1
|
Cardinali I, Giontella A, Tommasi A, Silvestrelli M, Lancioni H. Unlocking Horse Y Chromosome Diversity. Genes (Basel) 2022; 13:genes13122272. [PMID: 36553539 PMCID: PMC9777570 DOI: 10.3390/genes13122272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
The present equine genetic variation mirrors the deep influence of intensive breeding programs during the last 200 years. Here, we provide a comprehensive current state of knowledge on the trends and prospects on the variation in the equine male-specific region of the Y chromosome (MSY), which was assembled for the first time in 2018. In comparison with the other 12 mammalian species, horses are now the most represented, with 56 documented MSY genes. However, in contrast to the high variability in mitochondrial DNA observed in many horse breeds from different geographic areas, modern horse populations demonstrate extremely low genetic Y-chromosome diversity. The selective pressures employed by breeders using pedigree data (which are not always error-free) as a predictive tool represent the main cause of this lack of variation in the Y-chromosome. Nevertheless, the detailed phylogenies obtained by recent fine-scaled Y-chromosomal genotyping in many horse breeds worldwide have contributed to addressing the genealogical, forensic, and population questions leading to the reappraisal of the Y-chromosome as a powerful genetic marker to avoid the loss of biodiversity as a result of selective breeding practices, and to better understand the historical development of horse breeds.
Collapse
Affiliation(s)
- Irene Cardinali
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
- Correspondence: (I.C.); (A.G.)
| | - Andrea Giontella
- Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy
- Correspondence: (I.C.); (A.G.)
| | - Anna Tommasi
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy
| | | | - Hovirag Lancioni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| |
Collapse
|
2
|
Kingsley NB, Hamilton NA, Lindgren G, Orlando L, Bailey E, Brooks S, McCue M, Kalbfleisch TS, MacLeod JN, Petersen JL, Finno CJ, Bellone RR. "Adopt-a-Tissue" Initiative Advances Efforts to Identify Tissue-Specific Histone Marks in the Mare. Front Genet 2021; 12:649959. [PMID: 33841506 PMCID: PMC8033197 DOI: 10.3389/fgene.2021.649959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022] Open
Affiliation(s)
- N B Kingsley
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States.,Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Natasha A Hamilton
- Faculty of Science, School of Life and Environmental Science, University of Sydney, Camperdown, NSW, Australia
| | - Gabriella Lindgren
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Livestock Genetics, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Ludovic Orlando
- Centre d'Anthropobiologie et Génomique de Toulouse (CAGT), Faculté de Médecine Purpan, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Ernie Bailey
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, United States
| | - Samantha Brooks
- Department of Animal Sciences, University of Florida, Gainesville, FL, United States
| | - Molly McCue
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, United States
| | - T S Kalbfleisch
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, United States
| | - James N MacLeod
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, United States
| | - Jessica L Petersen
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Carrie J Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Rebecca R Bellone
- Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States.,Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
3
|
Horse Clinical Cytogenetics: Recurrent Themes and Novel Findings. Animals (Basel) 2021; 11:ani11030831. [PMID: 33809432 PMCID: PMC8001954 DOI: 10.3390/ani11030831] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 12/17/2022] Open
Abstract
Clinical cytogenetic studies in horses have been ongoing for over half a century and clearly demonstrate that chromosomal disorders are among the most common non-infectious causes of decreased fertility, infertility, and congenital defects. Large-scale cytogenetic surveys show that almost 30% of horses with reproductive or developmental problems have chromosome aberrations, whereas abnormal karyotypes are found in only 2-5% of the general population. Among the many chromosome abnormalities reported in the horse, most are unique or rare. However, all surveys agree that there are two recurrent conditions: X-monosomy and SRY-negative XY male-to-female sex reversal, making up approximately 35% and 11% of all chromosome abnormalities, respectively. The two are signature conditions for the horse and rare or absent in other domestic species. The progress in equine genomics and the development of molecular tools, have qualitatively improved clinical cytogenetics today, allowing for refined characterization of aberrations and understanding the underlying molecular mechanisms. While cutting-edge genomics tools promise further improvements in chromosome analysis, they will not entirely replace traditional cytogenetics, which still is the most straightforward, cost-effective, and fastest approach for the initial evaluation of potential breeding animals and horses with reproductive or developmental disorders.
Collapse
|
4
|
Raudsepp T, Finno CJ, Bellone RR, Petersen JL. Ten years of the horse reference genome: insights into equine biology, domestication and population dynamics in the post-genome era. Anim Genet 2019; 50:569-597. [PMID: 31568563 PMCID: PMC6825885 DOI: 10.1111/age.12857] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2019] [Indexed: 12/14/2022]
Abstract
The horse reference genome from the Thoroughbred mare Twilight has been available for a decade and, together with advances in genomics technologies, has led to unparalleled developments in equine genomics. At the core of this progress is the continuing improvement of the quality, contiguity and completeness of the reference genome, and its functional annotation. Recent achievements include the release of the next version of the reference genome (EquCab3.0) and generation of a reference sequence for the Y chromosome. Horse satellite‐free centromeres provide unique models for mammalian centromere research. Despite extremely low genetic diversity of the Y chromosome, it has been possible to trace patrilines of breeds and pedigrees and show that Y variation was lost in the past approximately 2300 years owing to selective breeding. The high‐quality reference genome has led to the development of three different SNP arrays and WGSs of almost 2000 modern individual horses. The collection of WGS of hundreds of ancient horses is unique and not available for any other domestic species. These tools and resources have led to global population studies dissecting the natural history of the species and genetic makeup and ancestry of modern breeds. Most importantly, the available tools and resources, together with the discovery of functional elements, are dissecting molecular causes of a growing number of Mendelian and complex traits. The improved understanding of molecular underpinnings of various traits continues to benefit the health and performance of the horse whereas also serving as a model for complex disease across species.
Collapse
Affiliation(s)
- T Raudsepp
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Research, Texas A&M University, College Station, TX, 77843, USA
| | - C J Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - R R Bellone
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA.,School of Veterinary Medicine, Veterinary Genetics Laboratory, University of California-Davis, Davis, CA, 95616, USA
| | - J L Petersen
- Department of Animal Science, University of Nebraska, Lincoln, NE, 68583-0908, USA
| |
Collapse
|
5
|
Roberti A, Bensi M, Mazzagatti A, Piras FM, Nergadze SG, Giulotto E, Raimondi E. Satellite DNA at the Centromere is Dispensable for Segregation Fidelity. Genes (Basel) 2019; 10:genes10060469. [PMID: 31226862 PMCID: PMC6627300 DOI: 10.3390/genes10060469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 06/19/2019] [Indexed: 12/14/2022] Open
Abstract
The typical vertebrate centromeres contain long stretches of highly repeated DNA sequences (satellite DNA). We previously demonstrated that the karyotypes of the species belonging to the genus Equus are characterized by the presence of satellite-free and satellite-based centromeres and represent a unique biological model for the study of centromere organization and behavior. Using horse primary fibroblasts cultured in vitro, we compared the segregation fidelity of chromosome 11, whose centromere is satellite-free, with that of chromosome 13, which has similar size and a centromere containing long stretches of satellite DNA. The mitotic stability of the two chromosomes was compared under normal conditions and under mitotic stress induced by the spindle inhibitor, nocodazole. Two independent molecular-cytogenetic approaches were used—the interphase aneuploidy analysis and the cytokinesis-block micronucleus assay. Both assays were coupled to fluorescence in situ hybridization with chromosome specific probes in order to identify chromosome 11 and chromosome 13, respectively. In addition, we tested if the lack of centromeric satellite DNA affected chromatid cohesion under normal and stress conditions. We demonstrated that, in our system, the segregation fidelity of a chromosome is not influenced by the presence of long stretches of tandem repeats at its centromere. To our knowledge, the present study is the first analysis of the mitotic behavior of a natural satellite-free centromere.
