1
|
Niu N, Zhao R, Tian M, Zong W, Hou X, Liu X, Wang L, Wang L, Zhang L. Genomic Variants Associated with Haematological Parameters and T Lymphocyte Subpopulations in a Large White and Min Pig Intercross Population. Animals (Basel) 2024; 14:3140. [PMID: 39518863 PMCID: PMC11545393 DOI: 10.3390/ani14213140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/07/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The breeding of disease-resistant pigs has consistently been a topic of significant interest and concern within the pig farming industry. The study of pig blood indicators has the potential to confer economic benefits upon the pig farming industry, whilst simultaneously providing valuable insights that can inform the study of human diseases. In this study, an F2 resource population of 489 individuals was generated through the intercrossing of Large White boars and Min pig sows. A total of 17 haematological parameters and T lymphocyte subpopulations were measured, including white blood cell count (WBC), lymphocyte count (LYM), lymphocyte count percentage (LYM%), monocyte count (MID), monocyte count percentage (MID%), neutrophilic granulocyte count (GRN), percentage of neutrophils (GRN%), mean platelet volume (MPV), platelet distribution width (PDW), platelet count (PLT), CD4+/CD8+, CD4+CD8+CD3+, CD4+CD8-CD3+, CD4-CD8+CD3+, CD4-CD8-CD3+, and CD3+. The Illumina PorcineSNP60 Genotyping BeadChip was obtained for all of the F2 animals. Subsequently, a genome-wide association study (GWAS) was conducted using the TASSEL 5.0 software to identify associated variants and candidate genes for the 17 traits. Significant association signals were identified for PCT and PLT on SSC7, with 1 and 11 significant SNP loci, respectively. A single nucleotide polymorphism (SNP) on SSC12 was identified as a significant predictor of the white blood cell (WBC) trait. Significant association signals were detected for the T lymphocyte subpopulations, namely CD4+/CD8+, CD4+CD8+CD3+, CD4+CD8-CD3+, and CD4-CD8+CD3+, with the majority of these signals observed on SSC7. The genes CLIC5, TRIM15, and SLC17A4 were identified as potential candidates for influencing CD4+/CD8+ and CD4-CD8+CD3+. A missense variant, c.2707 G>A, in the SLC17A4 gene has been demonstrated to be significantly associated with the CD4+/CD8+ and CD4-CD8+CD3+ traits. Three missense variants (c.425 A>C, c.500 C>T, and c.733 A>G) have been identified in the TRIM15 gene as being linked to the CD4+/CD8+ trait. Nevertheless, only c.425 A>C has been demonstrated to be significantly associated with CD4-CD8+CD3+. In the CLIC5 gene, one missense variant (c.957 T>C) has been identified as being associated with the CD4+/CD8+ and CD4-CD8+CD3+ traits. Additionally, significant association signals were observed for CD4+CD8+CD3+ and CD4+CD8-CD3+ on SSC2 and 5, respectively. Subsequently, a gene ontology (GO) enrichment analysis was conducted on all genes within the quantitative trait loci (QTL) intervals of platelet count, CD4+/CD8+, and CD4-CD8+CD3+. The MHC class II protein complex binding pathway was identified as the most significant pathway among the three immune traits. These results provide guidance for further research in the field of breeding disease-resistant pigs.
Collapse
Affiliation(s)
- Naiqi Niu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (N.N.); (R.Z.); (W.Z.); (X.H.); (X.L.); (L.W.); (L.W.)
| | - Runze Zhao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (N.N.); (R.Z.); (W.Z.); (X.H.); (X.L.); (L.W.); (L.W.)
| | - Ming Tian
- Institute of Animal Husbandry, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
| | - Wencheng Zong
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (N.N.); (R.Z.); (W.Z.); (X.H.); (X.L.); (L.W.); (L.W.)
| | - Xinhua Hou
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (N.N.); (R.Z.); (W.Z.); (X.H.); (X.L.); (L.W.); (L.W.)
| | - Xin Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (N.N.); (R.Z.); (W.Z.); (X.H.); (X.L.); (L.W.); (L.W.)
| | - Ligang Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (N.N.); (R.Z.); (W.Z.); (X.H.); (X.L.); (L.W.); (L.W.)
| | - Lixian Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (N.N.); (R.Z.); (W.Z.); (X.H.); (X.L.); (L.W.); (L.W.)
| | - Longchao Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (N.N.); (R.Z.); (W.Z.); (X.H.); (X.L.); (L.W.); (L.W.)
