1
|
Qin Y, Shi M, Wei Y, Lu W. The role of NMDA receptors in fish stress response: Assessments based on physiology of the caudal neurosecretory system and defensive behavior. J Neuroendocrinol 2024; 36:e13448. [PMID: 39351903 DOI: 10.1111/jne.13448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024]
Abstract
Stress strongly influences the physiology and behavior of animals, and leads into a pathological condition and disease. NMDA receptors (NMDARs) play a crucial role in the modulation of neural activity. To understand the role of NMDARs in fish stress response, we used NMDARs agonist aspartate to test the functional role of its input on the Dahlgren cell population in the caudal neurosecretory system (CNSS) of the olive flounder. In addition, the effect of the NMDARs antagonist D-AP5 on the expression of genes of the main secretory products of the CNSS after stress was investigated by using qPCR technology and the effect of the NMDARs antagonist D-AP5 on post-stress behavior was explored by behavioral methods. Ex vivo electrophysiological experiments showed that the NMDARs agonist aspartate enhanced the firing frequency of Dahlgren cells. Additionally, aspartate treatment increased the incidence of cells exhibiting bursting firing pattern, this result is corroborated by the observed upregulation in the expression of ion channels and major hormone genes in the CNSS. Furthermore, the excitatory influence of aspartate was effectively counteracted by NMDARs antagonist D-AP5. Interestingly, NMDARs antagonist D-AP5 treatment also significantly decreased the plasma cortisol levels and the expression of CRH, UI, and UII in CNSS after acute stress. Treatment with D-AP5 effectively attenuated the stress response, as evidenced by alterations in respiratory metabolism, sand-burying behavior, swimming distance, simulated capture, and escape response. In conclusion, modulation of Dahlgren cell excitability in the CNSS by NMDARs contributes to the regulation of the stress response, NMDARs antagonist D-AP5 can effectively suppress stress response in flounder by regulating the stress hormone expression and secretion. CLINICAL TRIAL REGISTRATION: Project code SHOU-DW-2022-032.
Collapse
Affiliation(s)
- Yeyang Qin
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, China
| | - Mengmeng Shi
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, China
| | - Yanyan Wei
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, China
| | - Weiqun Lu
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai, China
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China
| |
Collapse
|
2
|
Shi M, Liu C, Qin Y, Yv L, Lu W. α1 and β3 adrenergic receptor-mediated excitatory effects of adrenaline on the caudal neurosecretory system (CNSS) in olive flounder, Paralichthys olivaceus. Gen Comp Endocrinol 2024; 349:114468. [PMID: 38325527 DOI: 10.1016/j.ygcen.2024.114468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/14/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
Adrenaline is one of the most important neurotransmitters in the central nervous system and is produced during stress. In this study, we investigated the modulatory role of adrenaline and adrenergic receptors on the neuroendocrine Dahlgren cells in the caudal neurosecretory system (CNSS) of olive flounder. Ex vivo electrophysiological recordings revealed that adrenaline significantly increased the firing frequency and altered the firing pattern of Dahlgren cells. Moreover, treatment with adrenaline led to a significant upregulation of ion channels and major hormone secretion genes in CNSS at the mRNA levels. Additionally, treatment with adrenaline resulted in a significantly elevation in the expression levels of α1- and β3-adrenergic receptors. Furthermore, the β3-adrenergic receptor antagonist exerts a significant inhibitory effect on adrenaline-induced enhancement firing activities of Dahlgren cells, whereas the α1-adrenergic receptor antagonist displays a comparatively weaker inhibitory effect. Additionally, the enhanced firing activity induced by adrenaline could be effectively suppressed by both α1- and β3-adrenergic receptor antagonists. Taken together, these findings provide strong evidence in favor of the excitatory effects of adrenaline through α1 and β3 adrenergic receptors in CNSS to stimulate the secretion of stress-related hormones, β3-adrenergic receptor plays a more dominant role in the modulation of firing activities of Dahlgren cells by adrenaline and thereby regulates the stress response in olive flounder.
