1
|
Cerreta AJ, McEntire MS. Hypothalamic and Pituitary Physiology in Birds and Reptiles. Vet Clin North Am Exot Anim Pract 2025; 28:51-68. [PMID: 39414478 DOI: 10.1016/j.cvex.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Across all vertebrates, the anatomy of the hypothalamus and mechanisms underlying its development are highly conserved, whereas the pituitary is highly specialized structurally with considerable differences amongst classes. In birds and reptiles, the hypothalamus controls the pituitary gland through nerve impulses and the secretion of neurohormones, resulting in several hypothalamic-pituitary axes: the hypothalamic-pituitary-thyroid axis, the hypothalamic-pituitary-adrenal axis, and the hypothalamic-pituitary-gonadal axis. This article provides a foundational knowledge on the physiologic function of the hypothalamus and pituitary in birds and reptiles, and their effects on behavior, homeostasis, and disease.
Collapse
Affiliation(s)
- Anthony J Cerreta
- A. Watson Armour III Center for Animal Health and Welfare, John G. Shedd Aquarium, 1200 South DuSable Lake Shore Drive, Chicago, IL 60605, USA; Veterinary Services, San Diego Zoo Wildlife Alliance, 15500 San Pasqual Valley Road, Escondido, CA 92027, USA.
| | - Michael S McEntire
- Animal Health Center, SeaWorld San Antonio, 10500 SeaWorld Drive, San Antonio, TX 78251, USA; Department of Veterinary and Clinical Sciences, Utah State University, College of Veterinary Medicine, 5605 Old Main Hill, Logan, UT 84322, USA
| |
Collapse
|
2
|
Miao DZ, Liu C, Deng ZY, Zhang C, Guo ZY, Li WQ, Wang Y, Yang HM, Wang ZY. Characterization of reproductive hormones and related gene expression in the hypothalamus and pituitary gland in the egg-laying interval in White King pigeon. Poult Sci 2024; 103:103422. [PMID: 38228063 PMCID: PMC10823133 DOI: 10.1016/j.psj.2024.103422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/22/2023] [Accepted: 01/01/2024] [Indexed: 01/18/2024] Open
Abstract
The egg-laying interval (LI) directly reflects the laying performance of breeding pigeons, influenced by reproductive hormones. This study aimed to assess reproductive hormone levels in serum and the expression of related genes and their receptors in the hypothalamus and pituitary gland in 4 stages: first (LI1), third (LI3), fifth (LI5), and seventh (LI7) days. The results showed that serum gonadotropin-releasing hormone (GnRH) level decreased from LI1 to LI7 (P < 0.01) and peaked in LI1. The serum follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels stayed at high levels from LI1 to LI5. The FSH level decreased slightly from LI5 to LI7 (P > 0.05), but the LH level decreased rapidly (P < 0.01). The prolactin (PRL) levels significantly increased in LI5 (P < 0.01) compared with LI1 and then stayed at a high level. The GnRH1 expression in the hypothalamus had no significant change in LI (P > 0.05). However, the GnRHR first decreased from LI1 to LI3 (P < 0.05) and then increased. The FSH mRNA level in the pituitary gland decreased from LI1 to LI3 and slightly increased in LI5 (P > 0.05). The change pattern of FSHR was similar to that of FSH and peaked in LI5 (P < 0.05). The LH expression level was the highest in LI5 and significantly higher than that in LI3 and LI7 (P < 0.05). However, the LHR mRNA level decreased in LI (P < 0.05). The expression patterns of PRL and PRLR were similar; they were upregulated in LI and peaked in LI7 (P < 0.01). The expression pattern of GnRHR was similar to that of FSH, LH, and FSHR, suggesting the critical role of GnRHR in LI. Furthermore, the expression levels of these genes peaked in LI5, closely correlating with the maturation of the first largest follicle in pigeons. PRL-PRLR signaling inhibited GnRH activity to promote ovulation. This study provided a basis for further investigating the molecular mechanisms underlying the regulation of reproduction in pigeons.