| |
Collapse
|
2
|
Chikweto A, Mapp-Alexander V, Cummings K, Bhaiyat MI, Alhassan A. Disseminated Sarcocystis miescheriana infection in a finisher pig in Grenada. Vet Med Sci 2024; 10:e1480. [PMID: 38879810 PMCID: PMC11180362 DOI: 10.1002/vms3.1480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 04/06/2024] [Accepted: 04/26/2024] [Indexed: 06/19/2024] Open
Abstract
Sarcocystis miescheriana infection is an important cause of carcass condemnation during meat inspection. The infection can cause morbidity and mortality in domestic pigs. In this study, an 8-month-old finisher pig was presented to a local abattoir for slaughter. Multiple white nodular lesions affecting the meat were observed, resulting in the condemnation of the carcass. Consequently, half of the carcass was submitted to the necropsy diagnostic laboratory in the School of Veterinary Medicine for further evaluation. Grossly, all superficial and deep muscle groups had severe multifocal macrocysts (3 mm × 2 mm × 1 mm) on the surface and extending deep into the skeletal musculature. Histopathology revealed moderate multifocal granulomatous and eosinophilic myositis with intralesional degenerated and intact parasites. Sample genomic DNA sequence analysis of the 18S RNA gene showed 100% identity to S. miescheriana in the GenBank. This is the first report of S. miescheriana in Grenada, West Indies.
Collapse
Affiliation(s)
- Alfred Chikweto
- Pathobiology Department, St. George's University, School of Veterinary Medicine, West Indies, St. George, Grenada
| | - Veronica Mapp-Alexander
- Pathobiology Department, St. George's University, School of Veterinary Medicine, West Indies, St. George, Grenada
| | - Kimond Cummings
- Ministry of Agriculture and Lands, Fisheries & Cooperatives, West Indies, St. George, Grenada
| | - Muhammad I Bhaiyat
- Pathobiology Department, St. George's University, School of Veterinary Medicine, West Indies, St. George, Grenada
| | - Andy Alhassan
- Pathobiology Department, St. George's University, School of Veterinary Medicine, West Indies, St. George, Grenada
| |
Collapse
|
3
|
Kumar S, Bhushan B, Kumar A, Panigrahi M, Bharati J, Kumari S, Kaiho K, Banik S, Karthikeyan A, Chaudhary R, Gaur GK, Dutt T. Elucidation of novel SNPs affecting immune response to classical swine fever vaccination in pigs using immunogenomics approach. Vet Res Commun 2024; 48:941-953. [PMID: 38017322 DOI: 10.1007/s11259-023-10262-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/19/2023] [Indexed: 11/30/2023]
Abstract
The host genetic makeup plays a significant role in causing the within-breed variation among individuals after vaccination. The present study was undertaken to elucidate the genetic basis of differential immune response between high and low responder Landlly (Landrace X Ghurrah) piglets vis-à-vis CSF vaccination. For the purpose, E2 antibody response against CSF vaccination was estimated in sampled animals on the day of vaccination and 21-day post-vaccination as a measure of humoral immune response. Double-digestion restriction associated DNA (ddRAD) sequencing was undertaken on 96 randomly chosen Landlly piglets using Illumina HiSeq platform. SNP markers were called using standard methodology. Genome-wide association study (GWAS) was undertaken in PLINK program to identify the informative SNP markers significantly associated with differential immune response. The results revealed significant SNPs associated with E2 antibody response against CSF vaccination. The genome-wide informative SNPs for the humoral immune response against CSF vaccination were located on SSC10, SSC17, SSC9, SSC2, SSC3 and SSC6. The overlapping and flanking genes (500Kb upstream and downstream) of significant SNPs were CYB5R1, PCMTD2, WT1, IL9R, CD101, TMEM64, TLR6, PIGG, ADIPOR1, PRSS37, EIF3M, and DNAJC24. Functional enrichment and annotation analysis were undertaken for these genes in order to gain maximum insights into the association of these genes with immune system functionality in pigs. The genetic makeup was associated with differential immune response against CSF vaccination in Landlly piglets while the identified informative SNPs may be used as suitable markers for determining variation in host immune response against CSF vaccination in pigs.
Collapse
Affiliation(s)
- Satish Kumar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P, 243122, India.
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India.
| | - Bharat Bhushan
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P, 243122, India.
| | - Amit Kumar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P, 243122, India.
