1
|
Romanova IV, Mikhailova EV, Mikhrina AL, Shpakov AO. Type 1 melanocortin receptors in pro-opiomelanocortin-, vasopressin-, and oxytocin-immunopositive neurons in different areas of mouse brain. Anat Rec (Hoboken) 2023; 306:2388-2399. [PMID: 35475324 DOI: 10.1002/ar.24934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/24/2022] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
Abstract
Information on the localization of the Type 1 melanocortin receptors (MC1Rs) in different regions of the brain is very scarce. As a result, the role of MC1Rs in the functioning of brain neurons and in the central regulation of physiological functions has not been studied. This work aimed to study the expression and distribution of MС1Rs in different brain areas of female C57Bl/6J mice. Using real-time polymerase chain reaction, we demonstrated the Mс1R gene expression in the cerebral cortex, midbrain, hypothalamus, medulla oblongata, and hippocampus. Using an immunohistochemical approach, we showed the MС1R localization in neurons of the hypothalamic arcuate, paraventricular and supraoptic nuclei, nucleus tractus solitarius (NTS), dorsal hippocampus, substantia nigra, and cerebral cortex. Using double immunolabeling, the MC1Rs were visualized on the surface and in the bodies and outgrowths of pro-opiomelanocortin (POMC)-immunopositive neurons in the hypothalamic arcuate nucleus, NTS, hippocampal CA3 and CA1 regions, and cerebral cortex. Co-localization with POMC indicates that MC1R, like MC3R, is able to function as an autoreceptor. In the paraventricular and supraoptic nuclei, MC1Rs were visualized on the surface and in the cell bodies of vasopressin- and oxytocin-immunopositive neurons, indicating a relationship between hypothalamic MC1R signaling and vasopressin and oxytocin production. The data obtained indicate a wide distribution of MC1Rs in different areas of the mouse brain and their localization in POMC-, vasopressin- and oxytocin-immunopositive neurons, which may indicate the participation of MC1Rs in the control of many physiological processes in the central nervous system.
Collapse
Affiliation(s)
- Irina V Romanova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Elena V Mikhailova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Anastasiya L Mikhrina
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | - Alexander O Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
2
|
Ji LQ, Rao YZ, Zhang Y, Chen R, Tao YX. Pharmacology of orange-spotted grouper (Epinephelus coioides) melanocortin-5 receptor and its modulation by Mrap2. Gen Comp Endocrinol 2023; 332:114180. [PMID: 36455644 DOI: 10.1016/j.ygcen.2022.114180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/10/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
The mammalian melanocortin-5 receptors (MC5Rs) are involved in various functions, including exocrine gland secretion, glucose uptake, adipocyte lipolysis, and immunity. However, the physiological role of fish Mc5r is rarely studied. Melanocortin-2 receptor accessory protein 2 (MRAP2) modulates pharmacological properties of melanocortin receptors. Herein, to lay the foundation for future physiological studies, we cloned the orange-spotted grouper (Epinephelus coioides) mc5r, with a 1008 bp open reading frame and a predicted protein of 334 amino acids. Grouper mc5r had abundant expression in the brain, skin, and kidney. Four ligands could bind to grouper Mc5r and dose-dependently increase intracellular cAMP levels. Grouper Mrap2 did not affect binding affinity or potency of Mc5r; however, grouper Mrap2 decreased cell surface expression and maximal binding of Mc5r. Mrap2 also significantly decreased the maximal response to a superpotent agonist but not the endogenous agonist. This study provided new data on fish Mc5r pharmacology and its regulation by Mrap2.
