1
|
Castellane TCL, Fernandes CC, Pinheiro DG, Lemos MVF, Varani AM. Exploratory comparative transcriptomic analysis reveals potential gene targets associated with Cry1A.105 and Cry2Ab2 resistance in fall armyworm (Spodoptera frugiperda). Funct Integr Genomics 2024; 24:129. [PMID: 39039331 DOI: 10.1007/s10142-024-01408-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Genetically modified (GM) crops, expressing Bacillus thuringiensis (Bt) insecticidal toxins, have substantially transformed agriculture. Despite rapid adoption, their environmental and economic benefits face scrutiny due to unsustainable agricultural practices and the emergence of resistant pests like Spodoptera frugiperda, known as the fall armyworm (FAW). FAW's adaptation to Bt technology in corn and cotton compromises the long-term efficacy of Bt crops. To advance the understanding of the genetic foundations of resistance mechanisms, we conducted an exploratory comparative transcriptomic analysis of two divergent FAW populations. One population exhibited practical resistance to the Bt insecticidal proteins Cry1A.105 and Cry2Ab2, expressed in the genetically engineered MON-89Ø34 - 3 maize, while the other population remained susceptible to these proteins. Differential expression analysis supported that Cry1A.105 and Cry2Ab2 significantly affect the FAW physiology. A total of 247 and 254 differentially expressed genes were identified in the Cry-resistant and susceptible populations, respectively. By integrating our findings with established literature and databases, we underscored 53 gene targets potentially involved in FAW's resistance to Cry1A.105 and Cry2Ab2. In particular, we considered and discussed the potential roles of the differentially expressed genes encoding ABC transporters, G protein-coupled receptors, the P450 enzymatic system, and other Bt-related detoxification genes. Based on these findings, we emphasize the importance of exploratory transcriptomic analyses to uncover potential gene targets involved with Bt insecticidal proteins resistance, and to support the advantages of GM crops in the face of emerging challenges.
Collapse
Affiliation(s)
- Tereza Cristina L Castellane
- Departamento de Biologia, Faculdade de Ciências Agrárias E Veterinárias, Universidade Estadual Paulista (UNESP), Rod. Prof. Paulo Donato Castellane km 5, Jaboticabal, CEP 14884-900, SP, Brasil.
| | - Camila C Fernandes
- Instituto de Pesquisa em Bioenergia, Laboratório Multiusuário de Sequenciamento em Larga Escala e Expressão Gênica, IPBEN, 14884-900, Jaboticabal, SP, Brasil
| | - Daniel G Pinheiro
- Departamento de Biotecnologia Agropecuária e Ambiental, Faculdade de Ciências Agrárias E Veterinárias, Universidade Estadual Paulista (UNESP), Rod. Prof. Paulo Donato Castellane km 5, Jaboticabal, CEP 14884-900, SP, Brasil
| | - Manoel Victor Franco Lemos
- Departamento de Biologia, Faculdade de Ciências Agrárias E Veterinárias, Universidade Estadual Paulista (UNESP), Rod. Prof. Paulo Donato Castellane km 5, Jaboticabal, CEP 14884-900, SP, Brasil
- Instituto de Pesquisa em Bioenergia, Laboratório Multiusuário de Sequenciamento em Larga Escala e Expressão Gênica, IPBEN, 14884-900, Jaboticabal, SP, Brasil
| | - Alessandro M Varani
- Departamento de Biotecnologia Agropecuária e Ambiental, Faculdade de Ciências Agrárias E Veterinárias, Universidade Estadual Paulista (UNESP), Rod. Prof. Paulo Donato Castellane km 5, Jaboticabal, CEP 14884-900, SP, Brasil.
