1
|
Lu W, Chen Y, Ramírez MDA, Liu Y, Zhang H, Yuan Z, Han Y, Weng Q. Up-regulated mitochondrial biogenesis associated with GH/IGF axis in the ovaries of muskrats (Ondatra zibethicus). Comp Biochem Physiol B Biochem Mol Biol 2024; 275:111030. [PMID: 39245261 DOI: 10.1016/j.cbpb.2024.111030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Mitochondria play a critical role in follicular development and ovulation, at least in part through the actions of growth hormone (GH)/insulin-like growth factor-1 (IGF-1) on mitochondrial biogenesis. This study aimed to identify seasonal alterations in the GH/IGF-1 system and mitochondrial biogenesis in muskrat (Ondatra zibethicus) ovaries. We utilized the muskrat, a typical seasonal breeder, to clarify the potential impact of the GH/IGF-1 system on mitochondrial biogenesis across different breeding seasons using immunohistochemistry, gene expression and high-throughput sequencing. Alterations in follicular development existed in muskrat ovaries between the breeding season (BS) and non-breeding season (NBS), accompanied by a striking decrease in circulating and ovarian GH and IGF-1 concentrations. GH, GHR, IGF-1, IGF-1R, and mitochondrial biogenesis markers were localized in the ovarian cells of muskrats during both seasons. In contrast, Gh, Ghr, Igf-1, Igf-1r, Ppargc1a, Ppargc1b, Tfam, and Nrf1/2 mRNA levels were higher in BS. The relative levels of GH and IGF-1 in circulation and ovaries were positively associated with mitochondrial biogenesis markers. Additionally, RNA-seq analysis demonstrated that differentially expressed genes might be associated with insulin and PI3K/Akt signaling pathways, as well as mitochondrial function-related pathways. These findings suggest that the intra-ovarian GH/IGF-1 system, which is associated with seasonal changes in mitochondrial biogenesis, is activated in muskrat ovaries in BS.
Collapse
Affiliation(s)
- Wenjing Lu
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuan Chen
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | | | - Yuning Liu
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Haolin Zhang
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhengrong Yuan
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingying Han
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Qiang Weng
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
2
|
Lu W, Chen Y, Ramírez MDA, Liu Y, Zhang H, Yuan Z, Han Y, Weng Q. Vitamin D status alters genes involved in ovarian steroidogenesis in muskrat granulosa cells. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159469. [PMID: 38402945 DOI: 10.1016/j.bbalip.2024.159469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/01/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
This study aims to explore the relationship between altered vitamin D (VitD3) status and ovarian steroidogenesis in muskrats during the breeding and non-breeding seasons. During the breeding season, the ovaries of muskrats were observably enlarged and increased in weight, accompanied by elevated serum and ovarian VitD3 status. Vitamin D receptor (VDR), VitD3 metabolic molecules (CYP2R1, CYP27B1, and CYP24A1), and steroidogenic enzymes were immunolocalized in the ovarian cells of muskrats. The mRNA levels of VDR, CYP2R1, CYP27B1, and steroidogenic enzymes were considerably higher during the breeding season compared to the non-breeding season. RNA-seq analysis revealed a prominent enrichment of vitamin-related and ovarian steroidogenesis pathways. Furthermore, the addition of 1,25(OH)2D3 to the muskrat granulosa cells in vitro increased VDR and steroidogenic enzymes mRNA levels and enhanced the 17β-estradiol level. Overall, these findings supported that VitD3 promotes the secretion of steroid hormones, thereby affecting seasonal changes in ovarian function in the muskrats.
