1
|
Lerebours A, Regini J, Quinlan RA, Wada T, Pierscionek B, Devonshire M, Kalligeraki AA, Uwineza A, Young L, Girkin JM, Warwick P, Smith K, Hoshino M, Uesugi K, Yagi N, Terrill N, Shebanova O, Snow T, Smith JT. Evaluation of cataract formation in fish exposed to environmental radiation at Chernobyl and Fukushima. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165957. [PMID: 37543314 DOI: 10.1016/j.scitotenv.2023.165957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/05/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023]
Abstract
Recent studies apparently finding deleterious effects of radiation exposure on cataract formation in birds and voles living near Chernobyl represent a major challenge to current radiation protection regulations. This study conducted an integrated assessment of radiation exposure on cataractogenesis using the most advanced technologies available to assess the cataract status of lenses extracted from fish caught at both Chernobyl in Ukraine and Fukushima in Japan. It was hypothesised that these novel data would reveal positive correlations between radiation dose and early indicators of cataract formation. The structure, function and optical properties of lenses were analysed from atomic to millimetre length scales. We measured the short-range order of the lens crystallin proteins using Small Angle X-Ray Scattering (SAXS) at both the SPring-8 and DIAMOND synchrotrons, the profile of the graded refractive index generated by these proteins, the epithelial cell density and organisation and finally the focal length of each lens. The results showed no evidence of a difference between the focal length, the epithelial cell densities, the refractive indices, the interference functions and the short-range order of crystallin proteins (X-ray diffraction patterns) in lens from fish exposed to different radiation doses. It could be argued that animals in the natural environment which developed cataract would be more likely, for example, to suffer predation leading to survivor bias. But the cross-length scale study presented here, by evaluating small scale molecular and cellular changes in the lens (pre-cataract formation) significantly mitigates against this issue.
Collapse
Affiliation(s)
- Adélaïde Lerebours
- School of the Environment, Geography and Geosciences, University of Portsmouth, Portsmouth PO1 3QL, United Kingdom; School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom
| | - Justyn Regini
- School of Optometry and Vision Sciences, University of Cardiff, Cardiff CA10 3AT, United Kingdom
| | - Roy A Quinlan
- Department of Biosciences, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, United Kingdom
| | - Toshihiro Wada
- Institute of Environmental Radioactivity, Fukushima University, 1 Kanayagawa, Fukushima City, Japan
| | - Barbara Pierscionek
- Medical Technology Research Centre, Anglia Ruskin University, Bishop Hall Lane, Chelmsford CM1 1SQ, United Kingdom
| | - Martin Devonshire
- School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom
| | - Alexia A Kalligeraki
- Department of Biosciences, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, United Kingdom
| | - Alice Uwineza
- Department of Biosciences, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, United Kingdom
| | - Laura Young
- Department of Biosciences, University of Durham, Upper Mountjoy, Stockton Road, Durham DH1 3LE, United Kingdom
| | - John M Girkin
- Department of Physics, University of Durham, South Road, Durham DH1 3LE, United Kingdom
| | - Phil Warwick
- GAU-Radioanalytical, University of Southampton, NOCS, European way, SO14 6HT Southampton,United Kingdom
| | - Kurt Smith
- Centre for Radiochemistry Research, School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Masato Hoshino
- Japan Synchrotron Radiation Research Institute (Spring-8), 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Kentaro Uesugi
- Japan Synchrotron Radiation Research Institute (Spring-8), 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Naoto Yagi
- Japan Synchrotron Radiation Research Institute (Spring-8), 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Nick Terrill
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot OX11 0DE, UK
| | - Olga Shebanova
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot OX11 0DE, UK
| | - Tim Snow
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot OX11 0DE, UK
| | - Jim T Smith
- School of the Environment, Geography and Geosciences, University of Portsmouth, Portsmouth PO1 3QL, United Kingdom.