| | - Manjit Panigrahi
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P, 243122, India
| | - Jaya Bharati
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India
| | - Soni Kumari
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P, 243122, India
| | - Kaisa Kaiho
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P, 243122, India
| | - Santanu Banik
- ICAR-National Research Centre on Pig, Rani, Guwahati, Assam, 781131, India
| | - A Karthikeyan
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P, 243122, India
| | - Rajni Chaudhary
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P, 243122, India
| | - G K Gaur
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P, 243122, India
| | - Triveni Dutt
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P, 243122, India
| |
Collapse
|
4
|
Sánchez-Arcila JC, Jensen KDC. Forward Genetics in Apicomplexa Biology: The Host Side of the Story. Front Cell Infect Microbiol 2022; 12:878475. [PMID: 35646724 PMCID: PMC9133346 DOI: 10.3389/fcimb.2022.878475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Forward genetic approaches have been widely used in parasitology and have proven their power to reveal the complexities of host-parasite interactions in an unbiased fashion. Many aspects of the parasite's biology, including the identification of virulence factors, replication determinants, antibiotic resistance genes, and other factors required for parasitic life, have been discovered using such strategies. Forward genetic approaches have also been employed to understand host resistance mechanisms to parasitic infection. Here, we will introduce and review all forward genetic approaches that have been used to identify host factors involved with Apicomplexa infections, which include classical genetic screens and QTL mapping, GWAS, ENU mutagenesis, overexpression, RNAi and CRISPR-Cas9 library screens. Collectively, these screens have improved our understanding of host resistance mechanisms, immune regulation, vaccine and drug designs for Apicomplexa parasites. We will also discuss how recent advances in molecular genetics give present opportunities to further explore host-parasite relationships.
Collapse
Affiliation(s)
- Juan C. Sánchez-Arcila
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA, United States
| | - Kirk D. C. Jensen
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA, United States
- Health Science Research Institute, University of California, Merced, Merced, CA, United States
| |
Collapse
|
5
|
Höltig D, Reiner G. [Opportunities and risks of the use of genetic resistances to infectious diseases in pigs - an overview]. Tierarztl Prax Ausg G Grosstiere Nutztiere 2022; 50:46-58. [PMID: 35235982 DOI: 10.1055/a-1751-3531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Demands for health, performance and welfare in pigs, as well as the desire for consumer protection and reduced antibiotic use, require optimal measures in advance of disease development. This includes, in principle, the use of genetically more resistant lines and breeding animals, whose existence has been proven for a wide range of pathogen-host interactions. In addition, attempts are being made to identify the gene variants responsible for disease resistance in order to force the selection of suitable populations, also using modern biotechnical technics. The present work is intended to provide an overview of the research status achieved in this context and to highlight opportunities and risks for the future.The evaluation of the international literature shows that genetic disease resistance exist in many areas of swine diseases. However, polygenic inheritance, lack of animal models and the influence of environmental factors during evaluation render their implementation in practical breeding programs demanding. This is where modern molecular genetic methods, such as Gene Editing, come into play. Both approaches possess their pros and cons, which are discussed in this paper. The most important infectious diseases in pigs, including general diseases and epizootics, diseases of the respiratory and digestive tract and diseases of the immune system are taken into account.
Collapse
Affiliation(s)
- Doris Höltig
- Klinik für kleine Klauentiere, forensische Medizin und Ambulatorische Klinik, Stiftung Tierärztliche Hochschule Hannover
| | - Gerald Reiner
- Klinikum Veterinärmedizin, Justus-Liebig-Universität
| |
Collapse
|
6
|
Sanglard LP, Mote BE, Willson P, Harding JCS, Plastow GS, Dekkers JCM, Serão NVL. Genomic Analysis of IgG Antibody Response to Common Pathogens in Commercial Sows in Health-Challenged Herds. Front Genet 2020; 11:593804. [PMID: 33193739 PMCID: PMC7646516 DOI: 10.3389/fgene.2020.593804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/25/2020] [Indexed: 11/13/2022] Open
Abstract
Losses due to infectious diseases are one of the main factors affecting productivity in the swine industry, motivating the investigation of disease resilience-related traits for genetic selection. However, these traits are not expected to be expressed in the nucleus herds, where selection is performed. One alternative is to use information from the commercial level to identify and select nucleus animals genetically superior for coping with pathogen challenges. In this study, we analyzed the genetic basis of antibody (Ab) response to common infectious pathogens in health-challenged commercial swine herds as potential indicator traits for disease resilience, including Ab response to influenza A virus of swine (IAV), Mycoplasma hyopneumoniae (MH), porcine circovirus (PCV2), and Actinobacillus pleuropneumoniae (APP; different serotypes). Ab response was measured in blood at entry into gilt rearing, post-acclimation (∼40 days after entering the commercial herd), and parities 1 and 2. Heritability estimates for Ab response to IAV, MH, and PCV2 ranged from 0 to 0.76. Ab response to APP ranged from 0 to 0.40. The genetic correlation (r G ) of Ab response to IAV with MH, PCV2, PRRSV, and APPmean (average Ab responses for all serotypes of APP) were positive (>0.29) at entry. APPmean was negatively correlated with PCV2 and MH at entry and parity 2 but positively correlated with MH at post-acclimation and parity 1. Genomic regions associated with Ab response to different APP serotypes were identified on 13 chromosomes. The region on chromosome 14 (2 Mb) was associated with several serotypes of APP, explaining up to 4.3% of the genetic variance of Ab to APP7 at entry. In general, genomic prediction accuracies for Ab response were low to moderate, except average Ab response to all infectious pathogens evaluated. These results suggest that genetic selection of Ab response in commercial sows is possible, but with variable success depending on the trait and the time-point of collection. Future work is needed to determine genetic correlations of Ab response with disease resilience, reproductive performance, and other production traits.