| |
Collapse
|
2
|
Gao H, Li Y, Zhang X, Zhang H, Tian Y, Li B. Unraveling the G protein-coupled receptor superfamily in aphids: Contractions and duplications linked to phloem feeding. Gen Comp Endocrinol 2024; 347:114435. [PMID: 38135222 DOI: 10.1016/j.ygcen.2023.114435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 11/27/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
The G Protein-Coupled Receptor (GPCR) superfamily is the largest and most diverse transmembrane receptor family, playing crucial roles in regulating various physiological processes. As one of the most destructive pests, aphids have been subject to previous studies, which revealed fewer GPCR superfamily members in Acyrthosiphon pisum and Aphis gossypii and the loss of multiple neuropeptide GPCRs. To elucidate the contraction patterns and evolutionary features of the aphid GPCR superfamily, we identified 97, 105, and 95 GPCR genes in Rhopalosiphum maidis, A. pisum, and A. gossypii, respectively. Comparative analysis and phylogenetic investigations with other hemipteran insects revealed a contracted GPCR superfamily in aphids. This contraction mainly occurred in biogenic amine receptors, GABA-B-R, and fz families, and several neuropeptide receptors such as ACPR, CrzR, and PTHR were completely lost. This phenomenon may be related to the parasitic nature of aphids. Additionally, several GPCRs associated with aphid feeding and water balance underwent duplication, including Lkr, NPFR, CCHa1-R, and DH-R, Type A LGRs, but the SK/CCKLR that inhibits feeding was completely lost, indicating changes in feeding genes that underpin the aphid's prolonged phloem feeding behavior. Furthermore, we observed fine-tuning in opsins, with reduced long-wavelength opsins and additional duplications of short-wavelength opsin, likely associated with daytime activity. Lastly, we found variations in the number of mthl genes in aphids. In conclusion, our investigation sheds light on the GPCR superfamily in aphids, revealing its association with diet lifestyle and laying the foundation for understanding and developing control strategies for the aphid GPCR superfamily.
Collapse
Affiliation(s)
- Han Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Yanxiao Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Xianzhen Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Hui Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Ying Tian
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
3
|
Jia J, Wang A, Peng S, Lian Y, Wu Q, Lin Z, Zhang Q, Ji X. Prediction of the potential distribution area of Spodoptera frugiperda and its parasitic wasp, Trichogramma pretiosum. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2024; 115:e22092. [PMID: 38409851 DOI: 10.1002/arch.22092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/28/2024]
Abstract
Spodoptera frugiperda is a migratory agricultural pest with fast-spreading speed, long migration distance, and wide host range, which seriously threatens the safety of economic crops. To predict the trends of S. frugiperda and its parasitoid wasp Trichogramma pretiosum in their habitats under current and future climatic conditions, based on MaxEnt model and geographic distribution data of their historical occurrence, we project the feasibility of introducing T. pretiosum to control S. frugiperda by evaluating on their potential global distribution. The results show that, under the current greenhouse gas concentration, the potential distribution area of S. frugiperda is concentrated in 50° N-30° S, with a total area of 1.74 × 106 km2 , and the potential distribution area of T. pretiosum in the whole world is 2.91 × 106 km2 . The suitable areas of T. pretiosum cover almost all the suitable areas of S. frugiperda, which indicates that T. pretiosum can be introduced to control S. frugiperda. The results of this study can provide a theoretical basis for the monitoring and early warning of S. frugiperda and the use of T. pretiosum to control S. frugiperda.
Collapse
Affiliation(s)
- Jingjing Jia
- Institute of Plant Protection, Hainan Academy of Agricultural Sciences (Research Center of Quality Safety and Standards for Agricultural products of Hainan Academy of Agricultural Sciences), Haikou, Hainan, China
- Key Laboratory of Plant Disease and Pest Control of Hainan Province, Haikou, Hainan, China
| | - Aqiang Wang
- Sanya Nanfan Research Institute of Hainan University, Sanya, Hainan, China
| | - Sihua Peng
- Sanya Nanfan Research Institute of Hainan University, Sanya, Hainan, China
| | - Yuyang Lian
- Sanya Nanfan Research Institute of Hainan University, Sanya, Hainan, China
| | - Qianxing Wu
- Sanya Nanfan Research Institute of Hainan University, Sanya, Hainan, China
| | - Zhufeng Lin
- Institute of Plant Protection, Hainan Academy of Agricultural Sciences (Research Center of Quality Safety and Standards for Agricultural products of Hainan Academy of Agricultural Sciences), Haikou, Hainan, China
- Key Laboratory of Plant Disease and Pest Control of Hainan Province, Haikou, Hainan, China
| | - Qiongkuan Zhang
- Sanya Nanfan Research Institute of Hainan University, Sanya, Hainan, China
| | - Xuncong Ji
- Institute of Plant Protection, Hainan Academy of Agricultural Sciences (Research Center of Quality Safety and Standards for Agricultural products of Hainan Academy of Agricultural Sciences), Haikou, Hainan, China
- Key Laboratory of Plant Disease and Pest Control of Hainan Province, Haikou, Hainan, China
| |
Collapse
|
4
|
Liu YX, Hu C, Li YT, Gao P, Yang XQ. Identification of G Protein-Coupled Receptors (GPCRs) Associated with Lambda-Cyhalothrin Detoxification in Cydia pomonella. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:363-377. [PMID: 38134348 DOI: 10.1021/acs.jafc.3c06522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
While previous studies have reported G protein-coupled receptor (GPCR)-mediated insecticide resistance in various arthropods, the understanding of GPCR-associated resistance mechanisms in Cydia pomonella remains limited. In this study, a total of 95 CpGPCR genes categorized into four families were identified in C. pomonella. Results revealed high expression levels of the majority of the CpGPCRs during the first larval stage and in the head of C. pomonella. Exposure to lambda-cyhalothrin significantly increased the expression of 15 CpGPCRs, including CpGPCR70, which is highly expressed in all larval stages and shows the highest expression in the midgut. RNA interference (RNAi) demonstrated that downregulation of CpGPCR70 leads to reduced expression of key resistance-related genes and a decreased tolerance of larvae to lambda-cyhalothrin. These findings indicate that CpGPCR70 plays a crucial role in regulating the expression of detoxifying genes involved in lambda-cyhalothrin resistance, offering valuable insights for the development of more effective pest control strategies.