Collapse
Affiliation(s)
- Li-Qin Ji
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Ying-Zhu Rao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States; Institute of Applied Biotechnology, Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, Guangdong, China
| | - Yong Zhang
- Southern Laboratory of Ocean Science and Engineering (Zhuhai, Guangdong), Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Zhuhai 51900, China
| | - Rong Chen
- Institute of Applied Biotechnology, Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, Guangdong, China
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
3
|
Role of the Melanocortin System in Gonadal Steroidogenesis of Zebrafish. Animals (Basel) 2022; 12:ani12202737. [PMID: 36290123 PMCID: PMC9597712 DOI: 10.3390/ani12202737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
In teleost, as in other vertebrates, stress affects reproduction. A key component of the stress response is the pituitary secretion of the adrenocorticotropic hormone (ACTH), which binds to the melanocortin 2 receptor (MC2R) in the adrenal glands and activates cortisol biosynthesis. In zebrafish, Mc2r was identified in male and female gonads, while ACTH has been shown to have a physiological role in modulating reproductive activity. In this study, the hypothesis that other melanocortins may also affect how the zebrafish gonadal function is explored, specifically steroid biosynthesis, given the presence of members of the melanocortin signaling system in zebrafish gonads. Using cell culture, expression analysis, and cellular localization of gene expression, our new observations demonstrated that melanocortin receptors, accessory proteins, antagonists, and agonists are expressed in both the ovary and testis of zebrafish (n = 4 each sex). Moreover, melanocortin peptides modulate both basal and gonadotropin-stimulated steroid release from zebrafish gonads (n = 15 for males and n = 50 for females). In situ hybridization in ovaries (n = 3) of zebrafish showed mc1r and mc4r in follicular cells and adjacent to cortical alveoli in the ooplasm of previtellogenic and vitellogenic oocytes. In zebrafish testes (n = 3), mc4r and mc1r were detected exclusively in germ cells, specifically in spermatogonia and spermatocytes. Our results suggest that melanocortins are, directly or indirectly, involved in the endocrine control of vitellogenesis in females, through modulation of estradiol synthesis via autocrine or paracrine actions in zebrafish ovaries. Adult zebrafish testes were sensitive to low doses of ACTH, eliciting testosterone production, which indicates a potential role of this peptide as a paracrine regulator of testicular function.
Collapse
|
4
|
Melanocortin-5 Receptor: Pharmacology and Its Regulation of Energy Metabolism. Int J Mol Sci 2022; 23:ijms23158727. [PMID: 35955857 PMCID: PMC9369360 DOI: 10.3390/ijms23158727] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/12/2022] Open
Abstract
As the most recent melanocortin receptor (MCR) identified, melanocortin-5 receptor (MC5R) has unique tissue expression patterns, pharmacological properties, and physiological functions. Different from the other four MCR subtypes, MC5R is widely distributed in both the central nervous system and peripheral tissues and is associated with multiple functions. MC5R in sebaceous and preputial glands regulates lipid production and sexual behavior, respectively. MC5R expressed in immune cells is involved in immunomodulation. Among the five MCRs, MC5R is the predominant subtype expressed in skeletal muscle and white adipose tissue, tissues critical for energy metabolism. Activated MC5R triggers lipid mobilization in adipocytes and glucose uptake in skeletal muscle. Therefore, MC5R is a potential target for treating patients with obesity and diabetes mellitus. Melanocortin-2 receptor accessory proteins can modulate the cell surface expression, dimerization, and pharmacology of MC5R. This minireview summarizes the molecular and pharmacological properties of MC5R and highlights the progress made on MC5R in energy metabolism. We poInt. out knowledge gaps that need to be explored in the future.