Collapse
Affiliation(s)
- Leticia P Sanglard
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | | | - Benny E Mote
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Philip Willson
- Canadian Centre for Health and Safety in Agriculture, University of Saskatchewan, Saskatoon, SK, Canada
| | - John C S Harding
- Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Graham S Plastow
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Nick V L Serão
- Department of Animal Science, Iowa State University, Ames, IA, United States
| |
Collapse
|
7
|
Expression pattern and association analysis of porcine matrix metallopeptidase 9 (MMP9) with diarrhea and performance traits in piglets. Res Vet Sci 2019; 129:53-58. [PMID: 31931263 DOI: 10.1016/j.rvsc.2019.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/25/2019] [Accepted: 12/22/2019] [Indexed: 11/22/2022]
Abstract
Matrix metalloproteinase 9 (MMP9) plays critical roles in multiple biological processes, such as reproduction, cell proliferation and differentiation, and host defenses. The aim of this study was to evaluate whether MMP9 is a candidate gene for resistance to diarrhea in piglets. In this study, quantitative real-time PCR was used to analyze the expression of MMP9 mRNA in different tissues of specific pathogen-free piglets. MMP9 was expressed in all the tissues (heart, liver, spleen, lung, kidney, stomach, duodenum, jejunum, ileum, and colon) analyzed. An association analysis between MMP9 polymorphisms and piglet diarrhea score and performance traits were performed in Min (Chinese indigenous breed) and Landrace populations. In the statistical analysis, at the g.48178429 G>A locus, AA piglets had a lower diarrhea score than that of GA in the Min population (P < .05), whereas GG had higher day-35 body weight and average daily gain (ADG) than AA in the Landrace breed (P < .05). At the rs336583561 locus, Min piglets with the GG genotype have a lower diarrhea score than AG piglets (P < .05). At g.48184777C>T, CC animals have higher body weight than TC Landrace piglets (P < .05 or P < .01). A 5' flanking deletion assay indicated that g.48178429 G>A was not located in the MMP9 promoter region. Our results suggest that the A allele at the g.48178429 G>A locus and the G allele at rs336583561 are resistance alleles in Min pigs. Before these markers are used in pig breeding programs, more studies in larger populations are needed.
Collapse
|
8
|
Bovo S, Mazzoni G, Bertolini F, Schiavo G, Galimberti G, Gallo M, Dall'Olio S, Fontanesi L. Genome-wide association studies for 30 haematological and blood clinical-biochemical traits in Large White pigs reveal genomic regions affecting intermediate phenotypes. Sci Rep 2019; 9:7003. [PMID: 31065004 PMCID: PMC6504931 DOI: 10.1038/s41598-019-43297-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 04/16/2019] [Indexed: 12/20/2022] Open
Abstract
Haematological and clinical-biochemical parameters are considered indicators of the physiological/health status of animals and might serve as intermediate phenotypes to link physiological aspects to production and disease resistance traits. The dissection of the genetic variability affecting these phenotypes might be useful to describe the resilience of the animals and to support the usefulness of the pig as animal model. Here, we analysed 15 haematological and 15 clinical-biochemical traits in 843 Italian Large White pigs, via three genome-wide association scan approaches (single-trait, multi-trait and Bayesian). We identified 52 quantitative trait loci (QTLs) associated with 29 out of 30 analysed blood parameters, with the most significant QTL identified on porcine chromosome 14 for basophil count. Some QTL regions harbour genes that may be the obvious candidates: QTLs for cholesterol parameters identified genes (ADCY8, APOB, ATG5, CDKAL1, PCSK5, PRL and SOX6) that are directly involved in cholesterol metabolism; other QTLs highlighted genes encoding the enzymes being measured [ALT (known also as GPT) and AST (known also as GOT)]. Moreover, the multivariate approach strengthened the association results for several candidate genes. The obtained results can contribute to define new measurable phenotypes that could be applied in breeding programs as proxies for more complex traits.
Collapse
Affiliation(s)
- Samuele Bovo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| | - Gianluca Mazzoni
- Department of Health Technology, Technical University of Denmark (DTU), Lyngby, 2800, Denmark
| | - Francesca Bertolini
- National Institute of Aquatic Resources, Technical University of Denmark (DTU), Lyngby, 2800, Denmark
| | - Giuseppina Schiavo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| | - Giuliano Galimberti
- Department of Statistical Sciences "Paolo Fortunati", University of Bologna, Via delle Belle Arti 41, 40126, Bologna, Italy
| | - Maurizio Gallo
- Associazione Nazionale Allevatori Suini (ANAS), Via Nizza 53, 00198, Roma, Italy
| | - Stefania Dall'Olio
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| | - Luca Fontanesi
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy.