Collapse
Affiliation(s)
- Annalisa Roberti
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 1, 27100 Pavia, Italy.
| | - Mirella Bensi
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 1, 27100 Pavia, Italy.
| | - Alice Mazzagatti
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 1, 27100 Pavia, Italy.
| | - Francesca M Piras
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 1, 27100 Pavia, Italy.
| | - Solomon G Nergadze
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 1, 27100 Pavia, Italy.
| | - Elena Giulotto
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 1, 27100 Pavia, Italy.
| | - Elena Raimondi
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Via Ferrata 1, 27100 Pavia, Italy.
| |
Collapse
|
6
|
Nergadze SG, Piras FM, Gamba R, Corbo M, Cerutti F, McCarter JGW, Cappelletti E, Gozzo F, Harman RM, Antczak DF, Miller D, Scharfe M, Pavesi G, Raimondi E, Sullivan KF, Giulotto E. Birth, evolution, and transmission of satellite-free mammalian centromeric domains. Genome Res 2018; 28:789-799. [PMID: 29712753 PMCID: PMC5991519 DOI: 10.1101/gr.231159.117] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 04/13/2018] [Indexed: 11/25/2022]
Abstract
Mammalian centromeres are associated with highly repetitive DNA (satellite DNA), which has so far hindered molecular analysis of this chromatin domain. Centromeres are epigenetically specified, and binding of the CENPA protein is their main determinant. In previous work, we described the first example of a natural satellite-free centromere on Equus caballus Chromosome 11. Here, we investigated the satellite-free centromeres of Equus asinus by using ChIP-seq with anti-CENPA antibodies. We identified an extraordinarily high number of centromeres lacking satellite DNA (16 of 31). All of them lay in LINE- and AT-rich regions. A subset of these centromeres is associated with DNA amplification. The location of CENPA binding domains can vary in different individuals, giving rise to epialleles. The analysis of epiallele transmission in hybrids (three mules and one hinny) showed that centromeric domains are inherited as Mendelian traits, but their position can slide in one generation. Conversely, centromere location is stable during mitotic propagation of cultured cells. Our results demonstrate that the presence of more than half of centromeres void of satellite DNA is compatible with genome stability and species survival. The presence of amplified DNA at some centromeres suggests that these arrays may represent an intermediate stage toward satellite DNA formation during evolution. The fact that CENPA binding domains can move within relatively restricted regions (a few hundred kilobases) suggests that the centromeric function is physically limited by epigenetic boundaries.
Collapse
Affiliation(s)
- Solomon G Nergadze
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, 27100 Pavia, Italy
| | - Francesca M Piras
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, 27100 Pavia, Italy
| | - Riccardo Gamba
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, 27100 Pavia, Italy
| | - Marco Corbo
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, 27100 Pavia, Italy
| | - Federico Cerutti
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, 27100 Pavia, Italy
| | - Joseph G W McCarter
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, H91 TK33, Ireland
| | - Eleonora Cappelletti
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, 27100 Pavia, Italy
| | - Francesco Gozzo
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, 27100 Pavia, Italy
| | - Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14850, USA
| | - Douglas F Antczak
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14850, USA
| | - Donald Miller
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14850, USA
| | - Maren Scharfe
- Genomanalytik (GMAK), Helmholtz Centre for Infection Research (HZI), 38124 Braunschweig, Germany
| | - Giulio Pavesi
- Department of Biosciences, University of Milano, 20122 Milano, Italy
| | - Elena Raimondi
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, 27100 Pavia, Italy
| | - Kevin F Sullivan
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, H91 TK33, Ireland
| | - Elena Giulotto
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
7
|
Nergadze SG, Lupotto M, Pellanda P, Santagostino M, Vitelli V, Giulotto E. Mitochondrial DNA insertions in the nuclear horse genome. Anim Genet 2015; 41 Suppl 2:176-85. [PMID: 21070293 DOI: 10.1111/j.1365-2052.2010.02130.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The insertion of mitochondrial DNA in the nuclear genome generates numts, nuclear sequences of mitochondrial origin. In the horse reference genome, we identified 82 numts and showed that the entire horse mitochondrial DNA is represented as numts without gross bias. Numts were inserted in the horse nuclear genome at random sites and were probably generated during the repair of DNA double-strand breaks. We then analysed 12 numt loci in 20 unrelated horses and found that null alleles, lacking the mitochondrial DNA insertion, were present at six of these loci. At some loci, the null allele is prevalent in the sample analysed, suggesting that, in the horse population, the number of numt loci may be higher than 82 present in the reference genome. Contrary to humans, the insertion polymorphism of numts is extremely frequent in the horse population, supporting the hypothesis that the genome of this species is in a rapidly evolving state.
Collapse
Affiliation(s)
- S G Nergadze
- Dipartimento di Genetica e Microbiologia Adriano Buzzati-Traverso, Università di Pavia, Via Ferrata 1, 27100 Pavia, Italy
| | | | | | | | | | | |
Collapse
|
8
|
Purgato S, Belloni E, Piras FM, Zoli M, Badiale C, Cerutti F, Mazzagatti A, Perini G, Della Valle G, Nergadze SG, Sullivan KF, Raimondi E, Rocchi M, Giulotto E. Centromere sliding on a mammalian chromosome. Chromosoma 2014; 124:277-87. [PMID: 25413176 PMCID: PMC4446527 DOI: 10.1007/s00412-014-0493-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/31/2014] [Accepted: 11/03/2014] [Indexed: 11/25/2022]
Abstract
The centromere directs the segregation of chromosomes during mitosis and meiosis. It is a distinct genetic locus whose identity is established through epigenetic mechanisms that depend on the deposition of centromere-specific centromere protein A (CENP-A) nucleosomes. This important chromatin domain has so far escaped comprehensive molecular analysis due to its typical association with highly repetitive satellite DNA. In previous work, we discovered that the centromere of horse chromosome 11 is completely devoid of satellite DNA; this peculiar feature makes it a unique model to dissect the molecular architecture of mammalian centromeres. Here, we exploited this native satellite-free centromere to determine the precise localization of its functional domains in five individuals: We hybridized DNA purified from chromatin immunoprecipitated with an anti CENP-A antibody to a high resolution array (ChIP-on-chip) of the region containing the primary constriction of horse chromosome 11. Strikingly, each individual exhibited a different arrangement of CENP-A binding domains. We then analysed the organization of each domain using a single nucleotide polymorphism (SNP)-based approach and single molecule analysis on chromatin fibres. Examination of the ten instances of chromosome 11 in the five individuals revealed seven distinct ‘positional alleles’, each one extending for about 80–160 kb, were found across a region of about 500 kb. Our results demonstrate that CENP-A binding domains are autonomous relative to the underlying DNA sequence and are characterized by positional instability causing the sliding of centromere position. We propose that this dynamic behaviour may be common in mammalian centromeres and may determine the establishment of epigenetic alleles.
Collapse
Affiliation(s)
- Stefania Purgato
- Dipartimento di Farmacia e Biotecnologie (FABIT), Università di Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Finno CJ, Bannasch DL. Applied equine genetics. Equine Vet J 2014; 46:538-44. [PMID: 24802051 DOI: 10.1111/evj.12294] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 04/27/2014] [Indexed: 01/13/2023]
Abstract
Genome sequencing of the domestic horse and subsequent advancements in the field of equine genomics have led to an explosion in the development of tools for mapping traits and diseases and evaluating gene expression. The objective of this review is to discuss the current progress in the field of equine genomics, with specific emphasis on assembly and analysis of the reference sequence and subsequent sequencing of a Quarter Horse mare; the genomic tools currently available to researchers and their implications in genomic investigations in the horse; the genomics of Mendelian and non-Mendelian traits; the genomics of performance traits and considerations regarding genetic testing in the horse. The whole-genome sequencing of a Quarter Horse mare has provided additional variants within the equine genome that extend past single nucleotide polymorphisms to include insertions/deletions and copy number variants. Equine single nucleotide polymorphism arrays have allowed for the investigation of both simple and complex genetic traits while DNA microarrays have provided a tool for examining gene expression across various tissues and with certain disease conditions. Recently, next-generation sequencing has become more affordable and both whole-genome DNA sequencing and transcriptome-wide RNA sequencing are methodologies that are being applied to equine genomic research. Research in the field of equine genomics continues to expand rapidly as the cost of genotyping and sequencing decreases, resulting in a need for quality bioinformatics software and expertise to appropriately handle both the size and complexity of these data.