| |
Collapse
|
2
|
Alonso-Gómez A, Madera D, Alonso-Gómez ÁL, Valenciano AI, Delgado MJ. Daily Rhythms in the IGF-1 System in the Liver of Goldfish and Their Synchronization to Light/Dark Cycle and Feeding Time. Animals (Basel) 2022; 12:ani12233371. [PMID: 36496892 PMCID: PMC9739714 DOI: 10.3390/ani12233371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
The relevance of the insulin-like growth factor-1 (IGF-1) system in several physiological processes is well-known in vertebrates, although little information about their temporal organization is available. This work aims to investigate the possible rhythmicity of the different components of the IGF-1 system (igf-1, the igf1ra and igf1rb receptors and the paralogs of its binding proteins IGFBP1 and IGFBP2) in the liver of goldfish. In addition, we also study the influence of two environmental cues, the light/dark cycle and feeding time, as zeitgebers. The hepatic igf-1 expression showed a significant daily rhythm with the acrophase prior to feeding time, which seems to be strongly dependent on both zeitgebers. Only igfbp1a-b and igfbp1b-b paralogs exhibited a robust daily rhythm of expression in the liver that persists in fish held under constant darkness or randomly fed. The hepatic expression of the two receptor subtypes did not show daily rhythms in any of the experimental conditions. Altogether these results point to the igf-1, igfbp1a-b, and igfbp1b-b as clock-controlled genes, supporting their role as putative rhythmic outputs of the hepatic oscillator, and highlight the relevance of mealtime as an external cue for the 24-h rhythmic expression of the IGF-1 system in fish.
Collapse
|
3
|
Díaz del Moral S, Benaouicha M, Muñoz-Chápuli R, Carmona R. The Insulin-like Growth Factor Signalling Pathway in Cardiac Development and Regeneration. Int J Mol Sci 2021; 23:ijms23010234. [PMID: 35008660 PMCID: PMC8745665 DOI: 10.3390/ijms23010234] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/24/2021] [Accepted: 12/24/2021] [Indexed: 12/18/2022] Open
Abstract
Insulin and Insulin-like growth factors (IGFs) perform key roles during embryonic development, regulating processes of cell proliferation and survival. The IGF signalling pathway comprises two IGFs (IGF1, IGF2), two IGF receptors (IGFR1, IGFR2), and six IGF binding proteins (IGFBPs) that regulate IGF transport and availability. The IGF signalling pathway is essential for cardiac development. IGF2 is the primary mitogen inducing ventricular cardiomyocyte proliferation and morphogenesis of the compact myocardial wall. Conditional deletion of the Igf1r and the insulin receptor (Insr) genes in the myocardium results in decreased cardiomyocyte proliferation and ventricular wall hypoplasia. The significance of the IGF signalling pathway during embryonic development has led to consider it as a candidate for adult cardiac repair and regeneration. In fact, paracrine IGF2 plays a key role in the transient regenerative ability of the newborn mouse heart. We aimed to review the current knowledge about the role played by the IGF signalling pathway during cardiac development and also the clinical potential of recapitulating this developmental axis in regeneration of the adult heart.
Collapse
Affiliation(s)
- Sandra Díaz del Moral
- Institute of Biomedical Research of Málaga (IBIMA), Department of Animal Biology, Andalusian Center for Nanomedicine and Biotechnology (BIONAND), Faculty of Science, University of Málaga, 29071 Malaga, Spain; (S.D.d.M.); (M.B.); (R.M.-C.)
| | - Maha Benaouicha
- Institute of Biomedical Research of Málaga (IBIMA), Department of Animal Biology, Andalusian Center for Nanomedicine and Biotechnology (BIONAND), Faculty of Science, University of Málaga, 29071 Malaga, Spain; (S.D.d.M.); (M.B.); (R.M.-C.)
| | - Ramón Muñoz-Chápuli
- Institute of Biomedical Research of Málaga (IBIMA), Department of Animal Biology, Andalusian Center for Nanomedicine and Biotechnology (BIONAND), Faculty of Science, University of Málaga, 29071 Malaga, Spain; (S.D.d.M.); (M.B.); (R.M.-C.)
| | - Rita Carmona
- Institute of Biomedical Research of Málaga (IBIMA), Department of Animal Biology, Andalusian Center for Nanomedicine and Biotechnology (BIONAND), Faculty of Science, University of Málaga, 29071 Malaga, Spain; (S.D.d.M.); (M.B.); (R.M.-C.)
- Department of Human Anatomy and Embryology, Legal Medicine and History of Medicine, Faculty of Medicine, University of Málaga, 29071 Malaga, Spain
- Correspondence:
| |
Collapse
|