| |
Collapse
|
9
|
Genetic resistance - an alternative for controlling PRRS? Porcine Health Manag 2016; 2:27. [PMID: 28405453 PMCID: PMC5382513 DOI: 10.1186/s40813-016-0045-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 10/19/2016] [Indexed: 12/22/2022] Open
Abstract
PRRS is one of the most challenging diseases for world-wide pig production. Attempts for a sustainable control of this scourge by vaccination have not yet fully satisfied. With an increasing knowledge and methodology in disease resistance, a new world-wide endeavour has been started to support the combat of animal diseases, based on the existence of valuable gene variants with regard to any host-pathogen interaction. Several groups have produced a wealth of evidence for natural variability in resistance/susceptibility to PRRS in our commercial breeding lines. However, up to now, exploiting existing variation has failed because of the difficulty to detect the carriers of favourable and unfavourable alleles, especially with regard to such complex polygenic traits like resistance to PRRS. New hope comes from new genomic tools like next generation sequencing which have become extremely fast and low priced. Thus, research is booming world-wide and the jigsaw puzzle is filling up – slowly but steadily. On the other hand, knowledge from virological and biomedical basic research has opened the way for an “intervening way”, i.e. the modification of identified key genes that occupy key positions in PRRS pathogenesis, like CD163. CD163 was identified as the striking receptor in PRRSV entry and its knockout from the genome by gene editing has led to the production of pigs that were completely resistant to PRRSV – a milestone in modern pig breeding. However, at this early step, concerns remain about the acceptance of societies for gene edited products and regulation still awaits upgrading to the new technology. Further questions arise with regard to upcoming patents from an ethical and legal point of view. Eventually, the importance of CD163 for homeostasis, defence and immunity demands for more insight before its complete or partial silencing can be answered. Whatever path will be followed, even a partial abolishment of PRRSV replication will lead to a significant improvement of the disastrous herd situation, with a significant impact on welfare, performance, antimicrobial consumption and consumer protection. Genetics will be part of a future solution.
Collapse
|
10
|
Zanella R, Morés N, Morés MAZ, Peixoto JO, Zanella EL, Ciacci-Zanella JR, Ibelli AMG, Gava D, Cantão ME, Ledur MC. Genome-wide association study of periweaning failure-to-thrive syndrome (PFTS) in pigs. Vet Rec 2016; 178:653. [PMID: 27162284 DOI: 10.1136/vr.103546] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2016] [Indexed: 01/01/2023]
Abstract
Porcine periweaning-failure-to-thrive syndrome (PFTS) is a condition that affects newly weaned piglets. It is characterised by a progressive debilitation leading to death, in the absence of infectious, nutritional, management or environmental factors. In this study, we present the first report of PFTS in South America and the results of a genome-wide association study to identify the genetic markers associated with the appearance of this condition in a crossbred swine population. Four chromosomal regions were associated with PFTS predisposition, one located on SSCX, one on SSC8, and the two other regions on SSC14. Regions on SSC8 and SSC14 harbour important functional candidate genes involved in human depression and might have an important role in PFTS. Our findings contribute to the increasing knowledge about this syndrome, which has been investigated since 2007, and to the identification of the aetiology of this disease.
Collapse
Affiliation(s)
- R Zanella
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| | - N Morés
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| | - M A Z Morés
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| | - J O Peixoto
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| | - E L Zanella
- R. Zanella's present address is College of Veterinary Medicine, University of Passo Fundo, Passo Fundo, RS, Brazil
| | - J R Ciacci-Zanella
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| | - A M G Ibelli
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| | - D Gava
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| | - M E Cantão
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| | - M C Ledur
- Embrapa Swine and Poultry National Research Center, Concordia, SC, Brazil
| |
Collapse
|
11
|
Reiner G, Dreher F, Drungowski M, Hoeltig D, Bertsch N, Selke M, Willems H, Gerlach GF, Probst I, Tuemmler B, Waldmann KH, Herwig R. Pathway deregulation and expression QTLs in response to Actinobacillus pleuropneumoniae infection in swine. Mamm Genome 2014; 25:600-17. [DOI: 10.1007/s00335-014-9536-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/10/2014] [Indexed: 11/27/2022]
|
12
|
Lee YM, Alam M, Choi BH, Kim KS, Kim JJ. A Whole Genome Association Study to Detect Single Nucleotide Polymorphisms for Blood Components (Immunity) in a Cross between Korean Native Pig and Yorkshire. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 25:1674-80. [PMID: 25049532 PMCID: PMC4094150 DOI: 10.5713/ajas.2012.12503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 09/20/2012] [Accepted: 09/19/2012] [Indexed: 01/06/2023]
Abstract
The purpose of this study was to detect significant SNPs for blood components that were related to immunity using high single nucleotide polymorphism (SNP) density panels in a Korean native pig (KNP)×Yorkshire (YK) cross population. A reciprocal design of KNP×YK produced 249 F2 individuals that were genotyped for a total of 46,865 available SNPs in the Illumina porcine 60K beadchip. To perform whole genome association analysis (WGA), phenotypes were regressed on each SNP under a simple linear regression model after adjustment for sex and slaughter age. To set up a significance threshold, 0.1% point-wise p value from F distribution was used for each SNP test. Among the significant SNPs for a trait, the best set of SNP markers were determined using a stepwise regression procedure with the rates of inclusion and exclusion of each SNP out of the model at 0.001 level. A total of 54 SNPs were detected; 10, 6, 4, 4, 5, 4, 5, 10, and 6 SNPs for neutrophil, lymphocyte, monocyte, eosinophil, basophil, atypical lymph, immunoglobulin, insulin, and insulin-like growth factor-I, respectively. Each set of significant SNPs per trait explained 24 to 42% of phenotypic variance. Several pleiotropic SNPs were detected on SSCs 4, 13, 14 and 15.