Collapse
Affiliation(s)
- Mengmeng Shi
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China
| | - Cheng Liu
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China
| | - Yeyang Qin
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China
| | - Lin Yv
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China
| | - Weiqun Lu
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China.
| |
Collapse
|
3
|
Jiang P, Fang S, Huang N, Lu W. The excitatory effect of 5-HT 1A and 5-HT 2B receptors on the caudal neurosecretory system Dahlgren cells in olive flounder, Paralichthys olivaceus. Comp Biochem Physiol A Mol Integr Physiol 2023; 283:111457. [PMID: 37269940 DOI: 10.1016/j.cbpa.2023.111457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/05/2023]
Abstract
The neurotransmitter 5-hydroxytryptamine (5-HT, serotonin) plays an essential role in the regulation of neural activity via multiple receptors. Here, we investigated the functional role of serotoninergic input on the Dahlgren cell population in the caudal neurosecretory system (CNSS) of olive flounder. In this study, the effect of 5-HT on the firing activity of Dahlgren cells was explored in terms of changes in firing frequency and firing pattern using multicellular recording electrophysiology ex vivo, and the role of several 5-HT receptor subtypes in the regulation was determined. The results revealed that 5-HT increased the firing frequency in a concentration-dependent manner and altered the firing pattern of Dahlgren cells. The effect of 5-HT on the firing activity of Dahlgren cells was mediated through the 5-HT1A and 5-HT2B receptors, selective agonists of both receptors effectively increased the firing frequency of Dahlgren cells, and selective receptor antagonists could also effectively inhibit the increase in firing frequency caused by 5-HT. In addition, the mRNA levels of major signaling pathway-related genes, ion channels, and major secretion hormone genes were significantly upregulated in CNSS after treatment with 5-HT. These findings demonstrate that 5-HT acts as an excitatory neuromodulator on Dahlgren cells and enhances neuroendocrine activity in CNSS.
Collapse
Affiliation(s)
- Pengxin Jiang
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China
| | - Shilin Fang
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China
| | - Nini Huang
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China
| | - Weiqun Lu
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China.
| |
Collapse
|
4
|
Tostivint H, Girardot F, Parmentier C, Pézeron G. [The caudal neurosecretory system, the other "neurohypophysial" system in fish]. Biol Aujourdhui 2023; 216:89-103. [PMID: 36744974 DOI: 10.1051/jbio/2022016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Indexed: 02/07/2023]
Abstract
The caudal neurosecretory system (CNSS) is a neuroendocrine complex whose existence is specific to fishes. Structurally, it has many similarities with the hypothalamic-neurohypophyseal complex of other vertebrates. However, it differs regarding its position at the caudal end of the spinal cord and the nature of the hormones it secretes, the most important being urotensins. The CNSS was first described more than 60 years ago, but its embryological origin is totally unknown and its role is still poorly understood. Paradoxically, it is almost no longer studied today. Recent developments in imaging and genome editing could make it possible to resume investigations on CNSS in order to solve the mysteries that still surround it.
Collapse
Affiliation(s)
- Hervé Tostivint
- Muséum National d'Histoire Naturelle, CNRS UMR 7221, Physiologie moléculaire et adaptation, 75005 Paris, France
| | - Fabrice Girardot
- Muséum National d'Histoire Naturelle, CNRS UMR 7221, Physiologie moléculaire et adaptation, 75005 Paris, France
| | - Caroline Parmentier
- Sorbonne Université, CNRS UMR 8246, INSERM U1130, IBPS, Neurosciences Paris Seine, Neuroplasticité des comportements de reproduction, 75005 Paris, France
| | - Guillaume Pézeron
- Muséum National d'Histoire Naturelle, CNRS UMR 7221, Physiologie moléculaire et adaptation, 75005 Paris, France
| |
Collapse
|
5
|
Diel rhythm of urotensin I mRNA expression and its involvement in the locomotor activity and appetite regulation in olive flounder Paralichthys olivaceus. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110627. [PMID: 34058375 DOI: 10.1016/j.cbpb.2021.110627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 11/21/2022]
Abstract