Collapse
Affiliation(s)
- D Z Miao
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China
| | - C Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China
| | - Z Y Deng
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China
| | - C Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China
| | - Z Y Guo
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China
| | - W Q Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China
| | - Y Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China.
| | - H M Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China
| | - Z Y Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu Province 225009, PR China
| |
Collapse
|
3
|
Bu G, Lin Y, Liu J, Yu P, Yong T, Yang M, Huang L, Han X, Du X, Kong F, Huang A, Zeng X, Meng F. Evidence for progesterone acting as an inhibitor of stress axis via stimulating pituitary neuropeptide B/W receptor 2 (NPBWR2) expression in chickens. J Steroid Biochem Mol Biol 2023; 226:106218. [PMID: 36368625 DOI: 10.1016/j.jsbmb.2022.106218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022]
Abstract
In vertebrates, the hypothalamus-pituitary-adrenal gland (HPA) axis is the main endocrine pathway regulating the stress response, thus also called the stress axis. It has been well-accepted that the stress axis is tightly controlled by both hypothalamic stimulators and inhibitors [e.g. corticotropin (ACTH)-releasing inhibitory factor (CRIF)]. However, the identity of authentic CRIF remains unclear for decades. Recently, neuropeptide W (NPW) was proved to be the physiological CRIF in chickens. Together with its functional receptor (NPBWR2), they play critical roles in attenuating the activity of the chicken stress axis. Because increasing pieces of evidence suggested that sex steroids could regulate the stress axis, using chicken as a model, we investigated whether the newly identified CRIF and its receptor are under the control of sex steroids in this study. Our results showed that: (1) expression of NPW-NPBWR2 in the hypothalamus-pituitary axis was sexually dimorphic and developmental stage-dependent; (2) progesterone (P4), rather than 17β-estradiol (E2) and dihydrotestosterone (DHT), could dose- and time-dependently upregulate NPBWR2 expression, which was accompanied with the decrease of ACTH synthesis and secretion, in cultured pituitary cells; (3) intraperitoneal injection of P4 could elevate the mRNA level of pituitary NPBWR2; (4) P4-stimulated NPBWR2 expression was relevant to both nPR-mediated genomic action and mPRs-triggered nongenomic route associated with MEK/ERK, PI3K/AKT cascade, and calcium influx. To our knowledge, our results discover a novel route of sex steroids in modulating the stress axis of chickens, which lays a foundation to reveal the complicated interaction network between reproduction and stress axes in chickens.
Collapse
Affiliation(s)
- Guixian Bu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, PR China.
| | - Ying Lin
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Jianfeng Liu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Pan Yu
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Tao Yong
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Ming Yang
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Linyan Huang
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Xingfa Han
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Xiaogang Du
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Fanli Kong
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Anqi Huang
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Xianyin Zeng
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, PR China
| | - Fengyan Meng
- College of Life Science, Sichuan Agricultural University, Ya'an 625014, PR China.
| |
Collapse
|
4
|
Yang M, Ji Y, Yong T, Liu T, Yang S, Guo S, Meng F, Han X, Liang Q, Cao X, Huang L, Du X, Huang A, Kong F, Zeng X, Bu G. Corticosterone stage-dependently inhibits progesterone production presumably via impeding the cAMP-StAR cascade in granulosa cells of chicken preovulatory follicles. Poult Sci 2022; 102:102379. [PMID: 36608454 PMCID: PMC9829700 DOI: 10.1016/j.psj.2022.102379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/27/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Stress can suppress reproduction capacity in either wild or domestic animals, but the exact mechanism behind it, especially in terms of steroidogenesis, remains under-investigated so far. Considering the important roles of progesterone in avian breeding, we investigated the modulation of corticosterone on progesterone production in cultured granulosa cells of chicken follicles at different developmental stages. Using enzyme immunoassays, our study showed that corticosterone could only inhibit progesterone synthesis in granulosa cells from F5-6, F4, and F3 follicles, but not F2 and F1 follicles. Coincidentally, both quantitative real-time PCR and western blotting revealed that corticosterone could downregulate steroidogenic acute regulatory protein (StAR) expression, suggesting the importance of StAR in corticosterone-related actions. Using the dual-luciferase reporter system, we found that corticosterone can potentially enhance, rather than inhibit, the activity of StAR promoter. Of note, combining high-throughput transcriptomic analysis and quantitative real-time PCR, phosphodiesterase 10A (PDE10A), protein kinase cAMP-dependent type II regulatory subunit alpha (PRKAR2A) and cAMP responsive element modulator (CREM) were identified to exhibit the differential expression patterns consistent with cAMP blocking in granulosa cells from F5-6, F4, and F3, but not F2 and F1 follicles. Afterward, the expression profiles of these genes in granulosa cells of distinct developmental-stage follicles were examined by quantitative real-time PCR, in which all of them expressed correspondingly with progesterone levels of granulosa cells during development. Collectively, these findings indicate that corticosterone can stage-dependently inhibit progesterone production in granulosa cells of chicken preovulatory follicles, through impeding cAMP-induced StAR activity presumptively.
