texas, United States of America
| |
Collapse
|
4
|
Park JJC, Kim DH, Kim MS, Sayed AEDH, Hagiwara A, Hwang UK, Park HG, Lee JS. Comparative genome analysis of the monogonont marine rotifer Brachionus manjavacas Australian strain: Potential application for ecotoxicology and environmental genomics. MARINE POLLUTION BULLETIN 2022; 180:113752. [PMID: 35617743 DOI: 10.1016/j.marpolbul.2022.113752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
This is the first study to analyze the whole-genome sequence of B. manjavacas Australian (Aus.) strain through combination of Oxford Nanopore long-read seq, resulting in a total length of 108.1 Mb and 75 contigs. Genome-wide detoxification related gene families in B. manjavacas Aus. strain were comparatively analyzed with those previously identified in other Brachionus spp., including B. manjavacas German (Ger.) strain. Most of the subfamilies in detoxification related families (CYPs, GSTs, and ABCs) were highly conserved and confirmed orthologous relationship with Brachionus spp., and with accumulation of genome data, clear differences between genomic repertoires were demonstrated the marine and the freshwater species. Furthermore, strain-specific genetic variations were present between the Aus. and Ger. strains of B. manjavacas. This whole-genome analysis provides in-depth review on the genomic structural differences for detoxification-related gene families and further provides useful information for comparative ecotoxicological studies and evolution of detoxification mechanisms in Brachionus spp.
Collapse
Affiliation(s)
- Jordan Jun Chul Park
- Département des Sciences, Université Sainte-Anne, Church Point, NS B0W 1M0, Canada
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Sciences, Assiut University, Assiut 71516, Egypt
| | - Atsushi Hagiwara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Un-Ki Hwang
- Marine Environment Research Division, National Institute of Fisheries Science, Busan 46083, South Korea
| | - Heum Gi Park
- Department of Marine Ecology and Environment, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, South Korea.
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
5
|
Taubenheim J, Kortmann C, Fraune S. Function and Evolution of Nuclear Receptors in Environmental-Dependent Postembryonic Development. Front Cell Dev Biol 2021; 9:653792. [PMID: 34178983 PMCID: PMC8222990 DOI: 10.3389/fcell.2021.653792] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Nuclear receptors (NRs) fulfill key roles in the coordination of postembryonal developmental transitions in animal species. They control the metamorphosis and sexual maturation in virtually all animals and by that the two main environmental-dependent developmental decision points. Sexual maturation and metamorphosis are controlled by steroid receptors and thyroid receptors, respectively in vertebrates, while both processes are orchestrated by the ecdysone receptor (EcR) in insects. The regulation of these processes depends on environmental factors like nutrition, temperature, or photoperiods and by that NRs form evolutionary conserved mediators of phenotypic plasticity. While the mechanism of action for metamorphosis and sexual maturation are well studied in model organisms, the evolution of these systems is not entirely understood and requires further investigation. We here review the current knowledge of NR involvement in metamorphosis and sexual maturation across the animal tree of life with special attention to environmental integration and evolution of the signaling mechanism. Furthermore, we compare commonalities and differences of the different signaling systems. Finally, we identify key gaps in our knowledge of NR evolution, which, if sufficiently investigated, would lead to an importantly improved understanding of the evolution of complex signaling systems, the evolution of life history decision points, and, ultimately, speciation events in the metazoan kingdom.
