1
|
Zeng WH, Wen ZY, Wei XY, He Y, Zhou L, Hu P, Shi QC, Qin CJ, Wang J, Li R, Jing XY, Hu W, Yuan HW, Fan JD, Zhang C, Jiang W, Fu P, Shi Q. Molecular characterization, spatio-temporal expression patterns of crtc2 gene and its immune roles in yellow catfish (Pelteobagrus fulvidraco). FISH & SHELLFISH IMMUNOLOGY 2024; 154:109877. [PMID: 39245185 DOI: 10.1016/j.fsi.2024.109877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/10/2024]
Abstract
cAMP response element binding (CREB) protein 2 (CRTC2) is a transcriptional coactivator of CREB and plays an important role in the immune system. Thus far, the physiological roles of Crtc2 in teleost are still poorly understood. In this study, the crtc2 gene was identified and characterized from yellow catfish (Pelteobagrus fulvidraco; therefore, the gene is termed as pfcrtc2), and its evolutionary and molecular characteristics as well as potential immunity-related roles were investigated. Our results showed that the open reading frame of pfcrtc2 was 2346 bp in length, encoding a protein with 781 amino acids. Gene structure analysis revealed its existence of 14 exons and 13 introns. A phylogenetic analysis proved that the tree of crtc2 was clustered into five groups, exhibiting a similar evolutionary topology with species evolution. Multiple protein sequences alignment demonstrated high conservation of the crtc2 in various vertebrates with similar structure. Syntenic and gene structural comparisons further established that crtc2 was highly conserved, implying its similar roles in diverse vertebrates. Tissue distribution pattern detected by quantitative real-time PCR showed that the pfcrtc2 gene was almost expressed in all detected tissues except for eyes, with the highest expression levels in the gonad, indicating that Crtc2 may play important roles in various tissues. In addition, pfcrtc2 was transcribed at all developmental stages in yellow catfish, showing the highest expression levels at 12 h after fertilization. Finally, the transcriptional profiles of crtc2 were significantly increased in yellow catfishes injected with Aeromonas hydrophila or Poly I:C, which shared a consistent change pattern with four immune-related genes including IL-17A, IL-10, MAPKp38, and NF-κBp65, suggesting pfCrtc2 may play critical roles in preventing both exogenous bacteria and virus invasion. In summary, our findings lay a solid foundation for further studies on the functions of pfcrtc2, and provide novel genetic loci for developing new strategies to control disease outbreak in teleost.
Collapse
Affiliation(s)
- Wan-Hong Zeng
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641100, China; College of Life Science, Neijiang Normal University, Neijiang, 641100, China; School of Animal Science, Yangtze University, Jingzhou, 424020, China
| | - Zheng-Yong Wen
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641100, China; College of Life Science, Neijiang Normal University, Neijiang, 641100, China; School of Animal Science, Yangtze University, Jingzhou, 424020, China; Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, 518083, China.
| | - Xiu-Ying Wei
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641100, China; College of Life Science, Neijiang Normal University, Neijiang, 641100, China
| | - Yu He
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641100, China; College of Life Science, Neijiang Normal University, Neijiang, 641100, China; School of Animal Science, Yangtze University, Jingzhou, 424020, China
| | - Luo Zhou
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641100, China; College of Life Science, Neijiang Normal University, Neijiang, 641100, China; School of Animal Science, Yangtze University, Jingzhou, 424020, China
| | - Peng Hu
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641100, China; College of Life Science, Neijiang Normal University, Neijiang, 641100, China
| | - Qing-Chao Shi
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641100, China; College of Life Science, Neijiang Normal University, Neijiang, 641100, China
| | - Chuan-Jie Qin
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641100, China; College of Life Science, Neijiang Normal University, Neijiang, 641100, China
| | - Jun Wang
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641100, China; College of Life Science, Neijiang Normal University, Neijiang, 641100, China
| | - Rui Li
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641100, China; College of Life Science, Neijiang Normal University, Neijiang, 641100, China
| | - Xiao-Ying Jing
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641100, China; College of Life Science, Neijiang Normal University, Neijiang, 641100, China
| | - Wei Hu
- School of Animal Science, Yangtze University, Jingzhou, 424020, China
| | - Han-Wen Yuan
- School of Animal Science, Yangtze University, Jingzhou, 424020, China
| | - Jun-De Fan
- Chongqing Fisheries Science Research Institute, Chongqing, 400020, China
| | - Chuang Zhang
- Yueyang Yumeikang Biotechnology Co. Ltd., Yueyang, 414100, China
| | - Wei Jiang
- Yueyang Yumeikang Biotechnology Co. Ltd., Yueyang, 414100, China
| | - Peng Fu
- Yueyang Yumeikang Biotechnology Co. Ltd., Yueyang, 414100, China.