Collapse
Affiliation(s)
- Ming Yang
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Yu Ji
- Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an 625014, PR China
| | - Tao Yong
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Tuoyuan Liu
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Shuai Yang
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Shasha Guo
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Fengyan Meng
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China,Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an 625014, PR China
| | - Xingfa Han
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China,Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an 625014, PR China
| | - Qiuxia Liang
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China,Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an 625014, PR China
| | - Xiaohan Cao
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China,Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an 625014, PR China
| | - Linyan Huang
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China,Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an 625014, PR China
| | - Xiaogang Du
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China,Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an 625014, PR China
| | - Anqi Huang
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China,Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an 625014, PR China
| | - Fanli Kong
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China,Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an 625014, PR China
| | - Xianyin Zeng
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China,Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an 625014, PR China
| | - Guixian Bu
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China,Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an 625014, PR China,Corresponding author:
| |
Collapse
|
5
|
Yang M, Jin C, Cheng X, Liu T, Ji Y, Meng F, Han X, Liang Q, Cao X, Huang L, Du X, Zeng X, Bu G. Corticosterone triggers anti-proliferative and apoptotic effects, and downregulates the ACVR1-SMAD1-ID3 cascade in chicken ovarian prehierarchical, but not preovulatory granulosa cells. Mol Cell Endocrinol 2022; 552:111675. [PMID: 35577112 DOI: 10.1016/j.mce.2022.111675] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/04/2022] [Accepted: 05/08/2022] [Indexed: 10/18/2022]
Abstract
The coordinated proliferation and apoptosis of granulosa cells plays a critical role in follicular development. To identify the exact mechanisms of how stress-driven glucocorticoid production suppresses reproduction, granulosa cells were isolated from chicken follicles at different developmental stages and then treated with corticosterone. Using CCK-8, EDU and TUNEL assays, we showed that corticosterone could trigger both anti-proliferative and pro-apoptotic effects in granulosa cells from 6 to 8 mm follicles only, while depicting no influence on granulosa cells from any preovulatory follicles. High-throughput transcriptomic analysis identified 1362 transcripts showing differential expression profiles in granulosa cells from 6 to 8 mm follicles after corticosterone treatment. Interestingly, Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that 17 genes were enriched in the TGF-β signaling pathway, and 13 showed differential expression patterns consistent with corticosterone-induced effects. The differential expression profiles of these 13 genes were examined by quantitative real-time PCR in cultured chicken ovarian granulosa cells at diverse developmental stages following corticosterone challenge for a short (8 h) or long period (24 h). After 24 h of treatment, INHBB, FST, FMOD, NOG, ACVR1, SMAD1 and ID3 were the genes that responded consistently with corticosterone-induced proliferative and apoptotic events in all granulosa cells detected. However, only ACVR1, SMAD1 and ID3 could initiate coincident expression patterns after being treated for 8 h, suggesting their significance in corticosterone-mediated actions. Collectively, these findings indicate that corticosterone can inhibit proliferation and cause apoptosis in chicken ovarian prehierarchical, but not preovulatory granulosa cells, through impeding ACVR1-SMAD1-ID3 signaling presumptively.
Collapse
Affiliation(s)
- Ming Yang
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Chenchen Jin
- Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Xinyue Cheng
- Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Tuoyuan Liu
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Yu Ji
- Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Fengyan Meng
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China; Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Xingfa Han
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China; Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Qiuxia Liang
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China; Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Xiaohan Cao
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China; Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Linyan Huang
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China; Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Xiaogang Du
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China; Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China
| | - Xianyin Zeng
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China; Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China.
| | - Guixian Bu
- Isotope Research Laboratory, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China; Department of Bio-engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Xinkang Road, Ya'an, 625014, PR China.
| |
Collapse
|