Collapse
Affiliation(s)
| | | | - Sebastian Fraune
- Zoology and Organismic Interactions, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
6
|
Joaquim-Justo C, Gismondi E. Expression variations of two retinoid signaling pathway receptors in the rotifer Brachionus calyciflorus exposed to three endocrine disruptors. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:343-350. [PMID: 33443716 DOI: 10.1007/s10646-020-02339-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
Endocrine disruption compounds (EDC) are known to affect reproduction, development, and growth of exposed organisms. Although in vertebrates, EDCs mainly act through steroid receptors (e.g. androgen and estrogen receptors), their absence in many invertebrates suggests the involvement of another biological pathway in endocrine disruption effects. As retinoid signaling pathway is present in almost all Metazoa and its involvement in the endocrine disruption of gastropods (i.e. imposex) has been demonstrated, the present work was devoted to investigating the relative mRNA variations of two retinoid receptors genes, retinoid X receptor (RXR) and retinoid acid receptor (RAR), in the freshwater rotifer Brachionus calyciflorus exposed for 6, 12 and 24 h to flutamide, fenitrothion and cyproterone acetate, three anti-androgens known to disrupt sexual reproduction of Brachionus sp. Results revealed that fenitrothion did not affect the relative mRNA levels RXR and RAR in B. calyciflorus, whereas RXR and RAR mRNA levels could be significantly increased by 2 to 4.5-fold and from 2 to 7-fold after exposure to flutamide and cyproterone acetate, respectively. Moreover, the effects of flutamide and cyproterone acetate were measured from 6 and 12 h of exposure, respectively. Cyproterone acetate caused the highest increase of RXR and RAR mRNA levels, probably due to its progestin activity in addition to its anti-androgenic activity and the potential presence of a membrane-associated progesterone receptor as reported in Brachionus manjavacas. Consequently, although it is still difficult to evaluate the hormonal pathways involved in the endocrine disruption in Brachionus sp., this work suggests that the retinoid signaling pathway appears to be a good starting point to try to elucidate the molecular mechanisms involved in sexual reproductive dysfunction in Brachionidae.
Collapse
Affiliation(s)
- C Joaquim-Justo
- Laboratory of Animal Ecology and Ecotoxicology (LEAE)-Freshwater and OceaniC sciences Unit of reSearch (FOCUS), Chemistry Institute, B ât. B6C, University of Liège, 11 allée du 6 Août, Sart-Tilman, B-4000, Liège, Belgium
| | - E Gismondi
- Laboratory of Animal Ecology and Ecotoxicology (LEAE)-Freshwater and OceaniC sciences Unit of reSearch (FOCUS), Chemistry Institute, B ât. B6C, University of Liège, 11 allée du 6 Août, Sart-Tilman, B-4000, Liège, Belgium.
| |
Collapse
|
7
|
Capela R, Garric J, Castro LFC, Santos MM. Embryo bioassays with aquatic animals for toxicity testing and hazard assessment of emerging pollutants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135740. [PMID: 31838430 DOI: 10.1016/j.scitotenv.2019.135740] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 06/10/2023]
Abstract
This review article gathers the available information on the use of embryo-tests as high-throughput tools for toxicity screening, hazard assessment and prioritization of new and existing chemical compounds. The approach is contextualized considering the new legal trends for animal experimentation, fostering the 3R policy, with reduction of experimental animals, addressing the potential of embryo-tests as high-throughput toxicity screening and prioritizing tools. Further, the current test guidelines, such as the ones provided by OECD and EPA, focus mainly in a limited number of animal lineages, particularly vertebrates and arthropods. To extrapolate hazard assessment to the ecosystem scale, a larger diversity of taxa should be tested. The use of new experimental animal models in toxicity testing, from a representative set of taxa, was thoroughly revised and discussed in this review. Here, we critically review current tools and the main advantages and drawbacks of different animal models and set researcher priorities.
Collapse
Affiliation(s)
- Ricardo Capela
- CIMAR/CIIMAR - Interdisciplinary Centre for Marine and Environmental Research, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP - Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; IRSTEA - National Research Institute of Science and Technology for Environment and Agriculture - Centre de Lyon-Villeurbanne, 5 rue de la Doua, CS20244, 69625 Villeurbanne Cedex, Lyon-Villeurbanne, France
| | - Jeanne Garric
- IRSTEA - National Research Institute of Science and Technology for Environment and Agriculture - Centre de Lyon-Villeurbanne, 5 rue de la Doua, CS20244, 69625 Villeurbanne Cedex, Lyon-Villeurbanne, France.