Collapse
Affiliation(s)
- C J Finno
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, USA
| | | |
Collapse
|
10
|
Jiang Y, Gao X, Liu S, Zhang Y, Liu H, Sun F, Bao L, Waldbieser G, Liu Z. Whole genome comparative analysis of channel catfish (Ictalurus punctatus) with four model fish species. BMC Genomics 2013; 14:780. [PMID: 24215161 PMCID: PMC3840565 DOI: 10.1186/1471-2164-14-780] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 10/28/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Comparative mapping is a powerful tool to study evolution of genomes. It allows transfer of genome information from the well-studied model species to non-model species. Catfish is an economically important aquaculture species in United States. A large amount of genome resources have been developed from catfish including genetic linkage maps, physical maps, BAC end sequences (BES), integrated linkage and physical maps using BES-derived markers, physical map contig-specific sequences, and draft genome sequences. Application of such genome resources should allow comparative analysis at the genome scale with several other model fish species. RESULTS In this study, we conducted whole genome comparative analysis between channel catfish and four model fish species with fully sequenced genomes, zebrafish, medaka, stickleback and Tetraodon. A total of 517 Mb draft genome sequences of catfish were anchored to its genetic linkage map, which accounted for 62% of the total draft genome sequences. Based on the location of homologous genes, homologous chromosomes were determined among catfish and the four model fish species. A large number of conserved syntenic blocks were identified. Analysis of the syntenic relationships between catfish and the four model fishes supported that the catfish genome is most similar to the genome of zebrafish. CONCLUSION The organization of the catfish genome is similar to that of the four teleost species, zebrafish, medaka, stickleback, and Tetraodon such that homologous chromosomes can be identified. Within each chromosome, extended syntenic blocks were evident, but the conserved syntenies at the chromosome level involve extensive inter-chromosomal and intra-chromosomal rearrangements. This whole genome comparative map should facilitate the whole genome assembly and annotation in catfish, and will be useful for genomic studies of various other fish species.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhanjiang Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures, Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, 203 Swingle Hall, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
11
|
Detournay O, Morrison DA, Wagner B, Zarnegar B, Wattrang E. Genomic analysis and mRNA expression of equine type I interferon genes. J Interferon Cytokine Res 2013; 33:746-59. [PMID: 23772953 DOI: 10.1089/jir.2012.0130] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
This study aimed at identifying all of the type I interferon (IFN) genes of the horse and at monitoring their expression in equine cells on in vitro induction. We identified 32 putative type I IFN loci on horse chromosome 23 and an unplaced genomic scaffold. A phylogentic analysis characterized these into 8 different type I IFN classes, that is, putative functional genes for 6 IFN-α, 4 IFN-β, 8 IFN-ω (plus 4 pseudogenes), 3 IFN-δ (plus 1 pseudogene), 1 IFN-κ and 1 IFN-ε, plus 1 IFN-ν pseudogene, and 3 loci belonging to what has previously been called IFN-αω. Our analyses indicate that the IFN-αω genes are quite distinct from both IFN-α and IFN-ω, and we refer to this type I IFN as IFN-μ. Results from cell cultures showed that leukocytes readily expressed IFN-α, IFN-β, IFN-δ, IFN-μ, and IFN-ω mRNA on induction with, for example, live virus; while fibroblasts only expressed IFN-β mRNA on stimulation. IFN-κ or IFN-ε expression was not consistently induced in these cell cultures. Thus, the equine type I IFN family comprised 8 classes, 7 of which had putative functional genes, and mRNA expression of 5 was induced in vitro. Moreover, a relatively low number of IFN-α subtypes was found in the horse compared with other eutherian mammals.
Collapse
Affiliation(s)
- Olivier Detournay
- 1 Department of Virology, Immunobiology and Parasitology, National Veterinary Institute , Uppsala, Sweden
| | | | | | | | | |
Collapse
|
12
|
Zhang Y, Liu S, Lu J, Jiang Y, Gao X, Ninwichian P, Li C, Waldbieser G, Liu Z. Comparative genomic analysis of catfish linkage group 8 reveals two homologous chromosomes in zebrafish and other teleosts with extensive inter-chromosomal rearrangements. BMC Genomics 2013; 14:387. [PMID: 23758806 PMCID: PMC3691659 DOI: 10.1186/1471-2164-14-387] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Accepted: 05/24/2013] [Indexed: 12/02/2022] Open
Abstract
Background Comparative genomics is a powerful tool to transfer genomic information from model species to related non-model species. Channel catfish (Ictalurus punctatus) is the primary aquaculture species in the United States. Its existing genome resources such as genomic sequences generated from next generation sequencing, BAC end sequences (BES), physical maps, linkage maps, and integrated linkage and physical maps using BES-associated markers provide a platform for comparative genomic analysis between catfish and other model teleost fish species. This study aimed to gain understanding of genome organizations and similarities among catfish and several sequenced teleost genomes using linkage group 8 (LG8) as a pilot study. Results With existing genome resources, 287 unique genes were identified in LG8. Comparative genome analysis indicated that most of these 287 genes on catfish LG8 are located on two homologous chromosomes of zebrafish, medaka, stickleback, and three chromosomes of green-spotted pufferfish. Large numbers of conserved syntenies were identified. Detailed analysis of the conserved syntenies in relation to chromosome level similarities revealed extensive inter-chromosomal and intra-chromosomal rearrangements during evolution. Of the 287 genes, 35 genes were found to be duplicated in the catfish genome, with the vast majority of the duplications being interchromosomal. Conclusions Comparative genome analysis is a powerful tool even in the absence of a well-assembled whole genome sequence. In spite of sequence stacking due to low resolution of the linkage and physical maps, conserved syntenies can be identified although the exact gene order and orientation are unknown at present. Through chromosome-level comparative analysis, homologous chromosomes among teleosts can be identified. Syntenic analysis should facilitate annotation of the catfish genome, which in turn, should facilitate functional inference of genes based on their orthology.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, The Fish Molecular Genetics and Biotechnology Laboratory, Auburn University, Auburn, AL 36849, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Construction and preliminary characterization analysis of Wuzhishan miniature pig bacterial artificial chromosome library with approximately 8-fold genome equivalent coverage. BIOMED RESEARCH INTERNATIONAL 2013; 2013:587493. [PMID: 23691508 PMCID: PMC3652137 DOI: 10.1155/2013/587493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 03/22/2013] [Indexed: 11/18/2022]
Abstract
Bacterial artificial chromosome (BAC) libraries have been invaluable tools for the genome-wide genetic dissection of complex organisms. Here, we report the construction and characterization of a high-redundancy BAC library from a very valuable pig breed in China, Wuzhishan miniature pig (Sus scrofa), using its blood cells and fibroblasts, respectively. The library contains approximately 153,600 clones ordered in 40 superpools of 10 × 384-deep well microplates. The average insert size of BAC clones was estimated to be 152.3 kb, representing approximately 7.68 genome equivalents of the porcine haploid genome and a 99.93% statistical probability of obtaining at least one clone containing a unique DNA sequence in the library. 19 pairs of microsatellite marker primers covering porcine chromosomes were used for screening the BAC library, which showed that each of these markers was positive in the library; the positive clone number was 2 to 9, and the average number was 7.89, which was consistent with 7.68-fold coverage of the porcine genome. And there were no significant differences of genomic BAC library from blood cells and fibroblast cells. Therefore, we identified 19 microsatellite markers that could potentially be used as genetic markers. As a result, this BAC library will serve as a valuable resource for gene identification, physical mapping, and comparative genomics and large-scale genome sequencing in the porcine.
Collapse
|
14
|
Musilova P, Kubickova S, Vahala J, Rubes J. Subchromosomal karyotype evolution in Equidae. Chromosome Res 2013; 21:175-87. [PMID: 23532666 DOI: 10.1007/s10577-013-9346-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/12/2013] [Accepted: 03/13/2013] [Indexed: 12/26/2022]
Abstract
Equidae is a small family which comprises horses, African and Asiatic asses, and zebras. Despite equids having diverged quite recently, their karyotypes underwent rapid evolution which resulted in extensive differences among chromosome complements in respective species. Comparative mapping using whole-chromosome painting probes delineated genome-wide chromosome homologies among extant equids, enabling us to trace chromosome rearrangements that occurred during evolution. In the present study, we performed subchromosomal comparative mapping among seven Equidae species, representing the whole family. Region-specific painting and bacterial artificial chromosome probes were used to determine the orientation of evolutionarily conserved segments with respect to centromere positions. This allowed assessment of the configuration of all fusions occurring during the evolution of Equidae, as well as revealing discrepancies in centromere location caused by centromere repositioning or inversions. Our results indicate that the prevailing type of fusion in Equidae is centric fusion. Tandem fusions of the type telomere-telomere occur almost exclusively in the karyotype of Hartmann's zebra and are characteristic of this species' evolution. We revealed inversions in segments homologous to horse chromosomes 3p/10p and 13 in zebras and confirmed inversions in segments 4/31 in African ass, 7 in horse and 8p/20 in zebras. Furthermore, our mapping results suggested that centromere repositioning events occurred in segments homologous to horse chromosomes 7, 8q, 10p and 19 in the African ass and an element homologous to horse chromosome 16 in Asiatic asses. Centromere repositioning in chromosome 1 resulted in three different chromosome types occurring in extant species. Heterozygosity of the centromere position of this chromosome was observed in the kiang. Other subtle changes in centromere position were described in several evolutionary conserved chromosomal segments, suggesting that tiny centromere repositioning or pericentric inversions are quite frequent in zebras and asses.
