1
|
Jiang K, Xu C, Yu H, Kong L, Liu S, Li Q. Transcriptomic and Physiological Analysis Reveal Melanin Synthesis-Related Genes and Pathways in Pacific Oysters (Crassostrea gigas). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:364-379. [PMID: 38483671 DOI: 10.1007/s10126-024-10302-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 03/06/2024] [Indexed: 04/25/2024]
Abstract
Shell color is one of the shell traits of molluscs, which has been regarded as an economic trait in some bivalves. Pacific oysters (Crassostrea gigas) are important aquaculture shellfish worldwide. In the past decade, several shell color strains of C. gigas were developed through selective breeding, which provides valuable materials for research on the inheritance pattern and regulation mechanisms of shell color. The inheritance patterns of different shell colors in C. gigas have been identified in certain research; however, the regulation mechanism of oyster pigmentation and shell color formation remains unclear. In this study, we performed transcriptomic and physiological analyses using black and white shell oysters to investigate the molecular mechanism of melanin synthesis in C. gigas. Several pigmentation-related pathways, such as cytochrome P450, melanogenesis, tyrosine metabolism, and the cAMP signaling pathway were found. The majority of differentially expressed genes and some signaling molecules from these pathways exhibited a higher level in the black shell oysters than in the white, especially after L-tyrosine feeding, suggesting that those differences may cause a variation of tyrosine metabolism and melanin synthesis. In addition, the in vitro assay using primary cells from mantle tissue showed that L-tyrosine incubation increased cAMP level, gene and protein expression, and melanin content. This study reveals the difference in tyrosine metabolism and melanin synthesis in black and white shell oysters and provides evidence for the potential regulatory mechanism of shell color in oysters.
Collapse
Affiliation(s)
- Kunyin Jiang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Chengxun Xu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Lingfeng Kong
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
2
|
Li Y, Tan Y, Ren L, Li Q, Sui J, Liu S. Structural and expression analysis of the dopamine receptors reveals their crucial roles in regulating the insulin signaling pathway in oysters. Int J Biol Macromol 2023; 247:125703. [PMID: 37414315 DOI: 10.1016/j.ijbiomac.2023.125703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Dopamine performs its critical role upon binding to receptors. Since dopamine receptors are numerous and versatile, understanding their protein structures and evolution status, and identifying the key receptors involved in the modulation of insulin signaling will provide essential clues to investigate the molecular mechanism of neuroendocrine regulating the growth in invertebrates. In this study, seven dopamine receptors were identified in the Pacific oysters (Crassostrea gigas) and were classified into four subtypes according to their protein secondary and tertiary structures, and ligand-binding activities. Of which, DR2 (dopamine receptor 2) and D(2)RA-like (D(2) dopamine receptor A-like) were considered the invertebrate-specific type 1 and type 2 dopamine receptors, respectively. Expression analysis indicated that the DR2 and D(2)RA-like were highly expressed in the fast-growing oyster "Haida No.1". After in vitro incubation of ganglia and adductor muscle with exogenous dopamine and dopamine receptor antagonists, the expression of these two dopamine receptors and ILPs (insulin-like peptides) was also significantly affected. Dual-fluorescence in situ hybridization results showed that D(2)RA-like and DR2 were co-localized with MIRP3 (molluscan insulin-related peptide 3) and MIRP3-like (molluscan insulin-related peptide 3-like) in the visceral ganglia, and were co-localized with ILP (insulin-like peptide) in the adductor muscle. Furthermore, the downstream components of dopamine signaling, including PKA, ERK, CREB, CaMKK1, AKT, and GSK3β were also significantly affected by the exogenous dopamine and dopamine receptor antagonists. These findings confirmed that dopamine might affect the secretion of ILPs through the invertebrate-specific dopamine receptors D(2)RA-like and DR2, and thus played crucial roles in the growth regulation of the Pacific oysters. Our study establishes the potential regulatory relationship between the dopaminergic system and insulin-like signaling pathway in marine invertebrates.