Collapse
Affiliation(s)
- Y-M Lee
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Suwon, Korea
| | - M Alam
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Suwon, Korea
| | - B H Choi
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Suwon, Korea
| | - K-S Kim
- Department of Animal Science, Chungbuk National University, Cheongju, Korea
| | - J-J Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Suwon, Korea
| |
Collapse
|
13
|
Reiner G, Bertsch N, Hoeltig D, Selke M, Willems H, Gerlach GF, Tuemmler B, Probst I, Herwig R, Drungowski M, Waldmann KH. Identification of QTL affecting resistance/susceptibility to acute Actinobacillus pleuropneumoniae infection in swine. Mamm Genome 2014; 25:180-91. [DOI: 10.1007/s00335-013-9497-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/11/2013] [Indexed: 11/28/2022]
|
14
|
Preissler R, Tetens J, Reiners K, Looft H, Kemper N. A genome-wide association study to detect genetic variation for postpartum dysgalactia syndrome in five commercial pig breeding lines. Anim Genet 2013; 44:502-8. [DOI: 10.1111/age.12047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2013] [Indexed: 11/29/2022]
Affiliation(s)
- Regine Preissler
- Institute of Agricultural and Nutritional Sciences; Martin-Luther-University Halle-Wittenberg; Theodor-Lieser-Straße 11; D-06120; Halle (Saale); Germany
| | - Jens Tetens
- Institute of Animal Breeding and Husbandry; Christian-Albrechts-University; Olshausenstraße 40; D-24098; Kiel; Germany
| | | | - Holger Looft
- PIC Germany; Ratsteich 31; D-24837; Schleswig; Germany
| | - Nicole Kemper
- Institute of Agricultural and Nutritional Sciences; Martin-Luther-University Halle-Wittenberg; Theodor-Lieser-Straße 11; D-06120; Halle (Saale); Germany
| |
Collapse
|
15
|
Uenishi H, Shinkai H, Morozumi T, Muneta Y. Genomic survey of polymorphisms in pattern recognition receptors and their possible relationship to infections in pigs. Vet Immunol Immunopathol 2012; 148:69-73. [DOI: 10.1016/j.vetimm.2011.07.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 06/07/2011] [Accepted: 07/24/2011] [Indexed: 12/16/2022]
|
16
|
Chen K, Hawken R, Flickinger GH, Rodriguez-Zas SL, Rund LA, Wheeler MB, Abrahamsen M, Rutherford MS, Beever JE, Schook LB. Association of the porcine transforming growth factor beta type I receptor (TGFBR1) gene with growth and carcass traits. Anim Biotechnol 2012; 23:43-63. [PMID: 22292700 DOI: 10.1080/10495398.2011.630897] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
BACKGROUND Growth and carcass traits are of great economic importance in livestock production. A large number of quantitative trait loci (QTL) have been identified for growth and carcass traits on porcine chromosome one (SSC1). A key positional candidate for this chromosomal region is TGFBR1 (transforming growth factor beta type I receptor). This gene plays a key role in inherited disorders at cardiovascular, craniofacial, neurocognitive, and skeletal development in mammals. RESULTS In this study, 27 polymorphic SNPs in the porcine TGFBR1 gene were identified on the University of Illinois Yorkshire × Meishan resource population. Three SNPs (SNP3, SNP43, SNP64) representing major polymorphic patterns of the 27 SNPs in F1 and F0 individuals of the Illinois population were selected for analyses of QTL association and genetic diversity. An association analysis for growth and carcass traits was completed using these three representative SNPs in the Illinois population with 298 F2 individuals and a large commercial population of 1008 animals. The results indicate that the TGFBR1 gene polymorphism (SNP64) is significantly associated (p < 0.05) with growth rates including average daily gains between birth and 56 kg (p = 0.049), between 5.5 and 56 kg (p = 0.024), between 35 and 56 kg (p = 0.021). Significant associations (p < 0.05) were also identified between TGFBR1 gene polymorphisms (SNP3/SNP43) and carcass traits including loin-eye-area (p = 0.022) in the Illinois population, and back-fat thickness (p = 0.0009), lean percentage (p = 0.0023) and muscle color (p = 0.021) in the commercial population. These three SNPs were also used to genotype a diverse panel of 130 animals representing 11 pig breeds. Alleles SNP3_T and SNP43_G were fixed in Pietrain and Sinclair pig breeds. SNP64_G allele was uniquely identified in Chinese Meishan pigs. Strong evidence of association (p < 0.01) between both SNP3 and SNP64 alleles and reproductive traits including gestation length and number of corpora lutea were also observed in the Illinois population. CONCLUSION This study gives the first evidence of association between the porcine TGFBR1 gene and traits of economic importance and provides support for using TGFBR1 markers for pig breeding and selection programs. The genetic diversities in different pig breeds would be helpful to understand the genetic background and migration of the porcine TGFBR1 gene.
