1
|
Ryu T, Okamoto K, Ansai S, Nakao M, Kumar A, Iguchi T, Ogino Y. Gene Duplication of Androgen Receptor As An Evolutionary Driving Force Underlying the Diversity of Sexual Characteristics in Teleost Fishes. Zoolog Sci 2024; 41:68-76. [PMID: 38587519 DOI: 10.2108/zs230098] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/15/2024] [Indexed: 04/09/2024]
Abstract
Sexual dimorphism allows species to meet their fitness optima based on the physiological availability of each sex. Although intralocus sexual conflict appears to be a genetic constraint for the evolution of sex-specific traits, sex-linked genes and the regulation of sex steroid hormones contribute to resolving this conflict by allowing sex-specific developments. Androgens and their receptor, androgen receptor (Ar), regulate male-biased phenotypes. In teleost fish, ar ohnologs have emerged as a result of teleost-specific whole genome duplication (TSGD). Recent studies have highlighted the evolutionary differentiation of ar ohnologs responsible for the development of sexual characteristics, which sheds light on the need for comparative studies on androgen regulation among different species. In this review, we discuss the importance of ar signaling as a regulator of male-specific traits in teleost species because teleost species are suitable experimental models for comparative studies owing to their great diversity in male-biased morphological and physiological traits. To date, both in vivo and in vitro studies on teleost ar ohnologs have shown a substantial influence of ars as a regulator of male-specific reproductive traits such as fin elongation, courtship behavior, and nuptial coloration. In addition to these sexual characteristics, ar substantially influences immunity, inducing a sex-biased immune response. This review aims to provide a comprehensive understanding of the current state of teleost ar studies and emphasizes the potential of teleost fishes, given their availability, to find molecular evidence about what gives rise to the spectacular diversity among fish species.
Collapse
Affiliation(s)
- Tsukasa Ryu
- Laboratory of Marine Biochemistry, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Keigo Okamoto
- Laboratory of Aquatic Molecular Developmental Biology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Satoshi Ansai
- Laboratory of Genome Editing Breeding, Graduate School of Agriculture, Kyoto University, Kyoto 606-8507, Japan
| | - Miki Nakao
- Laboratory of Marine Biochemistry, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan
- Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| | - Anu Kumar
- Commonwealth Scientific and Industrial Research Organization, CSIRO Environment, PMB2, Glen Osmond, 5064 South Australia, Australia
| | - Taisen Iguchi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa 236-0027, Japan
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ishikawa 927-0553, Japan
| | - Yukiko Ogino
- Laboratory of Aquatic Molecular Developmental Biology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan,
- Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
2
|
Cunha AAP, Garner SR, Ingoldsby E, Dixon B, MacDougall-Shackleton SA, Knapp R, Neff BD. Androgen and prolactin manipulation do not induce changes in immunocompetence measures in a fish with male parental care. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:284-289. [PMID: 36564859 DOI: 10.1002/jez.2677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/25/2022]
Abstract
Prolactin and 11-ketotestosterone (11-KT) are important reproductive hormones in fishes, which may also influence immunocompetence. The immunocompetence handicap hypothesis states that higher androgen concentrations that support secondary sex traits are traded off against a decrease in immune system function. To test the relationships between these hormones and immunocompetence, we experimentally manipulated 11-ketotestosterone and prolactin in the freshwater fish, bluegill (Lepomis macrochirus) during parental care using implants that contained either 11-KT, prolactin, or an inert control. We vaccinated individuals to stimulate the acquired immune response, then measured immunocompetence as the number of granulocytes, lymphocytes and monocytes, and the expression of interleukin 8 in each sample. We did not observe any significant differences in the immune measures among the hormone treatments. Our results indicate that in bluegill, there is no trade-off between androgens or prolactin and immunocompetence.
Collapse
Affiliation(s)
- Adriano A P Cunha
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Shawn R Garner
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Erin Ingoldsby
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | | | - Rosemary Knapp
- Department of Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Bryan D Neff
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
3
|
Campbell JH, Dixon B, Whitehouse LM. The intersection of stress, sex and immunity in fishes. Immunogenetics 2021; 73:111-129. [PMID: 33426582 DOI: 10.1007/s00251-020-01194-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/18/2020] [Indexed: 11/27/2022]
Abstract
While sexual dimorphism in immune responses has been documented in other vertebrates, evidence for a similar phenomenon in fish is lacking. Here, we review the relationship between immunity, stress, spawning, and sex hormones in fish to gain a better understanding of sex-based differences in fish immune responses and its consequences for aquaculture. It is well known that there is a strong link between the stress response and immune function in fish. In addition, research to date has demonstrated that sexual dimorphism in the stress response exists in many species; yet, the relationship between the sexual dimorphic stress responses and immune function has rarely been explored together. Aside from stress, spawning is also known to trigger changes in fish immune responses. Estrogens and androgens have been shown to modulate the immune system which could account for differences between the two sexes of fish when spawning; however, evidence regarding the sexual dimorphism of these changes varies between fishes and is likely related to the spawning strategy employed by a given species. Sex hormones are also used in aquaculture practices to produce monosex populations, and exposure to these hormones early in development has been shown to impact the development of immune organs in several fishes. While female fish are generally thought to be more robust than males, aquaculture practices should also consider the role that maternal stress has on the immune function of the offspring and what role this plays in compromising the immune response of farmed fish.
Collapse
Affiliation(s)
- James H Campbell
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, USA
| | - Brian Dixon
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, USA.
| | - Lindy M Whitehouse
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, ON, N2L 3G1, USA
| |
Collapse
|