1
|
Lazcano I, Olvera A, Pech-Pool SM, Sachs L, Buisine N, Orozco A. Differential effects of 3,5-T2 and T3 on the gill regeneration and metamorphosis of the Ambystoma mexicanum (axolotl). Front Endocrinol (Lausanne) 2023; 14:1208182. [PMID: 37492199 PMCID: PMC10364608 DOI: 10.3389/fendo.2023.1208182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/01/2023] [Indexed: 07/27/2023] Open
Abstract
Thyroid hormones (THs) regulate tissue remodeling processes during early- and post-embryonic stages in vertebrates. The Mexican axolotl (Ambystoma mexicanum) is a neotenic species that has lost the ability to undergo metamorphosis; however, it can be artificially induced by exogenous administration of thyroxine (T4) and 3,3',5-triiodo-L-thyronine (T3). Another TH derivative with demonstrative biological effects in fish and mammals is 3,5-diiodo-L-thyronine (3,5-T2). Because the effects of this bioactive TH remains unexplored in other vertebrates, we hypothesized that it could be biologically active in amphibians and, therefore, could induce metamorphosis in axolotl. We performed a 3,5-T2 treatment by immersion and observed that the secondary gills were retracted, similar to the onset stage phenotype; however, tissue regeneration was observed after treatment withdrawal. In contrast, T4 and T3 immersion equimolar treatments as well as a four-fold increase in 3,5-T2 concentration triggered complete metamorphosis. To identify the possible molecular mechanisms that could explain the contrasting reversible or irreversible effects of 3,5-T2 and T3 upon gill retraction, we performed a transcriptomic analysis of differential expression genes in the gills of control, 3,5-T2-treated, and T3-treated axolotls. We found that both THs modify gene expression patterns. T3 regulates 10 times more genes than 3,5-T2, suggesting that the latter has a lower affinity for TH receptors (TRs) or that these hormones could act through different TR isoforms. However, both TH treatments regulated different gene sets known to participate in tissue development and cell cycle processes. In conclusion, 3,5-T2 is a bioactive iodothyronine that promoted partial gill retraction but induced full metamorphosis in higher concentrations. Differential effects on gill retraction after 3,5,-T2 or T3 treatment could be explained by the activation of different clusters of genes related with apoptosis, regeneration, and proliferation; in addition, these effects could be initially mediated by TRs that are expressed in gills. This study showed, for the first time, the 3,5,-T2 bioactivity in a neotenic amphibian.
Collapse
Affiliation(s)
- I. Lazcano
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - A. Olvera
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - S. M. Pech-Pool
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| | - L. Sachs
- UMR PhyMA CNRS, Muséum National d’Histoire Naturelle, Paris, France
| | - N. Buisine
- UMR PhyMA CNRS, Muséum National d’Histoire Naturelle, Paris, France
| | - A. Orozco
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
- Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autónoma de México (UNAM), Querétaro, Mexico
| |
Collapse
|
2
|
Lazcano I, Pech-Pool SM, Olvera A, García-Martínez I, Palacios-Pérez S, Orozco A. The importance of thyroid hormone signaling during early development: Lessons from the zebrafish model. Gen Comp Endocrinol 2023; 334:114225. [PMID: 36709002 DOI: 10.1016/j.ygcen.2023.114225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/16/2022] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
The zebrafish is an optimal experimental model to study thyroid hormone (TH) involvement in vertebrate development. The use of state-of-the-art zebrafish genetic tools available for the study of the effect of gene silencing, cell fate decisions and cell lineage differentiation have contributed to a more insightful comprehension of molecular, cellular, and tissue-specific TH actions. In contrast to intrauterine development, extrauterine embryogenesis observed in zebrafish has facilitated a more detailed study of the development of the hypothalamic-pituitary-thyroid axis. This model has also enabled a more insightful analysis of TH molecular actions upon the organization and function of the brain, the retina, the heart, and the immune system. Consequently, zebrafish has become a trendy model to address paradigms of TH-related functional and biomedical importance. We here compilate the available knowledge regarding zebrafish developmental events for which specific components of TH signaling are essential.
