1
|
Liu C, Peng B, Zou P, Jia X, Zou Z, Zhang J, Zhang Z, Wang Y. The Masculinizing gene is a candidate male pathway developmental factor in the mud crab Scylla paramamosain. Gene 2025; 935:149083. [PMID: 39527991 DOI: 10.1016/j.gene.2024.149083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/12/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
The Masculinizer (Masc) gene plays a crucial role in masculinization during insect embryonic gonadal development. Nevertheless, the Masc expression pattern and function in crabs remain largely unknown. In the present study, we screened and validated the Masc gene from transcriptome data of mud crab S. paramamosain. The Masc relative transcript level in the testis was significantly higher than that of ovaries and other tissues, as measured by quantitative real-time PCR. In situ hybridization showed that Masc exhibited a significant signal throughout all stages of testicular development. The phylogenetic analysis revealed conservation in the evolution of crustaceans, potentially indicating its functional importance. Masc RNA interference showed that the expression of testis bias-related genes decreased significantly while the ovary bias-related genes increased significantly. Transcriptome data suggested that Masc regulates several signaling pathways, including the mTOR, Wnt, insulin, and other sex-related pathways. These results indicate that Masc may play a role in mud crab male development with possible application in sex control in aquaculture.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China
| | - Bohao Peng
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China
| | - Pengfei Zou
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China
| | - Xiwei Jia
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China
| | - Zhihua Zou
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China
| | - Jiaxi Zhang
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China
| | - Ziping Zhang
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Yilei Wang
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen 361021, China.
| |
Collapse
|
2
|
Jia H, Wan H, Zhang C, Guo S, Zhang W, Mu S, Kang X. Genome-wide identification and expressional profile of the Dmrt gene family in the swimming crab (Portunus trituberculatus). Gene 2024; 927:148682. [PMID: 38876404 DOI: 10.1016/j.gene.2024.148682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
The swimming crab, Portunus trituberculatus is one of crucial aquaculture crabs with significant differences in growth and economic performance between male and female swimming crabs. Consequently, the culture of female populations presents higher economic value. The doublesex and mab-3 related transcription factor (Dmrt) gene family are known to play crucial role in gonad differentiation and development. However, there is limited information about this gene family in Portunus trituberculatus. In this study, we identified seven members of the Dmrt gene family in P. trituberculatus based on the published transcriptome and genome data and designated as Ptdmrt-1, Ptdoublesex (Ptdsx), Ptidmrt-1, Ptdmrt-11E, Ptidmrt-2, Ptdmrt-99B, and Ptdmrt-3 based on the homology analysis results, respectively. These Ptdmrt genes distributed across 6 chromosomes and were predicted to encode 283 aa, 288 aa, 529 aa, 436 aa, 523 aa, 224 aa, and 435 aa protein precursors, respectively. The expression patterns of these dmrt genes were characterized by qRT-PCR and gonad transcriptome data. The results showed that five members (Ptdmrt-99B, Ptdsx, Ptdmrt-1, Ptdmrt-3, and Ptdmrt-11E) were differentially expressed between the testis and ovary. In addition, their expression patterns from zoea 2 to juvenile 1 were characterized by published transcriptome data and the results showed that they were lowly expressed and did not exhibit notable difference except for Ptdsx during early development. Overall, majority of Ptdmrt genes were involved in gonad differentiation in the swimming crab. Current findings provide a solid foundation for further exploration of the roles of these genes in gonad development and differentiation in P. trituberculatus.
Collapse
Affiliation(s)
- Huizhuo Jia
- School of Basic Medical Sciences, Hebei University, Baoding, China
| | - Haifu Wan
- College of Life Sciences, Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding, China; Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China; Postdoctoral Research Station of Biology, Hebei University, Baoding City, Hebei Province 071002, China
| | - Chen Zhang
- College of Life Sciences, Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding, China; Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China
| | - Shuai Guo
- College of Life Sciences, Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding, China; Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China
| | - Weiwei Zhang
- School of Basic Medical Sciences, Hebei University, Baoding, China
| | - Shumei Mu
- College of Life Sciences, Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding, China; Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China.
| | - Xianjiang Kang
- College of Life Sciences, Hebei University, Baoding, China; Institute of Life Science and Green Development, Hebei University, Baoding, China; Hebei Innovation Center for Bioengineering and Biotechnology, Hebei University, Baoding, China.
| |
Collapse
|
3
|
Wahl M, Levy T, Ventura T, Sagi A. Monosex Populations of the Giant Freshwater Prawn Macrobrachium rosenbergii-From a Pre-Molecular Start to the Next Generation Era. Int J Mol Sci 2023; 24:17433. [PMID: 38139271 PMCID: PMC10743721 DOI: 10.3390/ijms242417433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 10/27/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Sexual manipulation in the giant freshwater prawn Macrobrachium rosenbergii has proven successful in generating monosex (both all-male and all-female) populations for aquaculture using a crustacean-specific endocrine gland, the androgenic gland (AG), which serves as a key masculinizing factor by producing and secreting an insulin-like AG hormone (IAG). Here, we provide a summary of the advancements from the discovery of the AG and IAG in decapods through to the development of monosex populations in M. rosenbergii. We discuss the broader sexual development pathway, which is highly divergent across decapods, and provide our future perspective on the utility of novel genetic and genomic tools in promoting refined approaches towards monosex biotechnology. Finally, the future potential benefits of deploying monosex prawn populations for environmental management are discussed.
Collapse
Affiliation(s)
- Melody Wahl
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel;
| | - Tom Levy
- Institute for Stem Cell Biology and Regenerative Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA;
- Hopkins Marine Station, Stanford University, Pacific Grove, CA 93950, USA
| | - Tomer Ventura
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia;
- School of Science and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Amir Sagi
- Department of Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel;
- National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel
| |
Collapse
|