Collapse
Affiliation(s)
- P Musilova
- Department of Genetics and Reproduction, Veterinary Research Institute, Brno, Czech Republic.
| | | | | | | |
Collapse
|
15
|
Benkel BF, Smith A, Christensen K, Anistoroaei R, Zhang Y, Sensen CW, Farid H, Paterson L, Teather RM. A comparative, BAC end sequence enabled map of the genome of the American mink (Neovison vison). Genes Genomics 2012. [DOI: 10.1007/s13258-011-0160-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
DE MELLO COSTA MF, ANDERSON GA, DAVIES HM, SLOCOMBE RF. Effects of acute exercise on angiotensin I-converting enzyme (ACE) activity in horses. Equine Vet J 2011; 44:487-9. [DOI: 10.1111/j.2042-3306.2011.00461.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Li Y, Xu P, Zhao Z, Wang J, Zhang Y, Sun XW. Construction and characterization of the BAC library for common carp Cyprinus carpio L. and establishment of microsynteny with zebrafish Danio rerio. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:706-712. [PMID: 21088980 DOI: 10.1007/s10126-010-9332-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 11/04/2010] [Indexed: 05/30/2023]
Abstract
A bacterial artificial chromosome (BAC) library of common carp Cyprinus carpio L. was constructed as a part of ongoing common carp genome project, which is aiming assembly of common carp genome. The library, containing a total of 92,160 BAC clones with an average insert size of 141 kb, was constructed into the restriction site of Hind III on BAC vector CopyControl pCC1BAC, covering 7.7 X haploid genome equivalents. Three dimension pools and superpools of the BAC library were established and 23 positive clones of 14 targets were identified from one-fifth of the BAC library. Pilot project of BAC end sequencing was conducted on 2,688 BAC ends from 1,344 clones and harvested 2,522 high-quality Q20 sequences with average length of 677 bp. The sequencing success rate was 93.8% and pair-end success rate was 92.3%. A total of 212 microsyntenies had been established between common carp and zebrafish genomes as a trial for genome-wide comparative genomics in these two closely related species.
Collapse
Affiliation(s)
- Yan Li
- The Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | | | | | | | | | | |
Collapse
|
18
|
Anistoroaei R, ten Hallers B, Nefedov M, Christensen K, de Jong P. Construction of an American mink bacterial artificial chromosome (BAC) library and sequencing candidate genes important for the fur industry. BMC Genomics 2011; 12:354. [PMID: 21740547 PMCID: PMC3143106 DOI: 10.1186/1471-2164-12-354] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 07/08/2011] [Indexed: 12/03/2022] Open
Abstract
Background Bacterial artificial chromosome (BAC) libraries continue to be invaluable tools for the genomic analysis of complex organisms. Complemented by the newly and fast growing deep sequencing technologies, they provide an excellent source of information in genomics projects. Results Here, we report the construction and characterization of the CHORI-231 BAC library constructed from a Danish-farmed, male American mink (Neovison vison). The library contains approximately 165,888 clones with an average insert size of 170 kb, representing approximately 10-fold coverage. High-density filters, each consisting of 18,432 clones spotted in duplicate, have been produced for hybridization screening and are publicly available. Overgo probes derived from expressed sequence tags (ESTs), representing 21 candidate genes for traits important for the mink industry, were used to screen the BAC library. These included candidate genes for coat coloring, hair growth and length, coarseness, and some receptors potentially involved in viral diseases in mink. The extensive screening yielded positive results for 19 of these genes. Thirty-five clones corresponding to 19 genes were sequenced using 454 Roche, and large contigs (184 kb in average) were assembled. Knowing the complete sequences of these candidate genes will enable confirmation of the association with a phenotype and the finding of causative mutations for the targeted phenotypes. Additionally, 1577 BAC clones were end sequenced; 2505 BAC end sequences (80% of BACs) were obtained. An excess of 2 Mb has been analyzed, thus giving a snapshot of the mink genome. Conclusions The availability of the CHORI-321 American mink BAC library will aid in identification of genes and genomic regions of interest. We have demonstrated how the library can be used to identify specific genes of interest, develop genetic markers, and for BAC end sequencing and deep sequencing of selected clones. To our knowledge, this is the first report of 454 sequencing of selected BAC clones in mammals and re-assures the suitability of this technique for obtaining the sequence information of genes of interest in small genomics projects. The BAC end sequences described in this paper have been deposited in the GenBank data library [HN339419-HN341884, HN604664-HN604702]. The 454 produced contigs derived from selected clones are deposited with reference numbers [GenBank: JF288166-JF288183 &JF310744].
Collapse
Affiliation(s)
- Razvan Anistoroaei
- University of Copenhagen, Department of Basic Animal and Veterinary Sciences, Division of Animal Genetics and Bioinformatics, Groennegaardsvej 3, Frederiksberg C, Denmark.
| | | | | | | | | |
Collapse
|
19
|
COSTA MFM, DAVIES HM, ANDERSON GA, SLOCOMBE RF. Effects of two training protocols on Angiotensin I-converting enzyme (ACE) activity in horses. Equine Vet J 2011; 43:466-70. [DOI: 10.1111/j.2042-3306.2010.00320.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Sarropoulou E, Fernandes JMO. Comparative genomics in teleost species: Knowledge transfer by linking the genomes of model and non-model fish species. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2010; 6:92-102. [PMID: 20961822 DOI: 10.1016/j.cbd.2010.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Revised: 09/15/2010] [Accepted: 09/15/2010] [Indexed: 12/14/2022]
Abstract
Comparative genomics is a powerful tool to transfer knowledge coming from model fish species to non-model fish species of economic or/and evolutionary interest. Such transfer is of importance as functional studies either are difficult to perform with most non-model species. The first comparative map constructed using the human and the chimpanzee genome allowed the identification of putative orthologues. Although comparative mapping in teleosts is still in its infancy, five model teleost genomes from different orders have been fully sequenced to date and the sequencing of several commercially important species are also underway or near completion. The accessibility of these whole genome sequences and rapid developments in genomics of fish species are paving the way towards new and valuable research in comparative genetics and genomics. With the accumulation of information in model species, the genetic and genomic characterization of non-model, but economically, physiologically or evolutionary important species is now feasible. Furthermore, comparison of low coverage gene maps of non-model fish species against fully sequenced fish species will enhance the efficiency of candidate gene identification projected for quantitative trait loci (QTL) scans for traits of special interest.
Collapse
Affiliation(s)
- Elena Sarropoulou
- Institute of Marine Biology and Genetics, Hellenic Centre for Marine Research, Crete, Greece.
| | | |
Collapse
|
21
|
Yang H, Ma YH, Li B, Dugarjaviin M. [Progress on horse genome project]. YI CHUAN = HEREDITAS 2010; 32:211-8. [PMID: 20233697 DOI: 10.3724/sp.j.1005.2010.00211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
There is unique genetic information belonging to various kinds of living beings. Understanding of the formation process of organisms and a variety of vital movement is associated with the achievements of genome study. As horse has a notable health condition and great record of the genealogy in the world, thus it becomes a valuable model animal for studying life science. Despite of a late start, the map of the horse genome has undergone unprecedented expansion during the last few years. The current progresses of the horse genome, including genetic map, physical map, comparative genomic map, and functional genomics, were reviewed in this paper. The maps are currently used worldwide to discover genes associated with various traits of significance in horse including general health, disease resistance, reproduction, fertility, athletic performance, phenotypic characteristics like coat color, etc. The results are believed to provide new ideas and approaches for prevention, diagnostics, and therapeutic for horses, and also better foundation of breed selection and equine genetic breeding.
Collapse
Affiliation(s)
- Hong Yang
- College of Animal Science and Animal Medicine, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | | | | | | |
Collapse
|
22
|
|
23
|
Liu H, Jiang Y, Wang S, Ninwichian P, Somridhivej B, Xu P, Abernathy J, Kucuktas H, Liu Z. Comparative analysis of catfish BAC end sequences with the zebrafish genome. BMC Genomics 2009; 10:592. [PMID: 20003258 PMCID: PMC2796685 DOI: 10.1186/1471-2164-10-592] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 12/10/2009] [Indexed: 01/09/2023] Open
Abstract
Background Comparative mapping is a powerful tool to transfer genomic information from sequenced genomes to closely related species for which whole genome sequence data are not yet available. However, such an approach is still very limited in catfish, the most important aquaculture species in the United States. This project was initiated to generate additional BAC end sequences and demonstrate their applications in comparative mapping in catfish. Results We reported the generation of 43,000 BAC end sequences and their applications for comparative genome analysis in catfish. Using these and the additional 20,000 existing BAC end sequences as a resource along with linkage mapping and existing physical map, conserved syntenic regions were identified between the catfish and zebrafish genomes. A total of 10,943 catfish BAC end sequences (17.3%) had significant BLAST hits to the zebrafish genome (cutoff value ≤ e-5), of which 3,221 were unique gene hits, providing a platform for comparative mapping based on locations of these genes in catfish and zebrafish. Genetic linkage mapping of microsatellites associated with contigs allowed identification of large conserved genomic segments and construction of super scaffolds. Conclusion BAC end sequences and their associated polymorphic markers are great resources for comparative genome analysis in catfish. Highly conserved chromosomal regions were identified to exist between catfish and zebrafish. However, it appears that the level of conservation at local genomic regions are high while a high level of chromosomal shuffling and rearrangements exist between catfish and zebrafish genomes. Orthologous regions established through comparative analysis should facilitate both structural and functional genome analysis in catfish.