| | - Qiong Shi
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, 641100, China; College of Life Science, Neijiang Normal University, Neijiang, 641100, China; Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen, 518083, China; Laboratory of Aquatic Genomics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
2
|
Yang YL, Zeng WH, Peng Y, Zuo SY, Fu YQ, Xiao YM, Huang WL, Wen ZY, Hu W, Yang YY, Huang XF. Characterization of three lamp genes from largemouth bass ( Micropterus salmoides): molecular cloning, expression patterns, and their transcriptional levels in response to fast and refeeding strategy. Front Physiol 2024; 15:1386413. [PMID: 38645688 PMCID: PMC11026864 DOI: 10.3389/fphys.2024.1386413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 03/14/2024] [Indexed: 04/23/2024] Open
Abstract
Lysosomes-associated membrane proteins (LAMPs), a family of glycosylated proteins and major constituents of the lysosomal membranes, play a dominant role in various cellular processes, including phagocytosis, autophagy and immunity in mammals. However, their roles in aquatic species remain poorly known. In the present study, three lamp genes were cloned and characterized from Micropterus salmoides. Subsequently, their transcriptional levels in response to different nutritional status were investigated. The full-length coding sequences of lamp1, lamp2 and lamp3 were 1251bp, 1224bp and 771bp, encoding 416, 407 and 256 amino acids, respectively. Multiple sequence alignment showed that LAMP1-3 were highly conserved among the different fish species, respectively. 3-D structure prediction, genomic survey, and phylogenetic analysis were further confirmed that these genes are widely existed in vertebrates. The mRNA expression of the three genes was ubiquitously expressed in all selected tissues, including liver, brain, gill, heart, muscle, spleen, kidney, stomach, adipose and intestine, lamp1 shows highly transcript levels in brain and muscle, lamp2 displays highly expression level in heart, muscle and spleen, but lamp3 shows highly transcript level in spleen, liver and kidney. To analyze the function of the three genes under starvation stress in largemouth bass, three experimental treatment groups (fasted group and refeeding group, control group) were established in the current study. The results indicated that the expression of lamp1 was significant induced after starvation, and then returned to normal levels after refeeding in the liver. The expression of lamp2 and lamp3 exhibited the same trend in the liver. In addition, in the spleen and the kidney, the transcript level of lamp1 and lamp2 was remarkably increased in the fasted treatment group and slightly decreased in the refed treatment group, respectively. Collectively, our findings suggest that three lamp genes may have differential function in the immune and energetic organism in largemouth bass, which is helpful in understanding roles of lamps in aquatic species.
Collapse
Affiliation(s)
- Yan-Lin Yang
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
| | - Wan-Hong Zeng
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
| | - Yong Peng
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
| | - Shi-Yu Zuo
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
| | - Yuan-Qi Fu
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
| | - Yi-Ming Xiao
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
| | - Wen-Li Huang
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
| | - Zheng-Yong Wen
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, China
| | - Wei Hu
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, China
| | - Yu-Ying Yang
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
| | - Xiao-Feng Huang
- Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, Yangtze University, Jingzhou, China
- School of Animal Science, Yangtze University, Jingzhou, China
| |
Collapse
|
3
|
MRAP2 Interaction with Melanocortin-4 Receptor in SnakeHead ( Channa argus). Biomolecules 2021; 11:biom11030481. [PMID: 33807040 PMCID: PMC8004712 DOI: 10.3390/biom11030481] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/11/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023] Open
Abstract
The melanocortin-4 receptor (MC4R) plays an important role in the regulation of food intake and energy expenditure. Melanocortin-2 receptor accessory protein 2 (MRAP2) modulates trafficking, ligand binding, and signaling of MC4R. The Northern snakehead (Channa argus) is an economically important freshwater fish native to East Asia. To explore potential interaction between snakehead MC4R and MRAP2, herein we cloned snakehead mc4r and mrap2. The snakehead mc4r consisted of a 984 bp open reading frame encoding a protein of 327 amino acids, while snakehead mrap2 contained a 693 bp open reading frame encoding a protein of 230 amino acids. Synteny analysis indicated that mc4r was highly conserved with similar gene arrangement, while mrap2 contained two isoforms in teleost with different gene orders. Snakehead mc4r was primarily expressed in the brain, whereas mrap2 was expressed in the brain and intestine. Snakehead mc4r and mrap2 expression was modulated by fasting and refeeding. Further pharmacological experiments showed that the cloned snakehead MC4R was functional, capable of binding to peptide agonists and increasing intracellular cAMP production in a dose-dependent manner. Snakehead MC4R exhibited high constitutive activity. MRAP2 significantly decreased basal and agonist-stimulated cAMP signaling. These findings suggest that snakehead MC4R might be involved in energy balance regulation by interacting with MRAP2. Further studies are needed to elucidate MC4R in regulating diverse physiological processes in snakehead.