| | - Luís Filipe Costa Castro
- CIMAR/CIIMAR - Interdisciplinary Centre for Marine and Environmental Research, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP - Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| | - Miguel Machado Santos
- CIMAR/CIIMAR - Interdisciplinary Centre for Marine and Environmental Research, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; FCUP - Faculty of Sciences of the University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| |
Collapse
|
8
|
Han J, Park JC, Choi BS, Kim MS, Kim HS, Hagiwara A, Park HG, Lee BY, Lee JS. The genome of the marine monogonont rotifer Brachionus plicatilis: Genome-wide expression profiles of 28 cytochrome P450 genes in response to chlorpyrifos and 2-ethyl-phenanthrene. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 214:105230. [PMID: 31306923 DOI: 10.1016/j.aquatox.2019.105230] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/03/2019] [Accepted: 06/18/2019] [Indexed: 06/10/2023]
Abstract
Brachionus spp. (Rotifera: Monogononta) are globally distributed in aquatic environments and play important roles in the aquatic ecosystem. The marine monogonont rotifer Brachionus plicatilis is considered a suitable model organism for ecology, evolution, and ecotoxicology. In this study, we assembled and characterized the B. plicatilis genome. The total length of the assembled genome was 106.9 Mb and the number of final scaffolds was 716 with an N50 value of 1.15 Mb and a GC content of 26.75%. A total of 20,154 genes were annotated after manual curation. To demonstrate the use of whole genome data, we targeted one of the main detoxifying enzyme of phase I detoxification system and identified in a total of 28 cytochrome P450 s (CYPs). Based on the phylogenetic analysis using the maximum likelihood, 28 B. plicatilis-CYPs were apparently separated into five different clans, namely, 2, 3, 4, mitochondrial (MT), and 46 clans. To better understand the CYPs-mediated xenobiotic detoxification, we measured the mRNA expression levels of 28 B. plicatilis CYPs in response to chlorpyrifos and 2-ethyl-phenanthrene. Most B. plicatilis CYPs were significantly modulated (P < 0.05) in response to chlorpyrifos and 2-ethyl-phenanthrene. In addition, xenobiotic-sensing nuclear receptor (XNR) response element sequences were identified in the 5 kb upstream of promoter regions of 28 CYPs from the genome of B. plicatilis, indicating that these XNR can be associated with detoxification of xenobiotics. Overall, the assembled B. plicatilis genome presented here will be a useful resource for a better understanding the molecular ecotoxicology in the view of molecular mechanisms underlying toxicological responses, particularly on xenobiotic detoxification in this species.
Collapse
Affiliation(s)
- Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jun Chul Park
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Beom-Soon Choi
- Phyzen Genomics Institute, Seongnam 13558, Republic of Korea
| | - Min-Sub Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hui-Su Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Atsushi Hagiwara
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852-8521, Japan; Institute of Integrated Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Heum Gi Park
- Department of Marine Resource Development, College of Life Sciences, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Bo-Young Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
9
|
Gismondi E, Cauchie HM, Cruciani V, Joaquim-Justo C. Targeted impact of cyproterone acetate on the sexual reproduction of female rotifers. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:643-649. [PMID: 31197615 DOI: 10.1007/s10646-019-02063-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/30/2019] [Indexed: 06/09/2023]
Abstract
Monogonont rotifers constitute, depending on the moment of the year, most of the zooplankton in many freshwater ecosystems. Sexual reproduction is essential in the development cycle of these organisms as it enables them to constitute stocks of cysts which can withstand adverse environmental conditions and hatch when favorable conditions return. However, endocrine disrupting compounds (EDCs) can interfere with the reproduction of organisms. The present work aimed to investigate the effects of cyproterone acetate (CPA, anti-androgen and progestogen synthetic steroid) at 0.5 mg L-1, on the sexual reproduction of Brachionus calyciflorus in a cross-mating experiment. Results show no impact on mixis whereas the fertilization rate and resting egg production were higher in females exposed to CPA (from embryogenesis to adult stage), regardless of the treatment applied to the males with which they were mating (i.e. males hatched from CPA-treated females or from control females). Moreover, neonate females which mothers has been exposed to 0.5 mg L-1 CPA had more oocytes in their germarium than control neonates. Our results suggest that the effects of CPA observed are not related to toxicity but rather are consistent with an endocrine disruption-related impact, probably through disturbance of the mate recognition protein (MRP) production and through interference with a steroid receptor. Moreover, the absence of effect on mixis rate indicates that mixis induction on the one hand and mating process and resting production on the other hand are not controlled by the same hormonal pathways.