Collapse
Affiliation(s)
- Wenjing Lu
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuan Chen
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | | | - Yuning Liu
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Haolin Zhang
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhengrong Yuan
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingying Han
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Qiang Weng
- College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
3
|
Xie W, Gao Q, Artigas Ramirez MD, Zhang H, Liu Y, Weng Q. Seasonal expressions of nerve growth factor (NGF), and its receptor TrkA and p75 in the scent glands of muskrats (Ondatra zibethicus). Comp Biochem Physiol B Biochem Mol Biol 2024; 269:110905. [PMID: 37769961 DOI: 10.1016/j.cbpb.2023.110905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
NGF, also known as nerve growth factor, is crucial for the survival and differentiation of the nervous system, in addition to being involved in a number of non-neuronal systems. The aim of this work was to investigate the immunolocalization and expression patterns of NGF, its receptor, tyrosine kinase receptor A (TrkA), and p75 in the scent glands of muskrats (Ondatra zibethicus) throughout the breeding and non-breeding seasons. The scent gland mass showed considerable seasonal variations, with higher values during the breeding season and comparatively lower levels during the non-breeding season. While no immunostaining was observed in the interstitial cells, NGF, TrkA, and p75 were immunolocalized in the scent glandular cells and epithelial cells during both breeding and non-breeding seasons. NGF, TrkA, and p75 protein and mRNA expression levels were higher in the scent glands during breeding season compared to the non-breeding season. Circulating levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone (T), and T in the scent gland were all significantly higher throughout the breeding season. The relative levels of the hormones in the plasma and the scent glands as well as NGF, TrkA, and p75 were positively associated with each other. Additionally, transcriptome analysis of the scent glands revealed that differentially expressed genes may be linked to steroid biosynthesis, the estrogen signaling pathway, and neurotransmitter transmembrane transporter function. These results suggest a potential role for NGF, TrkA, and p75 in controlling seasonal variations in the muskrats' scent gland functioning.
Collapse
Affiliation(s)
- Wenqian Xie
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Qingjing Gao
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Maria Daniela Artigas Ramirez
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Haolin Zhang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yuning Liu
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| | - Qiang Weng
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| |
Collapse
|
4
|
Xie W, Gao Q, Chen P, Zhang H, Liu Y, Weng Q. Seasonal expressions of the translocator protein (18 kDa), voltage-dependent anion channel, and steroidogenic acute regulatory protein in the scent glands of muskrats (Ondatra zibethicus). J Steroid Biochem Mol Biol 2023; 234:106400. [PMID: 37722462 DOI: 10.1016/j.jsbmb.2023.106400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/20/2023]
Abstract
Steroidogenesis machinery involves the steroidogenic acute regulatory protein (StAR), which regulates cholesterol transfer within the mitochondria, and the transport of cholesterol via a channel composed of 18-kDa translocator protein (TSPO), the voltage-dependent anion channel (VDAC) plus some accessory proteins. In this study, we investigated the immunolocalizations and expressions of StAR, TSPO, VDAC and cytochrome P450 side chain cleavage enzyme (P450scc, CYP11A1) in the scent glands of muskrats (Ondatra zibethicus) during the breeding and non-breeding periods. StAR, TSPO, VDAC and CYP11A1 were immunolocalized in the scent glandular, interstitial and epithelial cells in both breeding and non-breeding seasons with stronger immunostaining in the breeding season. The mRNA expression levels of StAR, TSPO, VDAC and CYP11A1 were higher in the scent glands of the breeding season than those of the non-breeding season. The circulating follicle stimulating hormone (FSH), luteinizing hormone (LH) and testosterone (T) as well as scent glandular T and dihydrotestosterone (DHT) concentrations were also significantly higher in the breeding season. Additionally, the transcriptomic study in the scent glands identified that differentially expressed genes might be related to the lipid metabolic process, integral component of membrane, and steroid hormone receptor activity and hormone activity using GO analysis. Further in vitro study verified that StAR, TSPO, VDAC and CYP11A1 expression levels increased significantly after human chorionic gonadotropin, hCG/FSH treatment compared with the control group. The KEGG pathway enriched by differentially expressed genes detected to be involved in endocrine system or amino acid metabolism. These findings suggested that the scent glands of the muskrats have ability to synthesize steroids de novo, and that the steroid hormones may have an important regulatory role in the scent glandular function via an autocrine/paracrine pathway.