Urotensin I (UI), a member of the corticotropin-releasing hormone family of peptides, regulates a diverse array of physiological functions, including appetite regulation, defensive behavior and stress response. In this study, firstly, the tissue-specific distribution of UI mRNA in olive flounder (Paralichthys olivaceus) was characterized and we found that UI mRNA was highly expressed in caudal neurosecretory system (CNSS) tissue. Secondly, alignment analysis found that a conserved cAMP response binding (CREB) site and a TATA element were located in the proximal promoter of UI gene. In addition, treatment of forskolin activatated cAMP-CREB pathway and induced the up-regulation of UI mRNA in cultured CNSS, suggesting the role of CREB in regulating the UI mRNA expression. Furthermore, plasma UI concentration and UI mRNA in CNSS showed obvious daily rhythm, with higher values in the daytime while lower values in the nighttime. Thirdly, using bold personality (BP) and shy personality (SP) flounder as an animal model, we found that flounder exhibited significantly higher locomotor activity in the nighttime than in the daytime (P < 0.001), and BP flounder showed significantly higher locomotor activity (P < 0.001) compared with SP flounder both in the daytime and nighttime. Analysis of feeding behavior revealed that BP flounder showed a shorter latency to feed and more attacks to prey. Furthermore, the qPCR and immunohistochemistry results showed that BP flounder expressed significantly lower level of UI mRNA and protein in CNSS tissue. Collectively, our study suggested that the UI plays an important role in locomotor activity and appetite regulation, which provides a basis for understanding the mechanism of defensive behavior and animal personality in flounder.
Collapse
|
6
|
Jiang P, Pan X, Zhang W, Dai Z, Lu W. Neuromodulatory effects of GnRH on the caudal neurosecretory Dahlgren cells in female olive flounder. Gen Comp Endocrinol 2021; 307:113754. [PMID: 33711313 DOI: 10.1016/j.ygcen.2021.113754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/19/2021] [Accepted: 02/28/2021] [Indexed: 01/28/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) is considered a key player in reproduction. The caudal neurosecretory system (CNSS) is a unique neurosecretory structure of fish that may be involved in osmoregulation, nutrition, reproduction, and stress-related responses. However, a direct effect of GnRH on Dahlgren cells remains underexplored. Here, we examined the electrophysiological response of Dahlgren cell population of the CNSS to GnRH analog LHRH-A2 and the transcription of related key genes of CNSS. We found that GnRH increased overall firing frequency and may be changed the firing pattern from silent to burst or phasic firing in a subpopulation of Dahlgren cells. The effect of GnRH on a subpopulation of Dahlgren cells firing activity was blocked by the GnRH receptor (GnRH-R) antagonist cetrorelix. A positive correlation was observed between the UII and GnRH-R mRNA levels in CNSS or gonadosomatic index (GSI) during the breeding season. These findings are the first demonstration of the ability of GnRH acts as a modulator within the CNSS and add to our understanding of the physiological role of the CNSS in reproduction and seasonal adaptation.
Collapse
Affiliation(s)
- Pengxin Jiang
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China
| | - Xinbei Pan
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China
| | - Wei Zhang
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China
| | - Zhiqi Dai
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China
| | - Weiqun Lu
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China.
| |
Collapse
|
7
|
Lan Z, Zhang W, Xu J, Lu W. GABA A receptor-mediated inhibition of Dahlgren cells electrical activity in the olive flounder, Paralichthys olivaceus. Gen Comp Endocrinol 2021; 306:113753. [PMID: 33711316 DOI: 10.1016/j.ygcen.2021.113753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 02/10/2021] [Accepted: 02/28/2021] [Indexed: 11/24/2022]
Abstract
γ-Aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the central nervous system. We investigated its potential role as a neurotransmitter in the neuroendocrine Dahlgren cell population of the caudal neurosecretory system (CNSS) of the flounder Paralichthys olivaceus. The application of GABA in vitro resulted in a decrease in electrical activity of Dahlgren cells, followed by an increase of the number of silent cells, together with a decreased firing frequency of all three activity patterns (tonic, phasic, bursting). GABAA receptor agonist etomidate decreased Dahlgren cell firing activity, in a similar way to GABA. The response to GABA was blocked by the GABAA receptor antagonist bicuculline. GABAA receptor gamma2 subunit (Gabrg2) and chloride channel (Clcn2) mRNA expression were significantly upregulated in the CNSS after GABA superfusion. These data suggest that GABA may modulate CNSS activity in vivo mediated by GABAA receptors.