Collapse
Affiliation(s)
- Hong Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Bugno M, Slota E, Witarski W, Gerber V, Klukowska-Roetzler J. Interleukin 4 receptor alpha (IL4R) and calcium-activated chloride channel 1 (CLCA1) genes map to donkey chromosome. Hereditas 2009; 146:118-21. [PMID: 19712222 DOI: 10.1111/j.1601-5223.2009.02091.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The results obtained in the present study enabled the physical map of the donkey genome to be extended with markers associated with recurrent airway obstruction (RAO), a major performance-limiting disease of Equidae. The equine BAC clone containing the IL4R and CLCA1 genes were localized to EAS 14q13 and EAS 6q15 respectlivy by fluorescent in situ hybridization. Identification of their locus confirmed the distribution of syntenic regions between the domestic horse and the domestic donkey within the chromosomes analysed.
Collapse
Affiliation(s)
- M Bugno
- Department of Immuno- and Cytogenetics, National Research Institute of Animal Production, Balice, Poland.
| | | | | | | | | |
Collapse
|
26
|
Raudsepp T, Gustafson-Seabury A, Durkin K, Wagner ML, Goh G, Seabury CM, Brinkmeyer-Langford C, Lee EJ, Agarwala R, Stallknecht-Rice E, Schäffer AA, Skow LC, Tozaki T, Yasue H, Penedo MCT, Lyons LA, Khazanehdari KA, Binns MM, MacLeod JN, Distl O, Guérin G, Leeb T, Mickelson JR, Chowdhary BP. A 4,103 marker integrated physical and comparative map of the horse genome. Cytogenet Genome Res 2008; 122:28-36. [PMID: 18931483 DOI: 10.1159/000151313] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2008] [Indexed: 12/20/2022] Open
Abstract
A comprehensive second-generation whole genome radiation hybrid (RH II), cytogenetic and comparative map of the horse genome (2n = 64) has been developed using the 5000rad horse x hamster radiation hybrid panel and fluorescence in situ hybridization (FISH). The map contains 4,103 markers (3,816 RH; 1,144 FISH) assigned to all 31 pairs of autosomes and the X chromosome. The RH maps of individual chromosomes are anchored and oriented using 857 cytogenetic markers. The overall resolution of the map is one marker per 775 kilobase pairs (kb), which represents a more than five-fold improvement over the first-generation map. The RH II incorporates 920 markers shared jointly with the two recently reported meiotic maps. Consequently the two maps were aligned with the RH II maps of individual autosomes and the X chromosome. Additionally, a comparative map of the horse genome was generated by connecting 1,904 loci on the horse map with genome sequences available for eight diverse vertebrates to highlight regions of evolutionarily conserved syntenies, linkages, and chromosomal breakpoints. The integrated map thus obtained presents the most comprehensive information on the physical and comparative organization of the equine genome and will assist future assemblies of whole genome BAC fingerprint maps and the genome sequence. It will also serve as a tool to identify genes governing health, disease and performance traits in horses and assist us in understanding the evolution of the equine genome in relation to other species.
Collapse
Affiliation(s)
- T Raudsepp
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Murakami K, Toyoda A, Hattori M, Kuroki Y, Fujiyama A, Kojima T, Matsuda M, Sakaki Y, Yamamoto MT. BAC library construction and BAC end sequencing of five Drosophila species: the comparative map with the D. melanogaster genome. Genes Genet Syst 2008; 83:245-56. [PMID: 18670136 DOI: 10.1266/ggs.83.245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We constructed and characterized arrayed bacterial artificial chromosome (BAC) libraries of five Drosophila species (D. melanogaster, D. simulans, D. sechellia, D. auraria, and D. ananassae), which are genetically well characterized in the studies of meiosis, evolution, population genetics, and developmental biology. The BAC libraries comprise 8,000 to 12,500 clones for each species, estimated to cover the most of the genomes. We sequenced both ends of most of these BAC clones with a success rate of 91%. Of these, 53,701 clones consisting of non-repetitive BAC end sequences (BESs) were mapped with reference of the public D. melanogaster genome sequences. The BES mapping estimated that the BAC libraries of D. auraria and D. ananassae covered 47% and 57% of the D. melanogaster genome, respectively, and those of D. melanogaster, D. sechellia, and D. simulans covered 94-97%. The low coverage by BESs of D. auraria and D. ananassae may be due to the high sequence divergence with D. melanogaster. From the comparative BES mapping, 111 possible breakpoints of chromosomal rearrangements were identified in these four species. The breakpoints of the major chromosome rearrangement between D. simulans and D. melanogaster on the third chromosome were determined within 20 kb in 84E and 30 kb in 93E/F. Corresponding breakpoints were also identified in D. sechellia. The BAC clones described here will be an important addition to the Drosophila genomic resources.
Collapse
|
28
|
Haase B, Brooks SA, Schlumbaum A, Azor PJ, Bailey E, Alaeddine F, Mevissen M, Burger D, Poncet PA, Rieder S, Leeb T. Allelic heterogeneity at the equine KIT locus in dominant white (W) horses. PLoS Genet 2008; 3:e195. [PMID: 17997609 PMCID: PMC2065884 DOI: 10.1371/journal.pgen.0030195] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 09/24/2007] [Indexed: 11/19/2022] Open
Abstract
White coat color has been a highly valued trait in horses for at least 2,000 years. Dominant white (W) is one of several known depigmentation phenotypes in horses. It shows considerable phenotypic variation, ranging from approximately 50% depigmented areas up to a completely white coat. In the horse, the four depigmentation phenotypes roan, sabino, tobiano, and dominant white were independently mapped to a chromosomal region on ECA 3 harboring the KIT gene. KIT plays an important role in melanoblast survival during embryonic development. We determined the sequence and genomic organization of the approximately 82 kb equine KIT gene. A mutation analysis of all 21 KIT exons in white Franches-Montagnes Horses revealed a nonsense mutation in exon 15 (c.2151C>G, p.Y717X). We analyzed the KIT exons in horses characterized as dominant white from other populations and found three additional candidate causative mutations. Three almost completely white Arabians carried a different nonsense mutation in exon 4 (c.706A>T, p.K236X). Six Camarillo White Horses had a missense mutation in exon 12 (c.1805C>T, p.A602V), and five white Thoroughbreds had yet another missense mutation in exon 13 (c.1960G>A, p.G654R). Our results indicate that the dominant white color in Franches-Montagnes Horses is caused by a nonsense mutation in the KIT gene and that multiple independent mutations within this gene appear to be responsible for dominant white in several other modern horse populations.