Collapse
|
5
|
Mikhailova EV, Derkach KV, Shpakov AO, Romanova IV. Melanocortin 1 Receptors in the Hypothalamus of Mice within the Norm and in Diet-Induced Obesity. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022040263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Tai X, Zhang Y, Yao J, Li X, Liu J, Han J, Lyu J, Lin G, Zhang C. Pharmacological Modulation of Melanocortin 1 Receptor Signaling by Mrap Proteins in Xenopus tropicalis. Front Endocrinol (Lausanne) 2022; 13:892407. [PMID: 35795143 PMCID: PMC9251544 DOI: 10.3389/fendo.2022.892407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
The melanocortin system consists of five G protein-coupled receptors (MC1R-MC5R), the bidirectional endogenous ligands (MSH and Agouti families), and accessory proteins (MRAP1 and MRAP2). Accumulative studies of vertebrate species find high expression level of melanocortin 1 receptor (MC1R) in the dermal melanocyte and elucidate the essential roles in the skin and fur pigmentation, morphological background adaptation, and stress response. The diploid amphibian Xenopus tropicalis (xt) has been utilized as a fantastic animal model for embryonic development and studies of physiological cryptic colouring and environmental adaptiveness. However, the interaction of xtMc1r signaling with xtMrap proteins has not been assessed yet. In this study, we carried out in silico evolutionary analysis of protein alignment and genetic phylogenetic and genomic synteny of mc1r among various vertebrates. Ubiquitous expression of mrap1 and mrap2 and the co-expression with mc1r transcripts in the skin were clearly observed. Co-immunoprecipitation (ip) and fluorescent complementary approach validated the direct functional interaction of xtMc1r with xtMrap1 or xtMrap2 proteins on the plasma membrane. Pharmacological assay showed the improvement of the constitutive activity and alpha melanocyte-stimulating hormone (α-MSH) stimulated plateau without dramatic alteration of the cell surface translocation of xtMc1r in the presence of xtMrap proteins. Overall, the pharmacological modulation of xtMc1r by dual xtMrap2 proteins elucidated the potential role of this protein complex in the regulation of proper dermal function in amphibian species.
Collapse
Affiliation(s)
- Xiaolu Tai
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yaqun Zhang
- Department of Pathology, InnoStar Bio-tech Nantong Co., Ltd., Nantong, China
| | - Jindong Yao
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xuan Li
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jun Liu
- Department of Pathology, InnoStar Bio-tech Nantong Co., Ltd., Nantong, China
| | - Jiazhen Han
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jianjun Lyu
- Department of Pathology, InnoStar Bio-tech Nantong Co., Ltd., Nantong, China
- *Correspondence: Jianjun Lyu, ; Gufa Lin, ; Chao Zhang,
| | - Gufa Lin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- *Correspondence: Jianjun Lyu, ; Gufa Lin, ; Chao Zhang,
| | - Chao Zhang
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai, China
- *Correspondence: Jianjun Lyu, ; Gufa Lin, ; Chao Zhang,
| |
Collapse
|
7
|
Ji RL, Huang L, Wang Y, Liu T, Fan SY, Tao M, Tao YX. Topmouth culter melanocortin-3 receptor: regulation by two isoforms of melanocortin-2 receptor accessory protein 2. Endocr Connect 2021; 10:1489-1501. [PMID: 34678761 PMCID: PMC8630771 DOI: 10.1530/ec-21-0459] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022]
Abstract
Melanocortin-3 receptor (MC3R) is a regulator of energy homeostasis, and interaction of MC3R and melanocortin-2 receptor accessory protein 2 (MRAP2) plays a critical role in MC3R signaling of mammals. However, the physiological roles of MC3R in teleosts are not well understood. In this study, qRT-PCR was used to measure gene expression. Radioligand binding assay was used to study the binding properties of topmouth culter MC3R (caMC3R). Intracellular cAMP generation was determined by RIA, and caMC3R expression was quantified with flow cytometry. We showed that culter mc3r had higher expression in the CNS. All agonists could bind and stimulate caMC3R to increase dose dependently intracellular cAMP accumulation. Compared to human MC3R, culter MC3R showed higher constitutive activity, higher efficacies, and Rmax to alpha-melanocyte-stimulating hormone (α-MSH), des-α-MSH, and adrenocorticotrophic hormone. Both caMRAP2a and caMRAP2b markedly decreased caMC3R basal cAMP production. However, only caMRAP2a significantly decreased cell surface expression, Bmax, and Rmax of caMC3R. Expression analysis suggested that MRAP2a and MRAP2b might be more important in regulating MC3R/MC4R signaling during larval period, and reduced mc3r, mc4r, and pomc expression might be primarily involved in modulation of MC3R/MC4R in adults. These data indicated that the cloned caMC3R was a functional receptor. MRAP2a and MRAP2b had different effects on expression and signaling of caMC3R. In addition, expression analysis suggested that MRAP2s, receptors, and hormones might play different roles in regulating culter development and growth.