Collapse
Affiliation(s)
- I Lazcano
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Campus Juriquilla, Querétaro 76230, Mexico
| | - S M Pech-Pool
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Campus Juriquilla, Querétaro 76230, Mexico
| | - A Olvera
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Campus Juriquilla, Querétaro 76230, Mexico
| | - I García-Martínez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Campus Juriquilla, Querétaro 76230, Mexico
| | - S Palacios-Pérez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Campus Juriquilla, Querétaro 76230, Mexico
| | - A Orozco
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Campus Juriquilla, Querétaro 76230, Mexico; Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autónoma de México (UNAM), Campus Juriquilla, Querétaro 76230, Mexico.
| |
Collapse
|
3
|
Ye F, Zhang G, E. W, Chen H, Yu C, Yang L, Fu Y, Li J, Fu S, Sun Z, Fei L, Guo Q, Wang J, Xiao Y, Wang X, Zhang P, Ma L, Ge D, Xu S, Caballero-Pérez J, Cruz-Ramírez A, Zhou Y, Chen M, Fei JF, Han X, Guo G. Construction of the axolotl cell landscape using combinatorial hybridization sequencing at single-cell resolution. Nat Commun 2022; 13:4228. [PMID: 35869072 PMCID: PMC9307617 DOI: 10.1038/s41467-022-31879-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 07/08/2022] [Indexed: 01/01/2023] Open
Abstract
The Mexican axolotl (Ambystoma mexicanum) is a well-established tetrapod model for regeneration and developmental studies. Remarkably, neotenic axolotls may undergo metamorphosis, a process that triggers many dramatic changes in diverse organs, accompanied by gradually decline of their regeneration capacity and lifespan. However, the molecular regulation and cellular changes in neotenic and metamorphosed axolotls are still poorly investigated. Here, we develop a single-cell sequencing method based on combinatorial hybridization to generate a tissue-based transcriptomic landscape of the neotenic and metamorphosed axolotls. We perform gene expression profiling of over 1 million single cells across 19 tissues to construct the first adult axolotl cell landscape. Comparison of single-cell transcriptomes between the tissues of neotenic and metamorphosed axolotls reveal the heterogeneity of non-immune parenchymal cells in different tissues and established their regulatory network. Furthermore, we describe dynamic gene expression patterns during limb development in neotenic axolotls. This system-level single-cell analysis of molecular characteristics in neotenic and metamorphosed axolotls, serves as a resource to explore the molecular identity of the axolotl and facilitates better understanding of metamorphosis. The Mexican axolotl is a well-established tetrapod model for regeneration and development. Here the authors report a scRNA-seq method to profile neotenic, metamorphic and limb development stages, highlighting unique perturbation patterns of cell type-related gene expression throughout metamorphosis.
Collapse
|
4
|
Landler L. Orientation and emigration of larval and juvenile amphibians: selected topics and hypotheses. AMPHIBIA-REPTILIA 2022; 43:1-11. [PMID: 35440836 PMCID: PMC7612629 DOI: 10.1163/15685381-bja10081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Most amphibians have a complex life cycle with an aquatic larval and an adult (semi-) terrestrial stage. However, studies concerning spatial behaviour and orientation mainly focus on either the aquatic larvae or the adult animals on land. Consequently, behavioural changes that happen during metamorphosis and the consequences for emigration and population distribution are less understood. This paper aims to summarize the knowledge concerning specific topics of early amphibian life history stages and proposes several testable hypotheses within the following fields of research: larval and juvenile orientation, influences of environmental and genetic factors on juvenile emigration, their habitat choice later in life as well as population biology. I argue that studying larval and juvenile amphibian spatial behaviour is an understudied field of research, however, could considerably improve our understanding of amphibian ecology.
