1
|
Mo H, Yu H, Li Y, Ezeorba TPC, Zhang Z, Yao M, Yu J, Xiong D, Liu H, Wang L. Molecular cloning and functional characterization of melanocortin-3 receptor in grass carp (Ctenopharyngodon idella). FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:155-167. [PMID: 36547499 DOI: 10.1007/s10695-022-01164-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The melanocortin-3-receptor (MC3R) plays an important role in mammals' food intake and energy homeostasis. However, its physiological role in bony fishes, such as grass carp, has not been well understood. This study reports the molecular cloning, tissue distribution, and pharmacological characterization of grass carp melanocortin-3-receptor (ciMC3R). Phylogenetic and chromosomal synteny analyses indicated that ciMC3R was closest to cyprinid fishes in evolution. Quantitative PCR experiments revealed that the mRNA of ciMC3R was highly expressed in the brain of grass carp. The cytological function of ciMC3R was investigated by the co-transfection of pcDNA3.1-ciMC3R and the signal-pathway-specific luciferase into the HEK293T cells. Results revealed that the four agonists, α-MSH, β-MSH, ACTH, and NDP-MSH, potentiate the activation of ciMC3R and further increase the production of cAMP and upregulate the MAPK/ERK signaling, respectively. Our study will provide basic data for exploring the physiological functions of grass carp MC3R, especially in energy homeostasis and food intake.
Collapse
Affiliation(s)
- Haolin Mo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Huixia Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Yang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China.
| | - Timothy P C Ezeorba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Ihe Nsukka, Nsukka, 41001, Nigeria
| | - Zhihao Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Mingxin Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Jiajia Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Dongmei Xiong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Haixia Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China
| | - Lixin Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang, 712100, Shaanxi, China.
| |
Collapse
|
2
|
Ji RL, Jiang SS, Tao YX. Modulation of Canine Melanocortin-3 and -4 Receptors by Melanocortin-2 Receptor Accessory Protein 1 and 2. Biomolecules 2022; 12:biom12111608. [PMID: 36358958 PMCID: PMC9687446 DOI: 10.3390/biom12111608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/26/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
The neural melanocortin receptors (MCRs), melanocortin-3 and -4 receptors (MC3R and MC4R), have crucial roles in regulating energy homeostasis. The melanocortin-2 receptor accessory proteins (MRAPs, MRAP1 and MRAP2) have been shown to regulate neural MCRs in a species-specific manner. The potential effects of MRAP1 and MRAP2 on canine neural MCRs have not been investigated before. Herein, we cloned canine (c) MC3R and identified one canine MRAP2 splice variant, MRAP2b, with N-terminal extension of cMRAP2a. Canine MC3R showed higher maximal responses to five agonists than those of human MC3R. We further investigated the modulation of cMRAP1, cMRAP2a, and cMRAP2b, on cMC3R and cMC4R pharmacology. For the cMC3R, all MRAPs had no effect on trafficking; cMRAP1 significantly decreased Bmax whereas cMRAP2a and cMRAP2b significantly increased Bmax. Both MRAP1 and MRAP2a decreased Rmaxs in response to α-MSH and ACTH; MRAP2b only decreased α-MSH-stimulated cAMP generation. For the MC4R, MRAP1 and MRAP2a increased cell surface expression, and MRAP1 and MRAP2a increased Bmaxs. All MRAPs had increased affinities to α-MSH and ACTH. MRAP2a increased ACTH-induced cAMP levels, whereas MRAP2b decreased α-MSH- and ACTH-stimulated cAMP production. These findings may lead to a better understanding of the regulation of neural MCRs by MRAP1 and MRAP2s.