Collapse
Affiliation(s)
- Bianca Haase
- Institute of Genetics, Vetsuisse Faculty, University of Berne, Berne, Switzerland
- DermFocus, Vetsuisse Faculty, University of Berne, Berne, Switzerland
| | - Samantha A Brooks
- M. H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Angela Schlumbaum
- Institute of Prehistory and Archaeological Sciences, University of Basel, Basel, Switzerland
| | - Pedro J Azor
- Institute of Genetics, Vetsuisse Faculty, University of Berne, Berne, Switzerland
- Department of Genetics, University of Cordoba, Gregory Mendel Building, Cordoba, Spain
| | - Ernest Bailey
- M. H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, United States of America
| | - Ferial Alaeddine
- Division of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Berne, Berne, Switzerland
| | - Meike Mevissen
- Division of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Berne, Berne, Switzerland
| | | | | | - Stefan Rieder
- Swiss College of Agriculture, Zollikofen, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Berne, Berne, Switzerland
- DermFocus, Vetsuisse Faculty, University of Berne, Berne, Switzerland
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
29
|
Chowdhary BP, Raudsepp T. The horse genome derby: racing from map to whole genome sequence. Chromosome Res 2008; 16:109-27. [PMID: 18274866 DOI: 10.1007/s10577-008-1204-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The map of the horse genome has undergone unprecedented expansion during the past six years. Beginning from a modest collection of approximately 300 mapped markers scattered on the 31 pairs of autosomes and the X chromosome in 2001, today the horse genome is among the best-mapped in domestic animals. Presently, high-resolution linearly ordered gene maps are available for all autosomes as well as the X and the Y chromosome. The approximately 4350 mapped markers distributed over the approximately 2.68 Gbp long equine genome provide on average 1 marker every 620 kb. Among the most remarkable developments in equine genome analysis is the availability of the assembled sequence (EquCab2) of the female horse genome and the generation approximately 1.5 million single nucleotide polymorphisms (SNPs) from diverse breeds. This has triggered the creation of new tools and resources like the 60K SNP-chip and whole genome expression microarrays that hold promise to study the equine genome and transcriptome in ways not previously envisaged. As a result of these developments it is anticipated that, during coming years, the genetics underlying important monogenic traits will be analyzed with improved accuracy and speed. Of larger interest will be the prospects of dissecting the genetic component of various complex/multigenic traits that are of vital significance for equine health and welfare. The number of investigations recently initiated to study a multitude of such traits hold promise for improved diagnostics, prevention and therapeutic approaches for horses.
Collapse
Affiliation(s)
- Bhanu P Chowdhary
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, 77843-4458, USA.
| | | |
Collapse
|
30
|
Brinkmeyer-Langford C, Raudsepp T, Gustafson-Seabury A, Chowdhary BP. A BAC contig map over the proximal approximately 3.3 Mb region of horse chromosome 21. Cytogenet Genome Res 2008; 120:164-72. [PMID: 18467843 DOI: 10.1159/000118758] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2007] [Indexed: 11/19/2022] Open
Abstract
A total of 207 BAC clones containing 155 loci were isolated and arranged into a map of linearly ordered overlapping clones over the proximal part of horse chromosome 21 (ECA21), which corresponds to the proximal half of the short arm of human chromosome 19 (HSA19p) and part of HSA5. The clones form two contigs - each corresponding to the respective human chromosomes - that are estimated to be separated by a gap of approximately 200 kb. Of the 155 markers present in the two contigs, 141 (33 genes and 108 STS) were generated and mapped in this study. The BACs provide a 4-5x coverage of the region and span an estimated length of approximately 3.3 Mb. The region presently contains one mapped marker per 22 kb on average, which represents a major improvement over the previous resolution of one marker per 380 kb obtained through the generation of a dense RH map for this segment. Dual color fluorescence in situ hybridization on metaphase and interphase chromosomes verified the relative order of some of the BACs and helped to orient them accurately in the contigs. Despite having similar gene order and content, the equine region covered by the contigs appears to be distinctly smaller than the corresponding region in human (3.3 Mb vs. 5.5-6 Mb) because the latter harbors a host of repetitive elements and gene families unique to humans/primates. Considering limited representation of the region in the latest version of the horse whole genome sequence EquCab2, the dense map developed in this study will prove useful for the assembly and annotation of the sequence data on ECA21 and will be instrumental in rapid search and isolation of candidate genes for traits mapped to this region.
Collapse
Affiliation(s)
- C Brinkmeyer-Langford
- Department of Veterinary Integrative Biomedical Sciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | | | | | | |
Collapse
|
31
|
Dalrymple BP, Kirkness EF, Nefedov M, McWilliam S, Ratnakumar A, Barris W, Zhao S, Shetty J, Maddox JF, O'Grady M, Nicholas F, Crawford AM, Smith T, de Jong PJ, McEwan J, Oddy VH, Cockett NE. Using comparative genomics to reorder the human genome sequence into a virtual sheep genome. Genome Biol 2008; 8:R152. [PMID: 17663790 PMCID: PMC2323240 DOI: 10.1186/gb-2007-8-7-r152] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2007] [Revised: 07/05/2007] [Accepted: 07/30/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Is it possible to construct an accurate and detailed subgene-level map of a genome using bacterial artificial chromosome (BAC) end sequences, a sparse marker map, and the sequences of other genomes? RESULTS A sheep BAC library, CHORI-243, was constructed and the BAC end sequences were determined and mapped with high sensitivity and low specificity onto the frameworks of the human, dog, and cow genomes. To maximize genome coverage, the coordinates of all BAC end sequence hits to the cow and dog genomes were also converted to the equivalent human genome coordinates. The 84,624 sheep BACs (about 5.4-fold genome coverage) with paired ends in the correct orientation (tail-to-tail) and spacing, combined with information from sheep BAC comparative genome contigs (CGCs) built separately on the dog and cow genomes, were used to construct 1,172 sheep BAC-CGCs, covering 91.2% of the human genome. Clustered non-tail-to-tail and outsize BACs located close to the ends of many BAC-CGCs linked BAC-CGCs covering about 70% of the genome to at least one other BAC-CGC on the same chromosome. Using the BAC-CGCs, the intrachromosomal and interchromosomal BAC-CGC linkage information, human/cow and vertebrate synteny, and the sheep marker map, a virtual sheep genome was constructed. To identify BACs potentially located in gaps between BAC-CGCs, an additional set of 55,668 sheep BACs were positioned on the sheep genome with lower confidence. A coordinate conversion process allowed us to transfer human genes and other genome features to the virtual sheep genome to display on a sheep genome browser. CONCLUSION We demonstrate that limited sequencing of BACs combined with positioning on a well assembled genome and integrating locations from other less well assembled genomes can yield extensive, detailed subgene-level maps of mammalian genomes, for which genomic resources are currently limited.
Collapse
Affiliation(s)
- Brian P Dalrymple
- CSIRO Livestock Industries, Carmody Road, St Lucia, Queensland 4067, Australia
- SheepGenomics, L1, Walker Street, North Sydney, New South Wales 2060, Australia
| | - Ewen F Kirkness
- The Institute for Genomic Research, Rockville, Maryland 20850, USA
| | - Mikhail Nefedov
- BACPAC Resources, Children's Hospital Oakland Research Institute (CHORI), Oakland, California 94609, USA
| | - Sean McWilliam
- CSIRO Livestock Industries, Carmody Road, St Lucia, Queensland 4067, Australia
- SheepGenomics, L1, Walker Street, North Sydney, New South Wales 2060, Australia
| | - Abhirami Ratnakumar
- CSIRO Livestock Industries, Carmody Road, St Lucia, Queensland 4067, Australia
- SheepGenomics, L1, Walker Street, North Sydney, New South Wales 2060, Australia
| | - Wes Barris
- CSIRO Livestock Industries, Carmody Road, St Lucia, Queensland 4067, Australia
- SheepGenomics, L1, Walker Street, North Sydney, New South Wales 2060, Australia
| | - Shaying Zhao
- The Institute for Genomic Research, Rockville, Maryland 20850, USA
| | - Jyoti Shetty
- The Institute for Genomic Research, Rockville, Maryland 20850, USA
| | - Jillian F Maddox
- SheepGenomics, L1, Walker Street, North Sydney, New South Wales 2060, Australia
- Department of Veterinary Science, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Margaret O'Grady
- CSIRO Livestock Industries, Carmody Road, St Lucia, Queensland 4067, Australia
- SheepGenomics, L1, Walker Street, North Sydney, New South Wales 2060, Australia
| | - Frank Nicholas
- SheepGenomics, L1, Walker Street, North Sydney, New South Wales 2060, Australia
- Centre for Advanced Technologies in Animal Genetics and Reproduction (ReproGen), University of Sydney, Werombi Road, Camden, New South Wales 2570, Australia
| | - Allan M Crawford
- AgResearch, Invermay Agricultural Centre, Puddle Alley, Private Bag 50034, Mosgiel 9053, New Zealand
| | - Tim Smith
- US Department of Agriculture, Agricultural Research Service, Northern Plains Area, Roman L Hruska US Meat Animal Research, P.O. Box 166, Clay Center, Nebraska 68933, USA
| | - Pieter J de Jong
- BACPAC Resources, Children's Hospital Oakland Research Institute (CHORI), Oakland, California 94609, USA
| | - John McEwan
- AgResearch, Invermay Agricultural Centre, Puddle Alley, Private Bag 50034, Mosgiel 9053, New Zealand
| | - V Hutton Oddy
- SheepGenomics, L1, Walker Street, North Sydney, New South Wales 2060, Australia
- Meat and Livestock Australia, 165 Walker Street, North Sydney, New South Wales 2059, Australia
- University of New England, Armidale, New South Wales 2351, Australia
| | | | | |
Collapse
|
32
|
Brooks SA, Lear TL, Adelson DL, Bailey E. A chromosome inversion near the KIT gene and the Tobiano spotting pattern in horses. Cytogenet Genome Res 2008; 119:225-30. [PMID: 18253033 DOI: 10.1159/000112065] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2007] [Indexed: 10/22/2022] Open
Abstract
Tobiano is a white spotting pattern in horses caused by a dominant gene, Tobiano(TO). Here, we report TO associated with a large paracentric chromosome inversion on horse chromosome 3. DNA sequences flanking the inversion were identified and a PCR test was developed to detect the inversion. The inversion was only found in horses with the tobiano pattern, including horses with diverse genetic backgrounds, which indicated a common genetic origin thousands of years ago. The inversion does not interrupt any annotated genes, but begins approximately 100 kb downstream of the KIT gene. This inversion may disrupt regulatory sequences for the KIT gene and cause the white spotting pattern.