Collapse
Affiliation(s)
- Lukas Landler
- University of Natural Resources and Life Sciences (BOKU), Institute of Zoology, Gregor-Mendel-Straße 33, 1180 Vienna, Austria
| |
Collapse
|
5
|
Olejnickova V, Kolesova H, Bartos M, Sedmera D, Gregorovicova M. The Tale-Tell Heart: Evolutionary tetrapod shift from aquatic to terrestrial life-style reflected in heart changes in axolotl (Ambystoma mexicanum). Dev Dyn 2021; 251:1004-1014. [PMID: 34423892 DOI: 10.1002/dvdy.413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 08/02/2021] [Accepted: 08/18/2021] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND During amphibian metamorphosis, the crucial moment lies in the rearrangement of the heart, reflecting the changes in circulatory demands. However, little is known about the exact shifts linked with this rearrangement. Here, we demonstrate such myocardial changes in axolotl (Ambystoma mexicanum) from the morphological and physiological point of view. RESULTS Micro-CT and histological analysis showed changes in ventricular trabeculae organization, completion of the atrial septum and its connection to the atrioventricular valve. Based on Myosin Heavy Chain and Smooth Muscle Actin expression we distinguished metamorphosis-induced changes in myocardial differentiation at the ventricular trabeculae and atrioventricular canal. Using optical mapping, faster speed of conduction through the atrioventricular canal was demonstrated in metamorphic animals. No differences between the groups were observed in the heart rates, ventricular activation times, and activation patterns. CONCLUSIONS Transition from aquatic to terrestrial life-style is reflected in the heart morphology and function. Rebuilding of the axolotl heart during metamorphosis was connected with reorganization of ventricular trabeculae, completion of the atrial septum and its connection to the atrioventricular valve, and acceleration of AV conduction.
Collapse
Affiliation(s)
- Veronika Olejnickova
- First Faculty of Medicine, Institute of Anatomy, Charles University, Prague, Czech Republic.,Department of Developmental Cardiology, Czech Academy of Sciences, Institute of Physiology, Prague, Czech Republic
| | - Hana Kolesova
- First Faculty of Medicine, Institute of Anatomy, Charles University, Prague, Czech Republic.,Department of Developmental Cardiology, Czech Academy of Sciences, Institute of Physiology, Prague, Czech Republic
| | - Martin Bartos
- First Faculty of Medicine, Institute of Anatomy, Charles University, Prague, Czech Republic.,First Faculty of Medicine, Institute of Dental Medicine, Charles University, Prague, Czech Republic
| | - David Sedmera
- First Faculty of Medicine, Institute of Anatomy, Charles University, Prague, Czech Republic.,Department of Developmental Cardiology, Czech Academy of Sciences, Institute of Physiology, Prague, Czech Republic
| | - Martina Gregorovicova
- First Faculty of Medicine, Institute of Anatomy, Charles University, Prague, Czech Republic.,Department of Developmental Cardiology, Czech Academy of Sciences, Institute of Physiology, Prague, Czech Republic
| |
Collapse
|
6
|
Tribondeau A, Sachs LM, Buisine N. Are paedomorphs actual larvae? Dev Dyn 2021; 250:779-787. [DOI: 10.1002/dvdy.304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 01/05/2021] [Accepted: 01/14/2021] [Indexed: 12/16/2022] Open
Affiliation(s)
- Alicia Tribondeau
- UMR7221 Physiologie Moléculaire et Adaptation, Centre National de la Recherche Scientifique, Muséum National d'Historie Naturelle Paris Cedex 05 France
| | - Laurent M. Sachs
- UMR7221 Physiologie Moléculaire et Adaptation, Centre National de la Recherche Scientifique, Muséum National d'Historie Naturelle Paris Cedex 05 France
| | - Nicolas Buisine
- UMR7221 Physiologie Moléculaire et Adaptation, Centre National de la Recherche Scientifique, Muséum National d'Historie Naturelle Paris Cedex 05 France
| |
Collapse
|
7
|
Ovariectomized rodents as a menopausal metabolic syndrome model. A minireview. Mol Cell Biochem 2020; 475:261-276. [PMID: 32852713 DOI: 10.1007/s11010-020-03879-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022]
Abstract
Bilateral ovariectomy is the best characterized and the most reported animal model of human menopause. Ovariectomized rodents develop insulin resistance (IR) and visceral obesity, the main risk factors in the pathophysiology of metabolic syndrome (MS). These alterations are a consequence of hypoestrogenic status, which produces an augment of visceral fat, high testosterone levels (hyperandrogenism), as well as inflammation, oxidative stress, and metabolic complications, such as dyslipidemia, hepatic steatosis, and endothelial dysfunction, among others. Clinical trials have reported that menopause per se increases the severity and incidence of MS, and causes the highest mortality due to cardiovascular disease in women. Despite all the evidence, there are no reports that clarify the influence of estrogenic deficiency as a cause of MS. In this review, we provide evidence that ovariectomized rodents can be used as a menopausal metabolic syndrome model for evaluating and discovering new, safe, and effective therapeutic approaches in the treatment of cardiometabolic complications associated to MS during menopause.