Collapse
|
3
|
Tai X, Zhang Y, Yao J, Li X, Liu J, Han J, Lyu J, Lin G, Zhang C. Pharmacological Modulation of Melanocortin 1 Receptor Signaling by Mrap Proteins in Xenopus tropicalis. Front Endocrinol (Lausanne) 2022; 13:892407. [PMID: 35795143 PMCID: PMC9251544 DOI: 10.3389/fendo.2022.892407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
The melanocortin system consists of five G protein-coupled receptors (MC1R-MC5R), the bidirectional endogenous ligands (MSH and Agouti families), and accessory proteins (MRAP1 and MRAP2). Accumulative studies of vertebrate species find high expression level of melanocortin 1 receptor (MC1R) in the dermal melanocyte and elucidate the essential roles in the skin and fur pigmentation, morphological background adaptation, and stress response. The diploid amphibian Xenopus tropicalis (xt) has been utilized as a fantastic animal model for embryonic development and studies of physiological cryptic colouring and environmental adaptiveness. However, the interaction of xtMc1r signaling with xtMrap proteins has not been assessed yet. In this study, we carried out in silico evolutionary analysis of protein alignment and genetic phylogenetic and genomic synteny of mc1r among various vertebrates. Ubiquitous expression of mrap1 and mrap2 and the co-expression with mc1r transcripts in the skin were clearly observed. Co-immunoprecipitation (ip) and fluorescent complementary approach validated the direct functional interaction of xtMc1r with xtMrap1 or xtMrap2 proteins on the plasma membrane. Pharmacological assay showed the improvement of the constitutive activity and alpha melanocyte-stimulating hormone (α-MSH) stimulated plateau without dramatic alteration of the cell surface translocation of xtMc1r in the presence of xtMrap proteins. Overall, the pharmacological modulation of xtMc1r by dual xtMrap2 proteins elucidated the potential role of this protein complex in the regulation of proper dermal function in amphibian species.
Collapse
Affiliation(s)
- Xiaolu Tai
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yaqun Zhang
- Department of Pathology, InnoStar Bio-tech Nantong Co., Ltd., Nantong, China
| | - Jindong Yao
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xuan Li
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jun Liu
- Department of Pathology, InnoStar Bio-tech Nantong Co., Ltd., Nantong, China
| | - Jiazhen Han
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jianjun Lyu
- Department of Pathology, InnoStar Bio-tech Nantong Co., Ltd., Nantong, China
- *Correspondence: Jianjun Lyu, ; Gufa Lin, ; Chao Zhang,
| | - Gufa Lin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- *Correspondence: Jianjun Lyu, ; Gufa Lin, ; Chao Zhang,
| | - Chao Zhang
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China
- *Correspondence: Jianjun Lyu, ; Gufa Lin, ; Chao Zhang,
| |
Collapse
|
4
|
Ning S, Lu X, Zhao M, Wang X, Yang S, Shen Q, Wang H, Zhang W. Virome in Fecal Samples From Wild Giant Pandas ( Ailuropoda Melanoleuca). Front Vet Sci 2021; 8:767494. [PMID: 34869737 PMCID: PMC8636094 DOI: 10.3389/fvets.2021.767494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
The giant panda (Ailuropoda melanoleuca) is one of the most endangered mammals in the world; anthropogenic habitat loss and poaching still threaten the survival of wild pandas. Viral infection has become one of the potential threats to the health of these animals, but the available information related to these infections is still limited. In order to detect possible vertebrate viruses, the virome in the fecal samples of seven wild giant pandas from Qinling Mountains was investigated by using the method of viral metagenomics. From the fecal virome of wild giant pandas, we determined six nearly complete genomes belonging to the order Picornavirales, two of which may be qualified as a novel virus family or genus. In addition, four complete genomes belonging to the Genomoviridae family were also fully characterized. This virological investigation has increased our understanding of the gut viral community in giant pandas. Whether these viruses detected in fecal samples can really infect giant panda needs further research.