Collapse
Affiliation(s)
- S A Brooks
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA.
| | | | | | | |
Collapse
|
33
|
Wu X, Zhong G, Findley SD, Cregan P, Stacey G, Nguyen HT. Genetic marker anchoring by six-dimensional pools for development of a soybean physical map. BMC Genomics 2008; 9:28. [PMID: 18211698 PMCID: PMC2259328 DOI: 10.1186/1471-2164-9-28] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Accepted: 01/22/2008] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Integrated genetic and physical maps are extremely valuable for genomic studies and as important references for assembling whole genome shotgun sequences. Screening of a BAC library using molecular markers is an indispensable procedure for integration of both physical and genetic maps of a genome. Molecular markers provide anchor points for integration of genetic and physical maps and also validate BAC contigs assembled based solely on BAC fingerprints. We employed a six-dimensional BAC pooling strategy and an in silico approach to anchor molecular markers onto the soybean physical map. RESULTS A total of 1,470 markers (580 SSRs and 890 STSs) were anchored by PCR on a subset of a Williams 82 BstY I BAC library pooled into 208 pools in six dimensions. This resulted in 7,463 clones (approximately 1x genome equivalent) associated with 1470 markers, of which the majority of clones (6,157, 82.5%) were anchored by one marker and 1106 (17.5%) individual clones contained two or more markers. This contributed to 1184 contigs having anchor points through this 6-D pool screening effort. In parallel, the 21,700 soybean Unigene set from NCBI was used to perform in silico mapping on 80,700 Williams 82 BAC end sequences (BES). This in silico analysis yielded 9,835 positive results anchored by 4152 unigenes that contributed to 1305 contigs and 1624 singletons. Among the 1305 contigs, 305 have not been previously anchored by PCR. Therefore, 1489 (78.8%) of 1893 contigs are anchored with molecular markers. These results are being integrated with BAC fingerprints to assemble the BAC contigs. Ultimately, these efforts will lead to an integrated physical and genetic map resource. CONCLUSION We demonstrated that the six-dimensional soybean BAC pools can be efficiently used to anchor markers to soybean BACs despite the complexity of the soybean genome. In addition to anchoring markers, the 6-D pooling method was also effective for targeting BAC clones for investigating gene families and duplicated regions in the genome, as well as for extending physical map contigs.
Collapse
Affiliation(s)
- Xiaolei Wu
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Guohua Zhong
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Seth D Findley
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Perry Cregan
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD 20705, USA
| | - Gary Stacey
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211, USA
- Department of Biochemistry; Department of Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Henry T Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211, USA
| |
Collapse
|
34
|
De Lorenzi L, Lear TL, Molteni L, Parma P. The RSPO genes: chromosomal assignment in horse by FISH. Anim Genet 2007; 39:86-7. [PMID: 18076742 DOI: 10.1111/j.1365-2052.2007.01673.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- L De Lorenzi
- Department of Animal Science, Section of the Faculty of Agriculture Science, 20133 Milan, Italy
| | | | | | | |
Collapse
|
35
|
Cardone MF, Lomiento M, Teti MG, Misceo D, Roberto R, Capozzi O, D'Addabbo P, Ventura M, Rocchi M, Archidiacono N. Evolutionary history of chromosome 11 featuring four distinct centromere repositioning events in Catarrhini. Genomics 2007; 90:35-43. [PMID: 17490852 DOI: 10.1016/j.ygeno.2007.01.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 01/14/2007] [Accepted: 01/18/2007] [Indexed: 11/30/2022]
Abstract
Panels of BAC clones used in FISH experiments allow a detailed definition of chromosomal marker arrangement and orientation during evolution. This approach has disclosed the centromere repositioning phenomenon, consisting in the activation of a novel, fully functional centromere in an ectopic location, concomitant with the inactivation of the old centromere. In this study, appropriate panels of BAC clones were used to track the chromosome 11 evolutionary history in primates and nonprimate boreoeutherian mammals. Chromosome 11 synteny was found to be highly conserved in both primate and boreoeutherian mammalian ancestors. Amazingly, we detected four centromere repositioning events in primates (in Old World monkeys, in gibbons, in orangutans, and in the Homo-Pan-Gorilla (H-P-G) clade ancestor), and one in Equidae. Both H-P-G and Lar gibbon novel centromeres were flanked by large duplicons with high sequence similarity. Outgroup species analysis revealed that this duplicon was absent in phylogenetically more distant primates. The chromosome 11 ancestral centromere was probably located near the HSA11q telomere. The domain of this inactivated centromere, in humans, is almost devoid of segmental duplications. An inversion occurred in chromosome 11 in the common ancestor of H-P-G. A large duplicon, again absent in outgroup species, was found located adjacent to the inversion breakpoints. In Hominoidea, almost all the five largest duplicons of this chromosome appeared involved in significant evolutionary architectural changes.
Collapse
|
36
|
Xu P, Wang S, Liu L, Thorsen J, Kucuktas H, Liu Z. A BAC-based physical map of the channel catfish genome. Genomics 2007; 90:380-8. [PMID: 17582737 DOI: 10.1016/j.ygeno.2007.05.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 05/11/2007] [Accepted: 05/16/2007] [Indexed: 01/12/2023]
Abstract
Catfish is the major aquaculture species in the United States. To enhance its genome studies involving genetic linkage and comparative mapping, a bacterial artificial chromosome (BAC) contig-based physical map of the channel catfish (Ictalurus punctatus) genome was generated using four-color fluorescence-based fingerprints. Fingerprints of 34,580 BAC clones (5.6x genome coverage) were generated for the FPC assembly of the BAC contigs. A total of 3307 contigs were assembled using a cutoff value of 1x10(-20). Each contig contains an average of 9.25 clones with an average size of 292 kb. The combined contig size for all contigs was 0.965 Gb, approximately the genome size of the channel catfish. The reliability of the contig assembly was assessed by both hybridization of gene probes to BAC clones contained in the fingerprinted assembly and validation of randomly selected contigs using overgo probes designed from BAC end sequences. The presented physical map should greatly enhance genome research in the catfish, particularly aiding in the identification of genomic regions containing genes underlying important performance traits.
Collapse
Affiliation(s)
- Peng Xu
- The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures, and Program of Cell and Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA
| | | | | | | | | | | |
Collapse
|
37
|
Bugno M, Klukowka-Rötzler J, Słota E, Witarski W, Gerber V, Leeb T. Fluorescent in situ hybridization mapping of the epidermal growth factor receptor gene in donkey. J Anim Breed Genet 2007; 124:172-4. [PMID: 17550360 DOI: 10.1111/j.1439-0388.2007.00652.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The physical localization of the epidermal growth factor receptor (EGFR) gene was performed on donkey chromosomes. Bacterial artificial chromosome DNA containing the equine EGFR gene was used to map this gene by fluorescent in situ hybridization on donkey metaphase chromosomes. The gene was mapped on donkey 1q21.1 region.