Collapse
Affiliation(s)
- Yongjing Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Ying Tan
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Liting Ren
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Jianxin Sui
- College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, College of Fisheries, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
3
|
Li Y, Yang B, Shi C, Tan Y, Ren L, Mokrani A, Li Q, Liu S. Integrated analysis of mRNAs and lncRNAs reveals candidate marker genes and potential hub lncRNAs associated with growth regulation of the Pacific Oyster, Crassostrea gigas. BMC Genomics 2023; 24:453. [PMID: 37563567 PMCID: PMC10416452 DOI: 10.1186/s12864-023-09543-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND The Pacific oyster, Crassostrea gigas, is an economically important shellfish around the world. Great efforts have been made to improve its growth rate through genetic breeding. However, the candidate marker genes, pathways, and potential lncRNAs involved in oyster growth regulation remain largely unknown. To identify genes, lncRNAs, and pathways involved in growth regulation, C. gigas spat was cultured at a low temperature (15 ℃) to yield a growth-inhibited model, which was used to conduct comparative transcriptome analysis with spat cultured at normal temperature (25 ℃). RESULTS In total, 8627 differentially expressed genes (DEGs) and 1072 differentially expressed lncRNAs (DELs) were identified between the normal-growth oysters (cultured at 25 ℃, hereinafter referred to as NG) and slow-growth oysters (cultured at 15 ℃, hereinafter referred to as SG). Functional enrichment analysis showed that these DEGs were mostly enriched in the AMPK signaling pathway, MAPK signaling pathway, insulin signaling pathway, autophagy, apoptosis, calcium signaling pathway, and endocytosis process. LncRNAs analysis identified 265 cis-acting pairs and 618 trans-acting pairs that might participate in oyster growth regulation. The expression levels of LNC_001270, LNC_003322, LNC_011563, LNC_006260, and LNC_012905 were inducible to the culture temperature and food abundance. These lncRNAs were located at the antisense, upstream, or downstream of the SREBP1/p62, CDC42, CaM, FAS, and PIK3CA genes, respectively. Furthermore, the expression of the trans-acting lncRNAs, including XR_9000022.2, LNC_008019, LNC_015817, LNC_000838, LNC_00839, LNC_011859, LNC_007294, LNC_006429, XR_002198885.1, and XR_902224.2 was also significantly associated with the expression of genes enriched in AMPK signaling pathway, insulin signaling pathway, autophagy, apoptosis, calcium signaling pathway, and endocytosis process. CONCLUSIONS In this study, we identified the critical growth-related genes and lncRNAs that could be utilized as candidate markers to illustrate the molecular mechanisms underlying the growth regulation of Pacific oysters.
Collapse
Affiliation(s)
- Yongjing Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Ben Yang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Chenyu Shi
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Ying Tan
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Liting Ren
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Ahmed Mokrani
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Qi Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003, China
| | - Shikai Liu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao, 266003, China.
| |
Collapse
|
4
|
Kasturacharya N, Dhall JK, Hasan G. A STIM dependent dopamine-neuropeptide axis maintains the larval drive to feed and grow in Drosophila. PLoS Genet 2023; 19:e1010435. [PMID: 37363909 DOI: 10.1371/journal.pgen.1010435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 06/11/2023] [Indexed: 06/28/2023] Open
Abstract
Appropriate nutritional intake is essential for organismal survival. In holometabolous insects such as Drosophila melanogaster, the quality and quantity of food ingested as larvae determines adult size and fecundity. Here we have identified a subset of dopaminergic neurons (THD') that maintain the larval motivation to feed. Dopamine release from these neurons requires the ER Ca2+ sensor STIM. Larvae with loss of STIM stop feeding and growing, whereas expression of STIM in THD' neurons rescues feeding, growth and viability of STIM null mutants to a significant extent. Moreover STIM is essential for maintaining excitability and release of dopamine from THD' neurons. Optogenetic stimulation of THD' neurons activated neuropeptidergic cells, including median neuro secretory cells that secrete insulin-like peptides. Loss of STIM in THD' cells alters the developmental profile of specific insulin-like peptides including ilp3. Loss of ilp3 partially rescues STIM null mutants and inappropriate expression of ilp3 in larvae affects development and growth. In summary we have identified a novel STIM-dependent function of dopamine neurons that modulates developmental changes in larval feeding behaviour and growth.
Collapse
Affiliation(s)
- Nandashree Kasturacharya
- National Centre for Biological Sciences, TIFR, Bellary Road, Bengaluru, India
- The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, India
| | - Jasmine Kaur Dhall
- National Centre for Biological Sciences, TIFR, Bellary Road, Bengaluru, India
| | - Gaiti Hasan
- National Centre for Biological Sciences, TIFR, Bellary Road, Bengaluru, India
- The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bengaluru, India
| |
Collapse
|
5
|
Li Z, Hu B, Du L, Hou C, Li Q. Involvement of B-aat1 and Cbs in regulating mantle pigmentation in the Pacific oyster (Crassostrea gigas). Mol Biol Rep 2023; 50:377-387. [PMID: 36335521 DOI: 10.1007/s11033-022-08037-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Shell color formation is an important physiological process in bivalves, the molecular genetic basis has potential application in bivalve aquaculture, but there is still remaining unclear about this issue. The cystine/glutamate transporter (Slc7a11) and cystathionine beta-synthase (Cbs) are integral genes in pheomelanin synthesis pathway, which is vital to skin pigmentation. METHODS AND RESULTS Here, the sequences of b (0, +) -type amino acid transporter 1 (B-aat1) and Cbs in Pacific oyster (Crassostrea gigas) (CgB-aat1, CgCbs) were characterized. Phylogenetically, the deduced amino acid sequences of CgB-aat1 and CgCbs both possessed conserved features. Genes were both ubiquitously expressed in six tested tissues with more abundant expression level in central mantle. Besides, the polyclonal antibodies of CgB-aat1, CgCbs, CgTyr, and CgTyrp2 were successfully prepared. Immunofluorescence analysis revealed that CgB-aat1 and CgCbs proteins were both expressed in gill rudiments of eyed-larvae and concentrated mainly in cytoplasm of epithelial cell and nerve axons in mantle. Additionally, after CgB-aat1 or CgCbs silencing, expressions at mRNA and protein levels of CgB-aat1 and CgCbs involved in pheomelanin synthesis were significantly suppressed, and CgTyr, CgTyrp1 and CgTyrp2 related to eumelanin synthesis were also down-regulated but no apparent differences, respectively. Moreover, micrographic examination found less brown-granules at mantle edge in CgB-aat1 interference group. CONCLUSION These results implied that pheomelanin synthesis was possible induced by CgB-aat1-CgTyr-CgCbs axis, and it played an essential role on mantle pigmentation in the oysters. These findings provide the useful genetic knowledge and enrich the physiological information for the shell color formation in bivalve aquaculture.