Collapse
Affiliation(s)
- Wenqian Xie
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Qingjing Gao
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Pengyu Chen
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Haolin Zhang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yuning Liu
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| | - Qiang Weng
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| |
Collapse
|
5
|
Gao Q, Xie W, Lu W, Liu Y, Zhang H, Han Y, Weng Q. Seasonal patterns of prolactin, prolactin receptor, and STAT5 expression in the ovaries of wild ground squirrels (<em>Citellus dauricus</em> Brandt). Eur J Histochem 2023; 67:3825. [PMID: 37781865 PMCID: PMC10614723 DOI: 10.4081/ejh.2023.3825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/30/2023] [Indexed: 10/03/2023] Open
Abstract
Prolactin (PRL) is a hormone crucial for normal reproduction, functioning as an autocrine, paracrine, and endocrine factor. This study aimed to examine the immunolocalization and expression patterns of PRL, prolactin receptor (PRLR), and signal transducer and activator of transcription 5 (STAT5) in the ovaries of wild ground squirrels during both breeding and non-breeding periods. Significant seasonal variations were observed in ovarian weights, with higher values during the breeding season and relatively lower values during the nonbreeding season. PRL, PRLR, STAT5, and p-STAT5 were immunolocalized in granulosa cells and luteal cells during the breeding season, whereas they were exclusively found in granulosa cells during the non-breeding season. The mRNA expression levels of Prl, Prlr, and Stat5 were increased in ovarian tissues during the breeding season compared to the non-breeding season. Moreover, the mean mRNA levels of Prl, Prlr, and Stat5 exhibited a positive correlation with ovarian weights. Both circulating PRL and ovarian PRL concentrations were significantly elevated during the breeding season. Additionally, transcriptomic analysis of ovarian tissues revealed differentially expressed genes possibly associated with ovarian function and mammary gland development, including ovarian follicle development, steroid synthesis, and regulation of reproductive process. These findings suggest that PRL might play an essential endocrine, autocrine, or paracrine role in the regulation of seasonal changes in the ovarian functions in wild ground squirrels.
Collapse
Affiliation(s)
- Qingjing Gao
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Wenqian Xie
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Wenjing Lu
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Yuning Liu
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Haolin Zhang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Yingying Han
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| | - Qiang Weng
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing.
| |
Collapse
|
6
|
Xie W, Zhang C, Gao Q, Liu Y, Zhang H, Weng Q. Seasonal expressions of COX-1, COX-2, and EP4 in the scent glands of muskrats ( Ondatra zibethicus). Am J Physiol Regul Integr Comp Physiol 2023; 325:R238-R247. [PMID: 37358350 DOI: 10.1152/ajpregu.00113.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023]
Abstract
Prostaglandins (PGs) serve as signaling molecules that regulate various physiological processes, including inflammation, immune response, blood clotting, and reproduction. The aim of this study was to investigate the immunolocalizations and expression patterns of prostaglandin-E2 (PGE2), cyclooxygenase (COX)-1, and COX-2, as well as its receptor subtypes 4 (EP4) in the scent glands of muskrats (Ondatra zibethicus) during the breeding and nonbreeding periods. There were significant seasonal differences in the scent glandular mass, with higher values in the breeding season and relatively low in the nonbreeding season. PGE2, EP4, COX-1, and COX-2 have been immunolocalized in the scent glandular and epithelial cells in both breeding and nonbreeding seasons, whereas no immunostaining was observed in the interstitial cells. The protein and mRNA expression levels of EP4, COX-1, and COX-2 were higher in the scent glands of the breeding season than those of the nonbreeding season. The mean mRNA levels of EP4, COX-1, and COX-2 were positively correlated with the scent glandular weights. The circulating follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone (T), and PGE2, as well as scent glandular PGE2 and dihydrotestosterone (DHT) concentrations, were also significantly higher in the breeding season. In addition, the transcriptomic study in the scent glands identified that differentially expressed genes might be related to fatty carboxylic monocarboxylic acid, steroidogenic-related pathways, and prostanoid metabolic processes. These findings suggested that prostaglandin-E2 might play an essential autocrine or paracrine role in regulating seasonal changes in the scent glandular functions of the muskrats.