Collapse
|
4
|
Wen Z, Li Y, Bian C, Shi Q, Li Y. Characterization of two kcnk3 genes in rabbitfish (Siganus canaliculatus): Molecular cloning, distribution patterns and their potential roles in fatty acids metabolism and osmoregulation. Gen Comp Endocrinol 2020; 296:113546. [PMID: 32653428 DOI: 10.1016/j.ygcen.2020.113546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/08/2020] [Accepted: 07/07/2020] [Indexed: 12/19/2022]
Abstract
KCNK3 is a two-pore-domain (K2P) potassium channel involved in maintaining ion homeostasis, mediating thermogenesis, controlling breath and modulating electrical membrane potential. Although the functions of this channel have been widely described in mammals, its roles in fishes are still rarely known. Here, we identified two kcnk3 genes from the euryhaline rabbitfish (Siganus canaliculatus), and their roles related to fatty acids metabolism and osmoregulation were investigated. The open reading frames of kcnk3a and kcnk3b were 1203 and 1176 bp in length, encoding 400 and 391 amino acids respectively. Multiple sequences alignment and phylogenetic analysis revealed that the two isotypes of kcnk3 were extensively presented in fishes. Quantitative real-time PCRs indicated that both genes were widely distributed in examined tissues but showed different patterns. kcnk3a primary distributed in adipose, eye, heart, and spleen tissues, while kcnk3b was mainly detectable in heart, kidney, muscle and spleen tissues. In vivo experiments showed that fish fed diets with fish oil as dietary lipid (rich in long chain polyunsaturated fatty acids, LC-PUFA) induced higher mRNA expression levels of kcnk3 genes in comparison with fish fed with plant oil diet at two different salinity environments (32 and 15‰). Meanwhile, the expression levels of kcnk3 genes were higher in seawater (32‰) than that in brackish water (15‰) when fishes were fed with both types of feeds. In vitro experiments with rabbitfish hepatocytes showed that LC-PUFA significantly improved hepatic kcnk3a expression level compared with treatment of linolenic acid. These results suggest that two kcnk3 genes are widely existed and they might be functionally related to fatty acids metabolism and osmoregulation in the rabbitfish.
Collapse
Affiliation(s)
- Zhengyong Wen
- BGI Education Center University of Chinese Academy of Sciences, Shenzhen 518083, China; Shenzhen Key Lab of Marine Genomics Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences BGI Marine BGI, Shenzhen 518083, China
| | - Yang Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Chao Bian
- BGI Education Center University of Chinese Academy of Sciences, Shenzhen 518083, China; Shenzhen Key Lab of Marine Genomics Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences BGI Marine BGI, Shenzhen 518083, China
| | - Qiong Shi
- BGI Education Center University of Chinese Academy of Sciences, Shenzhen 518083, China; Shenzhen Key Lab of Marine Genomics Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences BGI Marine BGI, Shenzhen 518083, China.