Collapse
|
8
|
Buffenstein R, Lewis KN, Gibney PA, Narayan V, Grimes KM, Smith M, Lin TD, Brown-Borg HM. Probing Pedomorphy and Prolonged Lifespan in Naked Mole-Rats and Dwarf Mice. Physiology (Bethesda) 2020; 35:96-111. [DOI: 10.1152/physiol.00032.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Pedomorphy, maintenance of juvenile traits throughout life, is most pronounced in extraordinarily long-lived naked mole-rats. Many of these traits (e.g., slow growth rates, low hormone levels, and delayed sexual maturity) are shared with spontaneously mutated, long-lived dwarf mice. Although some youthful traits likely evolved as adaptations to subterranean habitats (e.g., thermolability), the nature of these intrinsic pedomorphic features may also contribute to their prolonged youthfulness, longevity, and healthspan.
Collapse
Affiliation(s)
| | | | - Patrick A. Gibney
- Calico Life Sciences LLC, South San Francisco, California
- Department of Food Science, College of Agriculture and Life Sciences, Stocking Hall, Cornell University, Ithaca, New York
| | - Vikram Narayan
- Calico Life Sciences LLC, South San Francisco, California
| | - Kelly M. Grimes
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Megan Smith
- Calico Life Sciences LLC, South San Francisco, California
| | - Tzuhua D. Lin
- Calico Life Sciences LLC, South San Francisco, California
| | - Holly M. Brown-Borg
- Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota
| |
Collapse
|
9
|
Hu Y, Mauri A, Donahue J, Singh R, Acosta B, McMenamin S. Thyroid hormone coordinates developmental trajectories but does not underlie developmental truncation in danionins. Dev Dyn 2019; 248:1144-1154. [PMID: 31228301 PMCID: PMC6824966 DOI: 10.1002/dvdy.76] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/17/2019] [Accepted: 05/18/2019] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Differences in postembryonic developmental trajectories can profoundly alter adult phenotypes and life histories. Thyroid hormone (TH) regulates metamorphosis in many vertebrate taxa with multiphasic ecologies, and alterations to TH metabolism underlie notable cases of paedomorphosis in amphibians. We tested the requirement for TH in multiple postembryonic developmental processes in zebrafish, which has a monophasic ecology, and asked if TH production was compromised in paedomorphic Danionella. RESULTS We showed that TH regulates allometric growth in juvenile zebrafish, and inhibits relative head growth. The lateral line system showed differential requirements for TH: the hormone promotes canal neuromast formation and inhibits neuromast proliferation in the head, but causes expansion of the neuromast population in the trunk. While Danionella morphology resembled that of larval zebrafish, the two Danionella species analyzed were not similar to hypothyroid zebrafish in their shape or neuromast distribution, and both possessed functional thyroid follicles. CONCLUSIONS Although zebrafish do not undergo a discrete ecological transformation, we found that multiple tissues undergo transitions in developmental trajectories that are dependent on TH, suggesting the TH axis and its downstream pathways as likely targets for adaptation. Nonetheless, we found no evidence that evolutionary paedomorphosis in Danionella is the result of compromised TH production.