Collapse
Affiliation(s)
- Kefei Chen
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Okamura T, Onodera W, Tayama T, Kadowaki H, Kojima-Shibata C, Suzuki E, Uemoto Y, Mikawa S, Hayashi T, Awata T, Fujishima-Kanaya N, Mikawa A, Uenishi H, Suzuki K. A genome-wide scan for quantitative trait loci affecting respiratory disease and immune capacity in Landrace pigs. Anim Genet 2012; 43:721-9. [PMID: 22509953 DOI: 10.1111/j.1365-2052.2012.02359.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2012] [Indexed: 11/30/2022]
Abstract
Respiratory disease is the most important health concern for the swine industry. Genetic improvement for disease resistance is challenging because of the difficulty in obtaining good phenotypes related with disease resistance; however, identification of genes or markers associated with disease resistance can help in the genetic improvement of pig health. The purpose of our study was to investigate whether quantitative trait loci (QTL) associated with disease resistance were segregated in a purebred population of Landrace pigs that had been selected for meat production traits and mycoplasmal pneumonia of swine (MPS) scores over five generations. We analysed 1395 pigs from the base to the fifth generation of this population. Two respiratory disease traits [MPS scores and atrophic rhinitis (AR) scores] and 11 immune-capacity traits were measured in 630-1332 animals at 7 weeks of age and when the animal's body weight reached 105 kg. Each of the pigs, except sires in the base population, was genotyped using 109 microsatellite markers, and then, QTL analysis of the full-sib family population with a multi-generational pedigree structure was performed. Variance component analysis was used to detect QTL associated with MPS or AR scores, and the logarithm of odds (LOD) score and genotypic heritability of the QTL were estimated. Five significant (LOD > 2.51) and 18 suggestive (LOD > 1.35) QTL for respiratory disease traits and immune-capacity traits were detected. The significant QTL for Log-MPS score, located on S. scrofa chromosome 2, could explain 87% of the genetic variance of this score in this analysis. This is the first report of QTL associated with respiratory disease lesions.
Collapse
Affiliation(s)
- T Okamura
- Graduate School of Agricultural Sciences, Tohoku University, Sendai, 981-8555, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Detection of a quantitative trait locus associated with resistance to Ascaris suum infection in pigs. Int J Parasitol 2012; 42:383-91. [DOI: 10.1016/j.ijpara.2012.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Brock AJ, Broke A, Matika O, Wilson AD, Anderson J, Morin AC, Finlayson HA, Reiner G, Willems H, Bishop SC, Archibald AL, Ait-Ali T. An intronic polymorphism in the porcine IRF7 gene is associated with better health and immunity of the host during Sarcocystis infection, and affects interferon signalling. Anim Genet 2011; 42:386-94. [PMID: 21749421 DOI: 10.1111/j.1365-2052.2010.02154.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interferon regulatory factor 7 (IRF7), as a key regulator of type I interferon response, plays an important role during innate response against viral infection. Although well conserved across species, the structure of IRF7 and its function during parasite infection are not well documented in farm animals, such as the pig. To bridge this gap, we have determined the porcine IRF7 gene structure and identified two intronic single nucleotide polymorphisms (SNPs), SNP g.748G>C and SNP g.761A>G, in commercial pig breeds. The distribution of SNP g.761A>G in multiple breeds suggested that it was in Hardy-Weinberg equilibrium and allowed us to map it at the top of SSC2. We found that during Sarcocystis miescheriana infection, the G allele was associated with high lymphocyte levels (P < 0.02), reduced drop in platelet levels (P < 0.002) and IgG1-Th2-dominated response (P < 0.05). This suggests that the G allele was associated with better health and immunity of the host during Sarcocystis infection. Furthermore, we have also provided suggestive evidence that the G allele of SNPc.761A>G enhances the transactivation activity of IRF7, possibly by improving IRF7 transcript splicing of intron-3. These findings would suggest that IRF7, as a transcriptional regulator, is involved in the defence mechanism against a larger spectrum of pathogens, and in more host species, than initially anticipated.