Collapse
Affiliation(s)
- Zhaohui Lan
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China
| | - Wei Zhang
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China
| | - Jinling Xu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Weiqun Lu
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China.
| |
Collapse
|
8
|
Zhang W, Lan Z, Li K, Liu C, Jiang P, Lu W. Inhibitory role of taurine in the caudal neurosecretory Dahlgren cells of the olive flounder, Paralichthys olivaceus. Gen Comp Endocrinol 2020; 299:113613. [PMID: 32950586 DOI: 10.1016/j.ygcen.2020.113613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/05/2020] [Accepted: 09/09/2020] [Indexed: 01/19/2023]
Abstract
Taurine plays role in neural development and physiological functions such as endocrine regulation in the central nervous system (CNS), and it is one of the most abundant free amino acid there. We investigated its potential effect as a neurotransmitter in the group of neuroendocrine Dahlgren cells at flounder Paralichthys olivaceus caudal neurosecretory system (CNSS). The application of taurine in vitro led to a reduction in electrical activity of Dahlgren cells, followed by a rise in the number of silent cells, at the same time the frequency of all three activity patterns (tonic, phasic, bursting) in Dahlgren cells was reduced. Both strychnine (a glycine receptor antagonist) and bicuculline (a GABAA receptor antagonist) can block the response to taurine separately. Transcriptome sequencing analysis showed the existence of glycine receptor (GlyR) and GABAA receptor (GABAAR) in the flounder CNSS, and the GlyR, GABAAR, and Cl- channel mRNA expression were significantly raised after taurine superfusion according to quantitative RT-PCR results. These data indicate that taurine may mediate Dahlgren cell population of CNSS activity in vivo through GlyR and GABAAR, thereby, regulating stress-response.
Collapse
Affiliation(s)
- Wei Zhang
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China
| | - Zhaohui Lan
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China
| | - Kunyu Li
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China
| | - Cheng Liu
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China
| | - Pengxin Jiang
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China
| | - Weiqun Lu
- National Demonstration Center for Experimental Fisheries Science Education (Shanghai Ocean University), China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China.
| |
Collapse
|
9
|
Wang YH, Lv HN, Cui QH, Tu PF, Jiang Y, Zeng KW. Isosibiricin inhibits microglial activation by targeting the dopamine D1/D2 receptor-dependent NLRP3/caspase-1 inflammasome pathway. Acta Pharmacol Sin 2020; 41:173-180. [PMID: 31506572 PMCID: PMC7471458 DOI: 10.1038/s41401-019-0296-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022] Open
Abstract
Microglia-mediated neuroinflammation is a crucial risk factor for neurological disorders. Recently, dopamine receptors have been found to be involved in multiple immunopathological processes and considered as valuable therapeutic targets for inflammation-associated neurologic diseases. In this study we investigated the anti-neuroinflammation effect of isosibiricin, a natural coumarin compound isolated from medicinal plant Murraya exotica. We showed that isosibiricin (10-50 μM) dose-dependently inhibited lipopolysaccharide (LPS)-induced BV-2 microglia activation, evidenced by the decreased expression of inflammatory mediators, including nitrite oxide (NO), tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β) and interleukin-18 (IL-18). By using transcriptomics coupled with bioinformatics analysis, we revealed that isosibiricin treatment mainly affect dopamine receptor signalling pathway. We further demonstrated that isosibiricin upregulated the expression of dopamine D1/2 receptors in LPS-treated BV-2 cells, resulting in inhibitory effect on nucleotide binding domain-like receptor protein 3 (NLRP3)/caspase-1 inflammasome pathway. Treatment with dopamine D1/2 receptor antagonists SCH 23390 (1 μM) or sultopride (1 μM) could reverse the inhibitory effects of isosibiricin on NLRP3 expression as well as the cleavages of caspase-1 and IL-1β. Collectively, this study demonstrates a promising therapeutic strategy for neuroinflammation by targeting dopamine D1/2 receptors.
Collapse
Affiliation(s)
- Yan-Hang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Hai-Ning Lv
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Qing-Hua Cui
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Peng-Fei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| | - Ke-Wu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.
| |
Collapse
|