Collapse
Affiliation(s)
- Zhuanzhuan Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Biyang Hu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Lijie Du
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Chunhao Hou
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China. .,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
6
|
Tan C, Shi C, Li Y, Teng W, Li Y, Fu H, Ren L, Yu H, Li Q, Liu S. Comparative Methylome Analysis Reveals Epigenetic Signatures Associated with Growth and Shell Color in the Pacific Oyster, Crassostrea gigas. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:911-926. [PMID: 36087152 DOI: 10.1007/s10126-022-10154-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Fast growth is one of the most important breeding goals for all economic species such as the Pacific oyster (Crassostrea gigas), an aquaculture mollusk with top global production. Although the genetic basis and molecular mechanisms of growth-related traits have been widely investigated in the oyster, the role of DNA methylation involved in growth regulation remains largely unexplored. In this study, we performed a comparative DNA methylome analysis of two selectively bred C. gigas strains with contrasted phenotypes in growth and shell color based on whole-genome bisulfite sequencing (WGBS). Genome-wide profiling of DNA methylation at the single-base resolution revealed that DNA methylations were widely spread across the genome with obvious hotspots, coinciding with the distribution of genes and repetitive elements. Higher methylation levels were observed within genic regions compared with intergenic and promoter regions. Comparative analysis of DNA methylation allowed the identification of 339,604 differentially methylated CpG sites (DMCs) clustering in 27,600 differentially methylated regions (DMRs). Functional annotation analysis identified 11,033 genes from DMRs which were enriched in biological processes including cytoskeleton system, cell cycle, signal transduction, and protein biosynthesis. Integrative analysis of methylome and transcriptome profiles revealed a positive correlation between gene expression and DNA methylation within gene-body regions. Protein-protein interaction (PPI) analysis of differentially expressed and methylated genes allowed for the identification of integrin beta-6 (homolog of human ITGB3) as a hub modulator of the PI3K/Akt signaling pathway that was involved in various growth-related processes. This work provided insights into epigenetic regulation of growth in oysters and will be valuable resources for studying DNA methylation in invertebrates.
Collapse
Affiliation(s)
- Chao Tan
- Key Laboratory of Mariculture, Ministry of Education College of Fisheries, Ocean University of China, Ocean University of China, 266003, Qingdao, China
| | - Chenyu Shi
- Key Laboratory of Mariculture, Ministry of Education College of Fisheries, Ocean University of China, Ocean University of China, 266003, Qingdao, China
| | - Yin Li
- Key Laboratory of Mariculture, Ministry of Education College of Fisheries, Ocean University of China, Ocean University of China, 266003, Qingdao, China
| | - Wen Teng
- Key Laboratory of Mariculture, Ministry of Education College of Fisheries, Ocean University of China, Ocean University of China, 266003, Qingdao, China
| | - Yongjing Li
- Key Laboratory of Mariculture, Ministry of Education College of Fisheries, Ocean University of China, Ocean University of China, 266003, Qingdao, China
| | - Huiru Fu
- Key Laboratory of Mariculture, Ministry of Education College of Fisheries, Ocean University of China, Ocean University of China, 266003, Qingdao, China
| | - Liting Ren
- Key Laboratory of Mariculture, Ministry of Education College of Fisheries, Ocean University of China, Ocean University of China, 266003, Qingdao, China
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education College of Fisheries, Ocean University of China, Ocean University of China, 266003, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education College of Fisheries, Ocean University of China, Ocean University of China, 266003, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Shikai Liu
- Key Laboratory of Mariculture, Ministry of Education College of Fisheries, Ocean University of China, Ocean University of China, 266003, Qingdao, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|