Collapse
Affiliation(s)
- Songyi Ning
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiang Lu
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Min Zhao
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiaochun Wang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shixing Yang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Quan Shen
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Hao Wang
- Department of Clinical Laboratory, The Affiliated Huai'an Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wen Zhang
- School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
5
|
Xu Y, Li L, Zheng J, Wang M, Jiang B, Zhai Y, Lu L, Zhang C, Kuang Z, Yang X, Jin LN, Lin G, Zhang C. Pharmacological modulation of the cAMP signaling of two isoforms of melanocortin-3 receptor by melanocortin receptor accessory proteins in the tetrapod Xenopus laevis. Endocr Connect 2021; 10:1477-1488. [PMID: 34678757 PMCID: PMC8630767 DOI: 10.1530/ec-21-0179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/22/2021] [Indexed: 11/29/2022]
Abstract
As a member of the seven-transmembrane rhodopsin-like G protein-coupled receptor superfamily, the melanocortin-3 receptor (MC3R) is vital for the regulation of energy homeostasis and rhythms synchronizing in mammals, and its pharmacological effect could be directly influenced by the presence of melanocortin receptor accessory proteins (MRAPs), MRAP1 and MRAP2. The tetrapod amphibian Xenopus laevis (xl) retains higher duplicated genome than extant teleosts and serves as an ideal model system for embryonic development and physiological studies. However, the melanocortin system of the Xenopus laevis has not yet been thoroughly evaluated. In this work, we performed sequence alignment, phylogenetic tree, and synteny analysis of two xlMC3Rs. Co-immunoprecipitation and immunofluorescence assay further confirmed the co-localization and in vitro interaction of xlMC3Rs with xlMRAPs on the plasma membrane. Our results demonstrated that xlMRAP2.L/S could improve α-MSH-stimulated xlMC3Rs signaling and suppress their surface expression. Moreover, xlMC3R.L showed a similar profile on the ligands and surface expression in the presence of xlMRAP1.L. Overall, the distinct pharmacological modulation of xlMC3R.L and xlMC3R.S by dual MRAP2 proteins elucidated the functional consistency of melanocortin system during genomic duplication of tetrapod vertebrates.
Collapse
Affiliation(s)
- Ying Xu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lei Li
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jihong Zheng
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Meng Wang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Bopei Jiang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yue Zhai
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Liumei Lu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Cong Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhe Kuang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiaomei Yang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Correspondence should be addressed to X Yang or L-N Jin or G Lin or C Zhang: or or or
| | - Li-Na Jin
- Department of Hematology, Changzheng Hospital, Naval Medical University, Shanghai, China
- Correspondence should be addressed to X Yang or L-N Jin or G Lin or C Zhang: or or or
| | - Gufa Lin
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Correspondence should be addressed to X Yang or L-N Jin or G Lin or C Zhang: or or or
| | - Chao Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Correspondence should be addressed to X Yang or L-N Jin or G Lin or C Zhang: or or or
| |
Collapse
|
6
|
Kobayashi Y. New perspectives on GPCRs: GPCR heterodimer formation (melanocortin receptor) and GPCR on primary cilia (melanin concentrating hormone receptor). Gen Comp Endocrinol 2020; 293:113474. [PMID: 32240710 DOI: 10.1016/j.ygcen.2020.113474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/18/2020] [Accepted: 03/28/2020] [Indexed: 11/13/2022]
Abstract
GPCRs are the largest family of receptors accounting for about 30% of the current drug targets. However, it is difficult to fully elucidate the mechanisms regulating intracellular GPCR signal regulation. It is thus important to consider and investigate GPCRs with respect to endogenous situations. Our group has been investigating GPCRs involved in body color (teleost and amphibian) and eating (vertebrate). Here, I review two independent GPCR systems (heterodimer formation and primary ciliated GPCR) that can be breakthroughs in GPCR research. In teleosts, MCRs form heterodimers, which significantly reduce their affinity for acetylated ligands. In mammals, MCHR1 is localized in the ciliary membrane and shortens the length of the primary cilia through a unique signal from the ciliary membrane. Considering these two new GPCR concepts is expected to advance the overall view of the GPCR system.