Collapse
Affiliation(s)
- Wenqian Xie
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Chaoran Zhang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Qingjing Gao
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yuning Liu
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Haolin Zhang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Qiang Weng
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
7
|
Mass Spectrometry Imaging of Lipids in the Scent Glands of Muskrat (Ondatra zibethicus) in Different Reproductive Statuses. Cells 2022; 11:cells11142228. [PMID: 35883671 PMCID: PMC9322022 DOI: 10.3390/cells11142228] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 12/04/2022] Open
Abstract
As a typical seasonal breeding animal, male muskrats have a pair of scent glands that can emit musky odor substances to attract females during the breeding period. The present study aimed to visualize the differences in the distribution of lipids in the scent glands of muskrats during their different reproductive statuses by imaging mass spectrometry and quantitative real-time PCR (qRT-PCR). The results revealed remarkable differences in the expression and spatial distribution of lipids detected in the scent glands of muskrats during the different reproductive statuses. In addition, the expression levels of lipid molecules PC (32:0) and LysoPC (16:0) were found to be significantly higher in the breeding season than in the non-breeding season. Moreover, the mRNA expression levels of lipid synthesis enzyme Pemt and Pla2g4b were higher in the breeding season than in the non-breeding season, and there were positive correlations between the expression intensities of lipid molecules and the expression levels of Pemt and Pla2g4b. The present study investigates the changes and distribution of the endogenous lipid in the scent glands of muskrats and elucidates that the seasonal changes in the lipid metabolism may affect the functions of the scent glands in muskrats.
Collapse
|
8
|
Xie W, Zhao X, Guo L, Han Y, Yuan Z, Zhang H, Weng Q. Seasonal expressions of ERα, ERβ, EGF, EGFR, PI3K and Akt in the scent glands of the muskrats (Ondatra zibethicus). J Steroid Biochem Mol Biol 2021; 213:105961. [PMID: 34391939 DOI: 10.1016/j.jsbmb.2021.105961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/14/2021] [Accepted: 08/07/2021] [Indexed: 12/28/2022]
Abstract
Epidermal growth factor (EGF) is an important autocrine and/or paracrine mediator of steroid hormones to stimulate growth and differentiation in mammals. The aim of this study is to investigate seasonal expressions of estrogen receptor α (ERα), estrogen receptor β (ERβ), EGF, epidermal growth factor receptor (EGFR), phosphatidylinositol 3-kinase (PI3K) and protein kinase B (Akt) in the scent glands of the muskrats during the breeding and non-breeding seasons. Histologically, three types of cells including the glandular cells, interstitial cells and epithelial cells were identified in the scent glands in both seasons. Immunohistochemical results showed that ERα, ERβ, EGF, EGFR, PI3K and Akt were presented in the different types of cells of the scent glands during the breeding and non-breeding seasons. Transcriptome data of the scent glandular tissues from muskrats in the breeding and non-breeding seasons showed that differential seasonal changes might be related to the estrogen-EGFR signaling pathway. The gene expression levels of ERα, ERβ, EGF, EGFR, PI3K were increased, while the gene expression level of Akt were decreased in the breeding season than those in the non-breeding season. Besides, the concentrations of 17β-estradiol (E2) in the serum and the scent glandular tissues were remarkably higher in the breeding season than those of the non-breeding season. Taken together, our results suggested that EGFR signaling pathway may coordinate with ERs signaling to regulate the seasonal changes of the scent glandular functions.