| | - Yuanyou Li
- College of Marine Sciences of South, China Agricultural University & Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
5
|
Wen ZY, Qin CJ, Wang J, He Y, Li HT, Li R, Wang XD. Molecular characterization of two leptin genes and their transcriptional changes in response to fasting and refeeding in Northern snakehead (Channa argus). Gene 2020; 736:144420. [PMID: 32007585 DOI: 10.1016/j.gene.2020.144420] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 12/11/2022]
Abstract
Leptin has been proved to play critical roles in energy metabolism, body weight regulation, food intake, reproduction and immunity in mammals. However, its roles are still largely unclear in fish. Here, we report two leptin genes (lepA and lepB) from the Northern snakehead (Channa argus) and their transcriptions in response to different feeding status. The snakehead lepA is 781 bp in length and contains a 480 bp open reading frame (ORF) encoding a 159-aa protein, while the snakehead lepB is 553 bp in length and contains a 477 bp ORF encoding a 158-aa protein. Multi-sequences alignment, three-dimensional (3D) model prediction, syntenic and genomic comparison, and phylogenetic analysis confirm two leptin genes are widely existing in teleost. Tissue distribution revealed that the two leptin genes exhibit different patterns. In a post-prandial experiment, the hepatic lepA and brain lepB showed a similar transcription pattern. In a long-term (2-week) fasting and refeeding experiment, the hepatic lepA and brain lepB showed a similar transcription change pattern induced by food deprivation stimulation but differential changes after refeeding. These findings suggest snakehead lepA and lepB are differential both in tissue distribution and molecular functions, and they might play as an important regulator in energy metabolism and food intake in fish, respectively.
Collapse
Affiliation(s)
- Zheng-Yong Wen
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China; College of Life Science, Neijiang Normal University, Neijiang 641000, China; BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.
| | - Chuan-Jie Qin
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China; College of Life Science, Neijiang Normal University, Neijiang 641000, China
| | - Jun Wang
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China; College of Life Science, Neijiang Normal University, Neijiang 641000, China
| | - Yang He
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China; College of Life Science, Neijiang Normal University, Neijiang 641000, China
| | - Hua-Tao Li
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China; College of Life Science, Neijiang Normal University, Neijiang 641000, China
| | - Rui Li
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China; College of Life Science, Neijiang Normal University, Neijiang 641000, China
| | - Xiao-Dong Wang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
6
|
Wen ZY, Bian C, You X, Zhang X, Li J, Zhan Q, Peng Y, Li YY, Shi Q. Characterization of two kcnk3 genes in Nile tilapia (Oreochromis niloticus): Molecular cloning, tissue distribution, and transcriptional changes in various salinity of seawater. Genomics 2019; 112:2213-2222. [PMID: 31881264 DOI: 10.1016/j.ygeno.2019.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 12/23/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023]
Abstract
As one important member of the two-pore-domain potassium channel (K2P) family, potassium channel subfamily K member 3 (KCNK3) has been reported for thermogenesis regulation, energy homeostasis, membrane potential conduction, and pulmonary hypertension in mammals. However, its roles in fishes are far less examined and published. In the present study, we identified two kcnk3 genes (kcnk3a and kcnk3b) in an euryhaline fish, Nile tilapia (Oreochromis niloticus), by molecular cloning, genomic survey and laboratory experiments to investigate their potential roles for osmoregulation. We obtained full-length coding sequences of the kcnk3a and kcnk3b genes (1209 and 1173 bp), which encode 402 and 390 amino acids, respectively. Subsequent multiple sequence alignments, putative 3D-structure model prediction, genomic survey and phylogenetic analysis confirmed that two kcnk3 paralogs are widely presented in fish genomes. Interestingly, a DNA fragment inversion of a kcnk3a cluster was found in Cypriniforme in comparison with other fishes. Quantitative real-time PCRs demonstrated that both the tilapia kcnk3 genes were detected in all the examined tissues with a similar distribution pattern, and the highest transcriptions were observed in the heart. Meanwhile, both kcnk3 genes in the gill were proved to have a similar transcriptional change pattern in response to various salinity of seawater, implying that they might be involved in osmoregulation. Furthermore, three predicted transcription factors (arid3a, arid3b, and arid5a) of both kcnk3 genes also showed a similar pattern as their target genes in response to the various salinity, suggesting their potential positive regulatory roles. In summary, we for the first time characterized the two kcnk3 genes in Nile tilapia, and demonstrated their potential involvement in osmoregulation for this economically important fish.
Collapse
Affiliation(s)
- Zheng-Yong Wen
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Chao Bian
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Xinxin You
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Xinhui Zhang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Jia Li
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Qiuyao Zhan
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Yuxiang Peng
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Yuan-You Li
- School of Marine Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Qiong Shi
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China; Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China.
| |
Collapse
|