Collapse
Affiliation(s)
- Yinan Hu
- Biology Department, Boston College, Chestnut Hill, Massachusetts
| | - Angela Mauri
- Biology Department, Boston College, Chestnut Hill, Massachusetts
| | - Joan Donahue
- Biology Department, Boston College, Chestnut Hill, Massachusetts
| | - Rajendra Singh
- Biology Department, Boston College, Chestnut Hill, Massachusetts
| | - Benjamin Acosta
- Biology Department, Boston College, Chestnut Hill, Massachusetts
| | - Sarah McMenamin
- Biology Department, Boston College, Chestnut Hill, Massachusetts
| |
Collapse
|
10
|
Galindo D, Sweet E, DeLeon Z, Wagner M, DeLeon A, Carter C, McMenamin SK, Cooper WJ. Thyroid hormone modulation during zebrafish development recapitulates evolved diversity in danionin jaw protrusion mechanics. Evol Dev 2019; 21:231-246. [PMID: 31374588 PMCID: PMC6815664 DOI: 10.1111/ede.12299] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protrusile jaws are a highly useful innovation that has been linked to extensive diversification in fish feeding ecology. Jaw protrusion can enhance the performance of multiple functions, such as suction production and capturing elusive prey. Identifying the developmental factors that alter protrusion ability will improve our understanding of fish diversification. In the zebrafish protrusion arises postmetamorphosis. Fish metamorphosis typically includes significant changes in trophic morphology, accompanies a shift in feeding niche and coincides with increased thyroid hormone production. We tested whether thyroid hormone affects the development of zebrafish feeding mechanics. We found that it affected all developmental stages examined, but that effects were most pronounced after metamorphosis. Thyroid hormone levels affected the development of jaw morphology, feeding mechanics, shape variation, and cranial ossification. Adult zebrafish utilize protrusile jaws, but an absence of thyroid hormone impaired development of the premaxillary bone, which is critical to jaw protrusion. Premaxillae from early juvenile zebrafish and hypothyroid adult zebrafish resemble those from adults in the genera Danionella, Devario, and Microdevario that show little to no jaw protrusion. Our findings suggest that evolutionary changes in how the developing skulls of danionin minnows respond to thyroid hormone may have promoted diversification into different feeding niches.
Collapse
Affiliation(s)
- Demi Galindo
- School of Biological Sciences, Washington State University, Pullman, Washington
| | - Elly Sweet
- School of Biological Sciences, Washington State University, Pullman, Washington
| | - Zoey DeLeon
- School of Biological Sciences, Washington State University, Pullman, Washington
| | - Mitchel Wagner
- School of Biological Sciences, Washington State University, Pullman, Washington
| | - Adrian DeLeon
- School of Biological Sciences, Washington State University, Pullman, Washington
| | - Casey Carter
- School of Biological Sciences, Washington State University, Pullman, Washington
| | | | - W. James Cooper
- School of Biological Sciences, Washington State University, Pullman, Washington
| |
Collapse
|
11
|
Williams DL. From axolotl to zebrafish: a comparative approach to the study of thyroid involvement in ocular development. Eye (Lond) 2019; 33:218-222. [PMID: 30482907 PMCID: PMC6367386 DOI: 10.1038/s41433-018-0288-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/24/2018] [Accepted: 11/14/2018] [Indexed: 02/02/2023] Open
Abstract
While discussion of interactions between the thyroid gland and the eye mostly focus on thyroid eye disease, the involvement of the thyroid and its hormones on development of the eye before birth is also an important perspective that should not be forgotten. Experimental models involving amphibians and fish are valuable both because the developing larvae are not constrained within the adult but can be observed and manipulated as they grow autonomously and also because they metamorphose with substantial morphological changes driven by the hypothalamo-pituitary-thyroid axis occurring as they develop from eggs to adults. In this paper we will first discuss changes seen in the axolotl, a naturally occurring neotonous hypothyroid salamander and the Xenopus toad a widely used laboratory amphibian. Secondly we will document ocular changes in flatfish which exhibit remarkable anatomical alterations during their change from a pelagic to benthic lifestyle. Finally we will evaluate ocular changes in developing zebrafish when subjected to thyroid-disrupting chemicals. These experiments show the influence of the thyroid on ocular development when thyroid function is altered which may be of value in determining changes in human hypothyroid infants but are also important to note as these chemicals are widely used in plastics and also as flame retardants used to control wildfires. Run-off into water courses can damage both wildlife and humans consuming contaminated water and thyroid disruption may have significant effects on reproduction and development, although influences on ocular morphology have yet to be investigated.