Collapse
Affiliation(s)
- Wenqian Xie
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xinyu Zhao
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Li Guo
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yingying Han
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zhengrong Yuan
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Haolin Zhang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| | - Qiang Weng
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| |
Collapse
|
9
|
Wang Y, Qi H, Zhang C, Guo Y, Yao Y, Feng X, Fan S, Han Y, Yuan Z, Weng Q, Zhang H. The seasonal profile of proliferation and apoptosis in the prostate gland of the wild ground squirrel (Spermophilus dauricus). Comp Biochem Physiol A Mol Integr Physiol 2020; 253:110862. [PMID: 33276131 DOI: 10.1016/j.cbpa.2020.110862] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 11/14/2020] [Accepted: 11/29/2020] [Indexed: 10/22/2022]
Abstract
The seasonal cycle of growth and regression in the prostate gland of wild ground squirrel provide a unique research model to understand the morphological changes of prostate glands. Our previous studies showed that the local production of dihydrotestosterone could affect the morphology and function of the prostate gland in either an autocrine or paracrine manner. In the present study, we attempted to gain more insight into this process by investigating the expression of key factors implicated in cell proliferation, apoptosis, and the cell cycle, including mechanistic target of rapamycin (mTOR), cyclin-D2, p21, p27 and retinoblastoma 1 (pRB). Morphological and histological observations confirmed that the prostate increased significantly in both size and weight during the breeding season. Positive immunostaining for proliferating cell nuclear antigen (PCNA) was mainly localized to the prostate epithelial cells during the breeding season, which is significantly higher in the prostate gland during the breeding season (2470 ± 81/mm2) than that in the nonbreeding season (324 ± 54/mm2). However, there was no significant difference in the prostate gland when compared between the breeding and nonbreeding seasons, with regards to TUNEL staining. Moreover, cell cycle regulators were mainly localized to the epithelial cells, including mTOR, cyclin-D2, p21, p27 and pRB. the immunostaining of mTOR and cyclin D2 were stronger during the breeding season, whereas the immunostaining of p27 and pRB were stronger during the nonbreeding season. The mRNA expression levels of mTOR, cyclin D2, and PCNA, were higher during the breeding season while those of p27 and p21 were higher during the nonbreeding season. Collectively, this study profiled the distinct expression pattern of key cell cycle regulators throughout the breeding and nonbreeding seasons. Collectively, these factors may play important roles in regulating the seasonal growth and regression of the prostatic epithelium in the wild ground squirrel.
Collapse
Affiliation(s)
- Yi Wang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Hongyu Qi
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Chunjiao Zhang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuanyuan Guo
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuchen Yao
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiaohang Feng
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Sijie Fan
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yingying Han
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Zhengrong Yuan
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Qiang Weng
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Haolin Zhang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
10
|
Xie W, Tang Z, Xu L, Zhong J, Zhang H, Han Y, Yuan Z, Weng Q. Seasonal expressions of SF-1, StAR and P450scc in the scent glands of the muskrats (Ondatra zibethicus). J Steroid Biochem Mol Biol 2020; 204:105766. [PMID: 32991988 DOI: 10.1016/j.jsbmb.2020.105766] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/23/2020] [Accepted: 09/19/2020] [Indexed: 12/21/2022]
Abstract
The steroidogenesis occurs in specific cells and tissues in the mammals which begins with the transfer and intracellular processing of cholesterol converted to pregnenolone. This study investigated the gene and protein expression levels of steroidogenic factor 1 (SF-1), steroidogenic acute regulatory protein (StAR) and cytochrome P450 cholesterol side-chain cleavage enzyme (P450scc) in the scent glands of the muskrats during the breeding and non-breeding seasons. The immunohistochemical localizations of StAR and P450scc were identified in the glandular cells and epithelial cells while SF-1 was only expressed in glandular cells during the breeding and non-breeding seasons. The gene and protein expression levels of SF-1, StAR and P450scc in the scent glands were remarkedly higher in the breeding season than those of the non-breeding season. The interaction of micro RNAs (miRNAs) and transcriptome results showed that miR-762 and miR-4454 might be the genes encoding (Nr5a1, Star and Cyp11a1) in key biological processes. Taken together, these results suggested that the scent glands of the muskrats potentially owned ability to synthesize steroid hormones de novo, and the steroid hormones might affect the scent glandular functions of the muskrats during the breeding and non-breeding seasons.
Collapse
Affiliation(s)
- Wenqian Xie
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zeqi Tang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Luxia Xu
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jiahui Zhong
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Haolin Zhang
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yingying Han
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Zhengrong Yuan
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Qiang Weng
- Laboratory of Animal Physiology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| |
Collapse
|