Collapse
Affiliation(s)
- E Gismondi
- Laboratory of Animal Ecology and Ecotoxicology (LEAE)-Freshwater and OceaniC sciences Unit of reSearch (FOCUS), Chemistry Institute, University of Liège, B ât. B6C, 11 allée du 6 Août, B-4000, Sart-Tilman, Belgium.
| | - H-M Cauchie
- Department of Environmental Research and Innovation (ERIN), Luxembourg Institute of Science and Technology (LIST), Belvaux, Luxembourg
| | - V Cruciani
- Laboratory of Animal Ecology and Ecotoxicology (LEAE)-Freshwater and OceaniC sciences Unit of reSearch (FOCUS), Chemistry Institute, University of Liège, B ât. B6C, 11 allée du 6 Août, B-4000, Sart-Tilman, Belgium
| | - C Joaquim-Justo
- Laboratory of Animal Ecology and Ecotoxicology (LEAE)-Freshwater and OceaniC sciences Unit of reSearch (FOCUS), Chemistry Institute, University of Liège, B ât. B6C, 11 allée du 6 Août, B-4000, Sart-Tilman, Belgium
| |
Collapse
|
10
|
Lee MC, Fonseca E, Park JC, Yoon DS, Choi H, Kim M, Han J, Cho HS, Shin KH, Santos ML, Jung JH, Castro LFC, Lee JS. Tributyltin Affects Retinoid X Receptor-Mediated Lipid Metabolism in the Marine Rotifer Brachionus koreanus. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7830-7839. [PMID: 31244070 DOI: 10.1021/acs.est.9b01359] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
To examine how tributyltin (TBT), a model obesogen, affects the lipid metabolism in the marine rotifer Brachionus koreanus, we carried out life-cycle studies and determined the in vitro and in silico interactions of retinoid X receptor (RXR) with TBT, the transcriptional levels of RXR and lipid metabolic genes, and the fatty acid content. The lethal concentration 10% (LC10) was determined to be 5.12 μg/L TBT, and negative effects on ecologically relevant end points (e.g., decreased lifespan and fecundity) were detected at 5 μg/L TBT. On the basis of these findings, subsequent experiments were conducted below 1 μg/L TBT, which did not show any negative effects on ecologically relevant end points in B. koreanus. Nile red staining analysis showed that after exposure to 1 μg/L TBT, B. koreanus stored neutral lipids and had significantly increased transcriptional levels of RXR and lipid metabolism-related genes compared to the control. However, the content of total fatty acids did not significantly change at any exposure level. In the single fatty acids profile, a significant increase in saturated fatty acids (SFAs) 14:0 and 20:0 was observed, but the contents of omega-3 and omega-6 fatty acids were significantly decreased. Also, a transactivation assay of TBT with RXR showed that TBT is an agonist of Bk-RXR with a similar fold-induction to the positive control. Taken together, these results demonstrate that TBT-modulated RXR signaling leads to increase in transcriptional levels of lipid metabolism-related genes and the synthesis of SFAs but decreases the content of polyunsaturated fatty acids (PUFAs). Our findings support a wider taxonomic scope of lipid perturbation due to xenobiotic exposure that occurs via NRs in aquatic animals.
Collapse
Affiliation(s)
- Min-Chul Lee
- Department of Biological Science, College of Science , Sungkyunkwan University , Suwon 16419 , South Korea
| | - Elza Fonseca
- Department of Biology, Faculty of Sciences , University of Porto , 4169-007 Porto , Portugal
- Interdisciplinary Centre of Marine and Environmental Research , University of Porto , 4450-208 Matosinhos , Portugal
| | - Jun Chul Park
- Department of Biological Science, College of Science , Sungkyunkwan University , Suwon 16419 , South Korea
| | - Deok-Seo Yoon
- Department of Biological Science, College of Science , Sungkyunkwan University , Suwon 16419 , South Korea
| | - Hyuntae Choi
- Department of Marine and Convergence Sciences, College of Science and Technology , Hanyang University , Ansan 15588 , South Korea
| | - Moonkoo Kim
- Risk Assessment Research Center , Korea Institute of Ocean Science & Technology , Geoje 53201 , South Korea
- Department of Marine Environmental Science , Korea University of Science and Technology , Daejeon 34113 , South Korea
| | - Jeonghoon Han
- Department of Biological Science, College of Science , Sungkyunkwan University , Suwon 16419 , South Korea
| | - Hyeon-Seo Cho
- College of Fisheries and Ocean Sciences , Chonnam National University , Yeosu 550-749 , South Korea
| | - Kyung-Hoon Shin
- Department of Marine and Convergence Sciences, College of Science and Technology , Hanyang University , Ansan 15588 , South Korea