Collapse
Affiliation(s)
- David L Williams
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK.
| |
Collapse
|
12
|
Crowner A, Khatri S, Blichmann D, Voss SR. Rediscovering the Axolotl as a Model for Thyroid Hormone Dependent Development. Front Endocrinol (Lausanne) 2019; 10:237. [PMID: 31031711 PMCID: PMC6473073 DOI: 10.3389/fendo.2019.00237] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 03/25/2019] [Indexed: 12/30/2022] Open
Abstract
The Mexican axolotl (Ambystoma mexicanum) is an important model organism in biomedical research. Much current attention is focused on the axolotl's amazing ability to regenerate tissues and whole organs after injury. However, not forgotten is the axolotl's equally amazing ability to thwart aspects of tissue maturation and retain juvenile morphology into the adult phase of life. Unlike close tiger salamander relatives that undergo a thyroid hormone regulated metamorphosis, the axolotl does not typically undergo a metamorphosis. Instead, the axolotl exhibits a paedomorphic mode of development that enables a completely aquatic life cycle. The evolution of paedomorphosis allowed axolotls to exploit relatively permanent habitats in Mexico, and preadapted axolotls for domestication and laboratory study. In this perspective, we first introduce the axolotl and the various meanings of paedomorphosis, and then stress the need to move beyond endocrinology-guided approaches to understand the axolotl's hypothyroid state. With the recent completion of the axolotl genome assembly and established methods to manipulate gene functions, the axolotl is poised to provide new insights about paedomorphosis and the role of thyroid hormone in development and evolution.
Collapse
|
13
|
Kerdivel G, Blugeon C, Fund C, Rigolet M, Sachs LM, Buisine N. Opposite T 3 Response of ACTG1-FOS Subnetwork Differentiate Tailfin Fate in Xenopus Tadpole and Post-hatching Axolotl. Front Endocrinol (Lausanne) 2019; 10:194. [PMID: 31001200 PMCID: PMC6454024 DOI: 10.3389/fendo.2019.00194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/07/2019] [Indexed: 01/13/2023] Open
Abstract
Amphibian post-embryonic development and Thyroid Hormones (TH) signaling are deeply and intimately connected. In anuran amphibians, TH induce the spectacular and complex process known as metamorphosis. In paedomorphic salamanders, at similar development time, raising levels of TH fail to induce proper metamorphosis, as many "larval" tissues (e.g., gills, tailfin) are maintained. Why does the same evolutionary conserved signaling pathway leads to alternative phenotypes? We used a combination of developmental endocrinology, functional genomics and network biology to compare the transcriptional response of tailfin to TH, in the post-hatching paedormorphic Axolotl salamander and Xenopus tadpoles. We also provide a technological framework that efficiently reduces large lists of regulated genes down to a few genes of interest, which is well-suited to dissect endocrine regulations. We first show that Axolotl tailfin undergoes a strong and robust TH-dependent transcriptional response at post embryonic transition, despite the lack of visible anatomical changes. We next show that Fos and Actg1, which structure a single and dense subnetwork of cellular sensors and regulators, display opposite regulation between the two species. We finally show that TH treatments and natural variations of TH levels follow similar transcriptional dynamics. We suggest that, at the molecular level, tailfin fate correlates with the alternative transcriptional states of an fos-actg1 sub-network, which also includes transcription factors and regulators of cell fate. We propose that this subnetwork is one of the molecular switches governing the initiation of distinct TH responses, with transcriptional programs conducting alternative tailfin fate (maintenance vs. resorption) 2 weeks post-hatching.
Collapse
Affiliation(s)
- Gwenneg Kerdivel
- Unité Mixte de Recherche 7221, Centre National de la Recherche Scientifique, Alliance Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Corinne Blugeon
- Genomic Facility, CNRS, INSERM, Institut de Biologie de l'Ecole Normale Supérieure, Ecole Normale Supérieure, PSL Université Paris, Paris, France
| | - Cédric Fund
- Genomic Facility, CNRS, INSERM, Institut de Biologie de l'Ecole Normale Supérieure, Ecole Normale Supérieure, PSL Université Paris, Paris, France
| | - Muriel Rigolet
- Unité Mixte de Recherche 7221, Centre National de la Recherche Scientifique, Alliance Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | - Laurent M. Sachs
- Unité Mixte de Recherche 7221, Centre National de la Recherche Scientifique, Alliance Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
- *Correspondence: Laurent M. Sachs
| | - Nicolas Buisine
- Unité Mixte de Recherche 7221, Centre National de la Recherche Scientifique, Alliance Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| |
Collapse
|