Collapse
Affiliation(s)
- Ren-Lei Ji
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Lu Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, People’s Republic of China
| | - Yin Wang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Ting Liu
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
| | - Si-Yu Fan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, People’s Republic of China
| | - Min Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, Hunan, People’s Republic of China
- Correspondence should be addressed to M Tao or Y-X Tao: or
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA
- Correspondence should be addressed to M Tao or Y-X Tao: or
| |
Collapse
|
8
|
Tao YX. Molecular chaperones and G protein-coupled receptor maturation and pharmacology. Mol Cell Endocrinol 2020; 511:110862. [PMID: 32389798 DOI: 10.1016/j.mce.2020.110862] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022]
Abstract
G protein-coupled receptors (GPCRs) are highly conserved versatile signaling molecules located at the plasma membrane that respond to diverse extracellular signals. They regulate almost all physiological processes in the vertebrates. About 35% of current drugs target these receptors. Mutations in these genes have been identified as causes of numerous diseases. The seven transmembrane domain structure of GPCRs implies that the folding of these transmembrane proteins is extremely complicated and difficult. Indeed, many wild type GPCRs are not folded optimally. The most common defect in genetic diseases caused by GPCR mutations is misfolding and failure to reach the plasma membrane where it functions. General molecular chaperones aid the folding of all proteins, including GPCRs, by preventing aggregation, promoting folding and disaggregating small aggregates. Some GPCRs need additional receptor-specific chaperones to assist their folding. Many of these receptor-specific chaperones interact with additional receptors and alter receptor pharmacology, expanding the understanding of these chaperone proteins.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, 36849-5519, USA.
| |
Collapse
|
9
|
Li K, Zhao N, Zhang B, Jia L, Liu K, Wang Q, He X, Bao B. Identification and characterization of the melanocortin 1 receptor gene (MC1R) in hypermelanistic Chinese tongue sole (Cynoglossus semilaevis). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:881-890. [PMID: 31909442 DOI: 10.1007/s10695-019-00758-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 12/27/2019] [Indexed: 06/10/2023]
Abstract
The Chinese tongue sole (Cynoglossus semilaevis) is a flatfish with distinctive asymmetry in its body coloration. The melanism (hyperpigmentation) in both the blind side and ocular side of C. semilaevis gives it an extremely low commercial value. However, the fundamental molecular mechanism of this melanism remains unclear. Melanocortin 1 receptor (MC1R), a GTP-binding protein-coupled receptor, is considered to play a vital role in the physiology of the vertebrate pigment system. In order to confirm the contribution of MC1R to the body coloration of C. semilaevis, the expression levels of Mc1r mRNA were measured in seven tissue types at different developmental stages of normal and melanistic C. semilaevis. The expression levels of Mc1r mRNA in the heart, brain, liver, kidney, ocular-side skin, and blind-side skin of melanistic C. semilaevis were significantly higher than that of normal C. semilaevis in all developmental stages. Moreover, the knocking down of Mc1r in the C. semilaevis liver cell line (HTLC) increased the expression of the downstream genes microphthalmia transcription factor (Mitf) and tyrosinase-related protein 1 (Tyrp1) in the pigmentation pathway. Thus, the present data suggest that MC1R might play important roles in Tyrp1- and Mitf-mediated pigment synthesis in C. semilaevis.
Collapse
Affiliation(s)
- Kunming Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Na Zhao
- Tianjin Haolingsaiao Biotechnology Co, Ltd, Tianjin, China
| | - Bo Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
- Tianjin Fisheries Research Institute, Tianjin, China.
| | - Lei Jia
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Kefeng Liu
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Qunshan Wang
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Xiaoxu He
- Tianjin Fisheries Research Institute, Tianjin, China
| | - Baolong Bao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|