Collapse
Affiliation(s)
- Yuki Kobayashi
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8521, Japan.
| |
Collapse
|
7
|
Ji LQ, Rao YZ, Zhang Y, Chen R, Tao YX. Regulation of melanocortin-1 receptor pharmacology by melanocortin receptor accessory protein 2 in orange-spotted grouper (Epinephelus coioides). Gen Comp Endocrinol 2020; 285:113291. [PMID: 31568758 DOI: 10.1016/j.ygcen.2019.113291] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 02/06/2023]
Abstract
Melanocortin-1 receptor (MC1R) has important roles in regulating pigmentation and inflammation. Melanocortin receptor accessory protein 2 (MRAP2) modulates trafficking, ligand binding, and signaling of mammalian melanocortin receptors. However, the effect of MRAP2 on fish MC1R has not been extensively studied. Herein, we cloned the orange-spotted grouper (Epinephelus coioides) mc1r, which had a 972 bp open reading frame encoding a putative protein of 323 amino acids. Grouper mc1r was mainly expressed in the brain, skin, testis, spleen, head kidney, and kidney. EcoMC1R showed high constitutive activities in both Gs-cAMP and ERK1/2 pathways, which could be differentially modulated by grouper MRAP2 (EcoMRAP2). Three agonists, including α-melanocyte-stimulating hormone (MSH), β-MSH, and ACTH, could bind to EcoMC1R and dose-dependently increase intracellular cAMP production. EcoMRAP2 had no effect on the IC50 in binding assay or EC50 in cAMP assay; however, it dose-dependently decreased the cell surface expression and maximal response to the three agonists. EcoMRAP2 increased basal ERK1/2 activation but did not alter α-MSH-stimulated ERK1/2 activation. This study extends the knowledge base of fish MC1R pharmacology and its regulation by MRAP2.
Collapse
Affiliation(s)
- Li-Qin Ji
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Ying-Zhu Rao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States; Institute of Applied Biotechnology, Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, Guangdong, China
| | - Yong Zhang
- Southern Laboratory of Ocean Science and Engineering (Zhuhai, Guangdong), Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Zhuhai 51900, China
| | - Rong Chen
- Institute of Applied Biotechnology, Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, Guangdong, China
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
8
|
Yang LK, Zhang ZR, Wen HS, Tao YX. Characterization of channel catfish (Ictalurus punctatus) melanocortin-3 receptor reveals a potential network in regulation of energy homeostasis. Gen Comp Endocrinol 2019; 277:90-103. [PMID: 30905760 DOI: 10.1016/j.ygcen.2019.03.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 11/19/2022]
Abstract
The melanocortin-3 receptor (MC3R) is known to be involved in regulation of energy homeostasis, regulating feed efficiency and nutrient partitioning in mammals. Its physiological roles in non-mammalian vertebrates, especially economically important aquaculture species, are not well understood. Channel catfish (Ictalurus punctatus) is the main freshwater aquaculture species in North America. In this study, we characterized the channel catfish MC3R. The mc3r of channel catfish encoded a putative protein (ipMC3R) of 367 amino acids. We transfected HEK293T cells with ipMC3R plasmid for functional studies. Five agonists, including adrenocorticotropin, α-melanocyte stimulating hormone (α-MSH), β-MSH, [Nle4, D-Phe7]-α-MSH, and D-Trp8-γ-MSH, were used in the pharmacological studies. Our results showed that ipMC3R bound β-MSH with higher affinity and D-Trp8-γ-MSH with lower affinity compared with human MC3R. All agonists could stimulate ipMC3R and increase intracellular cAMP production with sub-nanomolar potencies. The extracellular signal-regulated kinases 1 and 2 (ERK1/2) activation could also be triggered by ipMC3R. The ipMC3R exhibited constitutive activities in both cAMP and ERK1/2 pathways, and Agouti-related protein served as an inverse agonist at ipMC3R, potently inhibiting the high basal cAMP level. Moreover, we showed that melanocortin receptor accessory protein 2 (MRAP2) preferentially modulated ipMC3R in cAMP production rather than ERK1/2 activation. Our study will assist further investigation of the physiological roles of the ipMC3R, especially in energy homeostasis, in channel catfish.
Collapse
Affiliation(s)
- Li-Kun Yang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Zheng-Rui Zhang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States; Key Laboratory of Marine Genetics and Breeding, Ministry of Education, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Hai-Shen Wen
- College of Fisheries, Ocean University of China, Qingdao, China
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|