| | - Miguel L Santos
- Department of Biology, Faculty of Sciences , University of Porto , 4169-007 Porto , Portugal
- Interdisciplinary Centre of Marine and Environmental Research , University of Porto , 4450-208 Matosinhos , Portugal
| | - Jee-Hyun Jung
- Risk Assessment Research Center , Korea Institute of Ocean Science & Technology , Geoje 53201 , South Korea
- Department of Marine Environmental Science , Korea University of Science and Technology , Daejeon 34113 , South Korea
| | - L Filipe C Castro
- Department of Biology, Faculty of Sciences , University of Porto , 4169-007 Porto , Portugal
- Interdisciplinary Centre of Marine and Environmental Research , University of Porto , 4450-208 Matosinhos , Portugal
| | - Jae-Seong Lee
- Department of Biological Science, College of Science , Sungkyunkwan University , Suwon 16419 , South Korea
| |
Collapse
|
11
|
Evolutionary Plasticity in Detoxification Gene Modules: The Preservation and Loss of the Pregnane X Receptor in Chondrichthyes Lineages. Int J Mol Sci 2019; 20:ijms20092331. [PMID: 31083458 PMCID: PMC6539745 DOI: 10.3390/ijms20092331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 12/30/2022] Open
Abstract
To appraise how evolutionary processes, such as gene duplication and loss, influence an organism's xenobiotic sensitivity is a critical question in toxicology. Of particular importance are gene families involved in the mediation of detoxification responses, such as members of the nuclear receptor subfamily 1 group I (NR1I), the pregnane X receptor (PXR), and the constitutive androstane receptor (CAR). While documented in multiple vertebrate genomes, PXR and CAR display an intriguing gene distribution. PXR is absent in birds and reptiles, while CAR shows a tetrapod-specific occurrence. More elusive is the presence of PXR and CAR gene orthologs in early branching and ecologically-important Chondrichthyes (chimaeras, sharks and rays). Therefore, we investigated various genome projects and use them to provide the first identification and functional characterization of a Chondrichthyan PXR from the chimaera elephant shark (Callorhinchus milii, Holocephali). Additionally, we substantiate the targeted PXR gene loss in Elasmobranchii (sharks and rays). Compared to other vertebrate groups, the chimaera PXR ortholog displays a diverse expression pattern (skin and gills) and a unique activation profile by classical xenobiotic ligands. Our findings provide insights into the molecular landscape of detoxification mechanisms and suggest lineage-specific adaptations in response to xenobiotics in gnathostome evolution.
Collapse
|
12
|
Lee BY, Choi BS, Kim MS, Park JC, Jeong CB, Han J, Lee JS. The genome of the freshwater water flea Daphnia magna: A potential use for freshwater molecular ecotoxicology. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 210:69-84. [PMID: 30826642 DOI: 10.1016/j.aquatox.2019.02.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
The water flea Daphnia magna is a small planktonic cladoceran. D. magna has been used as a model species for ecotoxicology, as it is sensitive to environmental stressors and environmental changes. Since Daphnia is affected by culture environment and each population/strain has its own ecological and genetic characteristics, its population/strain-based genome information is useful for environmental genomic studies. In this study, we assembled and characterized the genome of D. magna. Using a high-density genetic map of D. magna xinb3, the draft genome was integrated to 10 linkage groups (LGs). The total length of the integrated genome was about 123 Mb with N50 = 10.1 Mb, and the number of scaffolds was 4193 including 10 LGs. A total of 15,721 genes were annotated after manual curation. Orthologous genes were characterized in the genome and compared with other genomes of Daphnia. In addition, we identified defense related genes such as cytochrome P450 (CYP) genes, glutathione S-transferase (GST) genes, and ATP-binding cassette (ABC) genes from the assembled D. magna genome for its potential use in molecular ecotoxicological studies in the freshwater environment. This genomic resource will be helpful to study for a better understanding on molecular mechanism in response to various pollutants.
Collapse
Affiliation(s)
- Bo-Young Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | | | - Min-Sub Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|