Collapse
Affiliation(s)
- M Bugno
- Department of Immuno and Cytogenetics, National Research Institute of Animal Production, Balice, Poland.
| | | | | | | | | | | |
Collapse
|
38
|
Tryon RC, White SD, Bannasch DL. Homozygosity mapping approach identifies a missense mutation in equine cyclophilin B (PPIB) associated with HERDA in the American Quarter Horse. Genomics 2007; 90:93-102. [PMID: 17498917 DOI: 10.1016/j.ygeno.2007.03.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2007] [Revised: 03/17/2007] [Accepted: 03/19/2007] [Indexed: 11/27/2022]
Abstract
Hereditary equine regional dermal asthenia (HERDA), a degenerative skin disease that affects the Quarter Horse breed, was localized to ECA1 by homozygosity mapping. Comparative genomics allowed the development of equine gene-specific markers which were used with a set of affected horses to detect a homozygous, identical-by-descent block spanning approximately 2.5 Mb, suggesting a recent origin for the HERDA mutation. We report a mutation in cyclophilin B (PPIB) as a novel, causal candidate gene for HERDA. A c.115G>A missense mutation in PPIB alters a glycine residue that has been conserved across vertebrates. The mutation was homozygous in 64 affected horses and segregates concordant with inbreeding loops apparent in the genealogy of 11 affected horses. Screening of control Quarter Horses indicates a 3.5% carrier frequency. The development of a test that can detect affected horses prior to development of clinical signs and carriers of HERDA will allow Quarter Horse breeders to eliminate this debilitating disease.
Collapse
Affiliation(s)
- Robert C Tryon
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA 9516, USA
| | | | | |
Collapse
|
39
|
Tozaki T, Swinburne J, Hirota KI, Hasegawa T, Ishida N, Tobe T. Improved resolution of the comparative horse–human map: Investigating markers with in silico and linkage mapping approaches. Gene 2007; 392:181-6. [PMID: 17306472 DOI: 10.1016/j.gene.2006.12.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 10/27/2006] [Accepted: 12/15/2006] [Indexed: 11/16/2022]
Abstract
Genetic maps are extremely important tools for tracing the genes that govern economically significant traits, and microsatellites are a significant component of these. In this study, we isolated 2346 novel horse microsatellites as resources for the construction of high-density horse genetic maps. Of these 2346 markers, 339 (14.5%) horse sequences showed sequence homology to DNA sequences in the human genome, demonstrating that microsatellites as type II markers are valuable resources for developing linkage maps and that they have a potential equal to that of type I markers for developing comparative maps. Of the 339 markers, 206 (60.8%) were assigned to horse chromosomes using the Animal Health Trust (AHT) full-sib reference family, and 195 (94.6%) of these localized to the expected syntenic locations on the human genome. These results confirmed the high level of accuracy of in silico mapping. Thus, the 339 markers that exhibited homology to the human genome increased the density of markers on the horse-human comparative map. The resulting comparative map will facilitate the use of horse microsatellites as genetic markers for the identification of quantitative trait loci (QTL) that have been mapped on the human genome. In addition, although the in silico and linkage mapping data did not agree for the other 11 (5.4%) of the assigned 206 markers, these may represent new putative regions of horse-human synteny.
Collapse
Affiliation(s)
- Teruaki Tozaki
- Department of Molecular Genetics, Laboratory of Racing Chemistry, 1731-2, Tsurutamachi, Utsunomiya, Tochigi 320-0851, Japan.
| | | | | | | | | | | |
Collapse
|
40
|
Tetens J, Goldammer T, Maddox JF, Cockett NE, Leeb T, Drögemüller C. A radiation hybrid map of sheep chromosome 23 based on ovine BAC-end sequences. Anim Genet 2007; 38:132-40. [PMID: 17326803 DOI: 10.1111/j.1365-2052.2007.01572.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
More than 375,000 BAC-end sequences (BES) of the CHORI-243 ovine BAC library have been deposited in public databases. blastn searches with these BES against HSA18 revealed 1806 unique and significant hits. We used blastn-anchored BES for an in silico prediction of gene content and chromosome assignment of comparatively mapped ovine BAC clones. Ovine BES were selected at approximately 1.3-Mb intervals of HSA18 and incorporated into a human-sheep comparative map. An ovine 5000-rad whole-genome radiation hybrid panel (USUoRH5000) was typed with 70 markers, all of which mapped to OAR23. The resulting OAR23 RH map included 43 markers derived from BES with high and unique BLAST hits to the sequence of the orthologous HSA18, nine EST-derived markers, 16 microsatellite markers taken from the ovine linkage map and two bovine microsatellite markers. Six new microsatellite markers derived from the 43 mapped BES and the two bovine microsatellite markers were linkage-mapped using the International Mapping Flock (IMF). Thirteen additional microsatellite markers were derived from other ovine BES with high and unique BLAST hits to the sequence of the orthologous HSA18 and also positioned on the ovine linkage map but not incorporated into the OAR23 RH map. This resulted in 24 markers in common and in the same order between the RH and linkage maps. Eight of the BES-derived markers were mapped using fluorescent in situ hybridization (FISH), to thereby align the RH and cytogenetic maps. Comparison of the ovine chromosome 23 RH map with the HSA18 map identified and localized three major breakpoints between HSA18 and OAR23. The positions of these breakpoints were equivalent to those previously shown for syntenic BTA24 and HSA18. This study presents evidence for the usefulness of ovine BES when constructing a high-resolution comprehensive map for a single sheep chromosome. The comparative analysis confirms and refines knowledge about chromosomal conservation and rearrangements between sheep, cattle and human. The constructed RH map demonstrates the resolution and utility of the newly constructed ovine RH panel.
Collapse
Affiliation(s)
- J Tetens
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Germany
| | | | | | | | | | | |
Collapse
|
41
|
Tozaki T, Hirota KI, Hasegawa T, Ishida N, Tobe T. Whole-genome linkage disequilibrium screening for complex traits in horses. Mol Genet Genomics 2007; 277:663-72. [PMID: 17318585 DOI: 10.1007/s00438-007-0216-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 01/25/2007] [Indexed: 11/26/2022]
Abstract
The identification of candidate genes for significant traits is crucial. In this study, we developed and tested effective and systematic methods based on linkage disequilibrium (LD) for the identification of candidate regions for genes with Mendelian inheritance and those associated with complex traits. Our approach entailed the combination of primary screening using pooled DNA samples based on DeltaTAC, secondary screening using an individual typing method and tertiary screening using a permutation test based on the differences in the haplotype frequency between two neighbouring microsatellites. This series of methods was evaluated using horse coat colour traits (chestnut/non-chestnut) as a simple Mendelian inheritance model. In addition, the methods were evaluated using a complex trait model constructed by mixing samples from chestnut and non-chestnut horses. Using both models, the methods could detect the expected regions for the horse coat colour trait. The results revealed that LD extends up to several centimorgans in horses, indicating that whole-genome LD screening in horses could be performed systematically and efficiently by combining the above-mentioned methods. Since genetic maps based on microsatellites have been constructed for many other species, the approaches present here could have wide applicability.
Collapse
Affiliation(s)
- Teruaki Tozaki
- Department of Molecular Genetics, Laboratory of Racing Chemistry, 1731-2 Tsurutamachi, Utsunomiya, Tochigi 320-0851, Japan.
| | | | | | | | | |
Collapse
|
42
|
Prause A, Guionaud CT, Klukowska-Rötzler J, Giulotto E, Magnani E, Chowdhary BP, Philipp U, Leeb T, Mevissen M. Chromosomal assignment of five equine HTR genes by FISH and RH mapping. Anim Genet 2007; 38:83-4. [PMID: 17257197 DOI: 10.1111/j.1365-2052.2006.01546.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- A Prause
- Division of Veterinary Pharmacology and Toxicology, University of Berne, PO box 8466, 3001 Berne, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Chinese hamster ovary (CHO) cells are a prevalent tool in biological research and are among the most widely used host cell lines for production of recombinant therapeutic proteins. While research in other organisms has been revolutionized through the development of DNA sequence-based tools, the lack of comparable genomic resources for the Chinese hamster has impeded similar work in CHO cell lines. A comparative genomics approach, based upon the completely sequenced mouse genome, can facilitate genomic work in this important organism. Using chromosome synteny to define regions of conserved linkage between Chinese hamster and mouse chromosomes, a working scaffold for the Chinese hamster genome has been developed. Mapping CHO and Chinese hamster sequences to the mouse genome creates direct access to relevant information in public databases. Additionally, mapping gene expression data onto a chromosome scaffold affords the ability to interpret information in a genomic context, potentially revealing important structural and regulatory features in the Chinese hamster genome. Further development of this genomic scaffold will provide opportunities to use biomolecular tools for research in CHO cell lines today and will be an asset to future efforts to sequence the Chinese hamster genome.
Collapse
Affiliation(s)
- Katie F Wlaschin
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, USA
| | | |
Collapse
|
44
|
Rocchi M, Archidiacono N, Stanyon R. Ancestral genomes reconstruction: An integrated, multi-disciplinary approach is needed. Genome Res 2006; 16:1441-4. [PMID: 17053088 DOI: 10.1101/gr.5687906] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- Mariano Rocchi
- Department of Genetics and Microbiology, University of Bari, Bari 70126, Italy.
| | | | | |
Collapse
|