1
|
Nzioka A, Valencia A, Atxaerandio-Landa A, Diaz de Cerio O, Hossain MA, Korta M, Ortiz-Zarragoitia M, Cancio I. Apoptosis and autophagy-related gene transcription during ovarian follicular atresia in European hake (Merluccius merluccius). MARINE ENVIRONMENTAL RESEARCH 2023; 183:105846. [PMID: 36521304 DOI: 10.1016/j.marenvres.2022.105846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 11/30/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Follicular atresia is an energy-saving oocyte resorption process that can allow the survival of female fish when environmental conditions are unfavourable and at the expense of fecundity. This study investigated the transcription levels of apoptosis and autophagy-related genes during atresia in the European hake that can show episodes of increased follicular atresia throughout the reproductive cycle. 169 female individuals were collected from the Bay of Biscay, and the ovaries were analysed using histological and molecular methods. Different levels of atresia were histologically detected in 73.7% of the ovaries analysed and the TUNEL assay identified apoptotic nuclei in follicles from both previtellogenic and vitellogenic stages. Transcripts of beclin-1 and ptenb were up-regulated in the ovaries containing atretic follicles, whereas p53, caspase-3, cathepsin D and dapk1 were up-regulated only in ovaries presenting vitellogenic atretic follicles. Our results indicate different implications of apoptotic vs autophagic processes leading to atresia during oocyte development, vitellogenesis being the moment of maximal apoptotic and autophagic activity in atretic hakes. The analysed genes could provide early warning biomarkers to identify follicular atresia in fish and evaluate fecundity in fish stocks.
Collapse
Affiliation(s)
- Anthony Nzioka
- CBET Research Group, Dept. Zoology & Animal Cell Biology, Faculty of Science & Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country, Areatza Hiribidea s/n, 48620, Plentzia, Basque Country, Spain
| | - Ainara Valencia
- CBET Research Group, Dept. Zoology & Animal Cell Biology, Faculty of Science & Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country, Areatza Hiribidea s/n, 48620, Plentzia, Basque Country, Spain
| | - Aitor Atxaerandio-Landa
- CBET Research Group, Dept. Zoology & Animal Cell Biology, Faculty of Science & Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country, Areatza Hiribidea s/n, 48620, Plentzia, Basque Country, Spain
| | - Oihane Diaz de Cerio
- CBET Research Group, Dept. Zoology & Animal Cell Biology, Faculty of Science & Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country, Areatza Hiribidea s/n, 48620, Plentzia, Basque Country, Spain
| | - Mohammad Amzad Hossain
- CBET Research Group, Dept. Zoology & Animal Cell Biology, Faculty of Science & Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country, Areatza Hiribidea s/n, 48620, Plentzia, Basque Country, Spain
| | - Maria Korta
- AZTI-Tecnalia, Herrera Kaia, Portualdea z/g, 20110, Pasaia, Basque Country, Spain
| | - Maren Ortiz-Zarragoitia
- CBET Research Group, Dept. Zoology & Animal Cell Biology, Faculty of Science & Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country, Areatza Hiribidea s/n, 48620, Plentzia, Basque Country, Spain
| | - Ibon Cancio
- CBET Research Group, Dept. Zoology & Animal Cell Biology, Faculty of Science & Technology and Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country, Areatza Hiribidea s/n, 48620, Plentzia, Basque Country, Spain.
| |
Collapse
|
2
|
Li W, Hu J, Sun C, Dong J, Liu Z, Yuan J, Tian Y, Zhao J, Ye X. Characterization of kiss2/kissr2 system in largemouth bass (Micropterus salmoides) and Kiss2-10 peptide regulation of the hypothalamic-pituitary-gonadal axis. Comp Biochem Physiol B Biochem Mol Biol 2021; 257:110671. [PMID: 34450276 DOI: 10.1016/j.cbpb.2021.110671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022]
Abstract
The kisspeptin system, which lies upstream of the hypothalamic-pituitary-gonadal (HPG) axis, is believed to function as a regulator of reproduction in teleosts. In this study, we isolated and characterized kiss2 and its receptor kissr2 in largemouth bass (Micropterus salmoides). The complete coding sequences of kiss2 and kissr2 were 375 and 1134 bp long and encoded precursor proteins 124 and 377 amino acid long, respectively. Real-time PCR showed that kiss2 and kissr2 were primarily expressed in the HPG axis. The expression profile of kiss2 and kissr2 varied with gonadal development, with the highest and lowest expression levels being detected during the immature and final maturation stages, respectively. Intraperitoneal injection of exogenous Kiss2-10 peptide increased the transcript levels of gnrh3, kissr2, fshβ, lhβ, ar, and er2 within 24 h (p < 0.05), as well as plasma levels of 17β-estradiol and testosterone. Histological analysis indicated that chronic administration of exogenous Kiss2-10 peptide accelerated vitellogenesis in females and spermatogenesis in males. Further, in situ hybridization revealed that kiss2 is expressed in the ooplasm and vitelline envelope of oocytes and the spermatocytes of testes. In addition, experiments using gonad tissue primary cell cultures indicated that exogenous Kiss2-10 peptide stimulates the expression of reproduction-related genes. Collectively, our findings indicate that the kiss2/kissr2 system in largemouth bass is involved in regulating gonadal development through the HPG axis.
Collapse
Affiliation(s)
- Wuhui Li
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Guangdong 510380, China; State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, China
| | - Jie Hu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Guangdong 510380, China
| | - Chengfei Sun
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Guangdong 510380, China
| | - Junjian Dong
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Guangdong 510380, China
| | - Zhigang Liu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Guangdong 510380, China
| | - Ju Yuan
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Guangdong 510380, China
| | - Yuanyuan Tian
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Guangdong 510380, China
| | - Jinliang Zhao
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Xing Ye
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation of Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology of Guangdong Province, Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Guangdong 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|