Collapse
Affiliation(s)
- Yu-Xi Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China
| | - Chao Hu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China
| | - Yu-Ting Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China
| | - Ping Gao
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China
| | - Xue-Qing Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, Liaoning, China
- Key Laboratory of Economical and Applied Entomology of Liaoning Province, Shenyang 110866, Liaoning, China
| |
Collapse
|
5
|
Gao H, Li Y, Tian Y, Zhang H, Kim K, Li B. Gene family expansion analysis and identification of the histone family in Spodoptera frugiperda. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 48:101142. [PMID: 37713926 DOI: 10.1016/j.cbd.2023.101142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
Spodoptera frugiperda, a major invasive pest, causes severe damage to various economically important crops. Previous comparative genomics studies have revealed a close association between the invasiveness of S. frugiperda and its genome. In recent years, a vast amount of genome from lepidopteran species has become available, offering an opportunity for a more detailed and comprehensive understanding of the biological characteristics of S. frugiperda. In this study, we conducted a comprehensive comparative genomics analysis of S. frugiperda using genome from 46 lepidopteran species. We found the highest number of gene family expansion events in S. frugiperda, indicating that gene family expansion is a crucial mechanism in its adaptive evolution. The expanded gene families are enriched in various biological processes, including nutrient metabolism, development, stress response, reproduction, and immune processes, suggesting that the expansion of these gene families likely contributes to the strong environmental adaptability of S. frugiperda. Furthermore, we identified the expansion of histone gene families in S. frugiperda which resulted from chromosome segmental duplications after the divergence from closely related species. Expression analysis of histone genes indicated that certain members might exert an influence on the growth and reproduction processes of S. frugiperda. Overall, our study deepens our understanding of the biological characteristics of S. frugiperda, providing a theoretical basis for the comprehensive management and sustained control of S. frugiperda and other lepidopteran pests in the future.
Collapse
Affiliation(s)
- Han Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Yanxiao Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Ying Tian
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Hui Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - KumChol Kim
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China; Department of Life-Science, University of Science, Pyongyang, Democratic People's Republic of Korea
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210046, China.
| |
Collapse
|
6
|
Li Y, Gao H, Zhang H, Yu R, Feng F, Tang J, Li B. Characterization and expression profiling of G protein-coupled receptors (GPCRs) in Spodoptera litura (Lepidoptera: Noctuidae). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 44:101018. [PMID: 35994891 DOI: 10.1016/j.cbd.2022.101018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 01/27/2023]
Abstract
Spodoptera litura is a highly destructive omnivorous pest, and they caused serious damage to various crops. G protein-coupled receptors (GPCRs) mediate dozens of physiological processes including reproduction, development, life span and behaviors, but the information of these receptors has been lacking in S. litura. Here, we methodically identified 122 GPCRs in S. litura and made an assay of their expression patterns in different tissues. Comparing the identified GPCRs with homologous genes of other insects, it is obvious that the subfamily A2 (biogenic amine receptors) and the subfamily A3 (neuropeptide and protein hormone receptors) of S. litura have expanded to a certain extent, which may be related to the omnivorous nature and drought environment resistance of S. litura. Besides, the large Methuselah (Mth)/Methuselah-like (Mthl) subfamily of S. litura may be involved in many physiological functions such as longevity and stress response. Apart from duplicate receptors, the loss of parathyroid hormone receptor (PTHR) and the bride of sevenless (Boss) receptor in the lepidopteran insects may imply a new pattern of wing formation and energy metabolism in lepidopteran insects. In addition, the high expression level of GPCRs in different tissues reflects the functional diversity of GPCRs regulating. Systemic identification and initial characterization of GPCRs in S. litura provide a basis for further studies to reveal the functions of these receptors in regulating physiology and behavior.
Collapse
Affiliation(s)
- Yanxiao Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Han Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Hui Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Runnan Yu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Fan Feng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jing Tang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|