Collapse
Affiliation(s)
- A J Brock
- The Roslin Institute and Royal School of Veterinary Studies, The University of Edinburgh, Roslin BioCentre, Midlothian, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Uddin MJ, Cinar MU, Große-Brinkhaus C, Tesfaye D, Tholen E, Juengst H, Looft C, Wimmers K, Phatsara C, Schellander K. Mapping quantitative trait loci for innate immune response in the pig. Int J Immunogenet 2011; 38:121-31. [DOI: 10.1111/j.1744-313x.2010.00985.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Reiner G, Willems H, Pesch S, Ohlinger VF. Variation in resistance to the porcine reproductive and respiratory syndrome virus (PRRSV) in Pietrain and Miniature pigs. J Anim Breed Genet 2010; 127:100-6. [PMID: 20433517 DOI: 10.1111/j.1439-0388.2009.00818.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is one of the economically most important diseases of swine. Viraemia and the prolonged persistence of the virus are among the most critical factors. Virus replication and severity of disease vary with virus isolates, and there is rising evidence for a genetic component of the host susceptibility. Dissecting the genetic basis of resistance/susceptibility to PRRS virus (PRRSV) might lead to improved knowledge on the molecular mechanisms of PRRS and the establishment of genetic markers for future disease control. The aim of this study was to establish a porcine model with emphasized genetic differences in PRRSV susceptibility. Seven 'Wiesenauer Miniature' pigs (MI), a local German breed and eight commercial Pietrain (PI) pigs were challenged with 10(5) TCID(50) of an attenuated PRRSV strain (Ingelvac PRRSV MLV). Clinical status, viraemia and seroconversion of the pigs were compared. No clinical signs were observed during the experiment. Viraemia peaked on day 6 p.i., with 100% of viraemic pigs in PI and on day 12 p.i with 87% of viraemic MI. Viraemia lasted for up to 35 days in MI and for at least 72 days in PI. This surprising result was confirmed by a second study with another four MI. MI and PI showed maximum virus titres of 10(2.5) TCID(50)/ml of serum and 10(4.5) TCID(50)/ml, respectively, indicating a virus replication in MI of approximately 3.3% that of PI over the complete period. MI were more efficient in antibody production. With such pronounced breed differences, the model is of high relevance for the genetic dissection of PRRS pathogenesis and susceptibility.
Collapse
Affiliation(s)
- G Reiner
- Department of Clinical Veterinary Sciences, Justus-Liebig-University, Giessen, Germany.
| | | | | | | |
Collapse
|
22
|
Gregersen VR, Sørensen KK, Christensen OF, Busch ME, Vingborg RKK, Velander IH, Lund MS, Bendixen C. Identification of QTL for dorso-caudal chronic pleuritis in 12 crossbred porcine families. Anim Genet 2010; 41:509-14. [DOI: 10.1111/j.1365-2052.2010.02028.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Mapping of quantitative trait loci for mycoplasma and tetanus antibodies and interferon-gamma in a porcine F(2) Duroc x Pietrain resource population. Mamm Genome 2010; 21:409-18. [PMID: 20567833 DOI: 10.1007/s00335-010-9269-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 05/28/2010] [Indexed: 12/30/2022]
Abstract
The aim of the present study was to detect quantitative trait loci (QTL) for innate and adaptive immunity in pigs. For this purpose, a Duroc x Pietrain F(2) resource population (DUPI) with 319 offspring was used to map QTL for the immune traits blood antibodies and interferon-gamma using 122 microsatellites covering all autosomes. Antibodies response to Mycoplasma hyopneumoniae and tetanus toxoid vaccine and the interferon-gamma (IFNG) serum concentration were measured at three different time points and were used as phenotypes. The differences of antibodies and interferon concentration between different time points were also used for the linkage mapping. Line-cross and imprinting QTL analysis, including two-QTL, were performed using QTL Express. A total of 30 QTL (12, 6, and 12 for mycoplasma, tetanus antibody, and IFNG, respectively) were identified at the 5% chromosome-wide-level significant, of which 28 were detected by line-cross and 2 by imprinting model. In addition, two QTL were identified on chromosome 5 using the two-QTL approach where both loci were in repulsion phase. Most QTL were detected on pig chromosomes 2, 5, 11, and 18. Antibodies were increased over time and immune traits were found to be affected by sex, litter size, parity, and month of birth. The results demonstrated that antibody and IFNG concentration are influenced by multiple chromosomal areas. The flanking markers of the QTL identified for IFNG on SSC5 did incorporate the position of the porcine IFNG gene. The detected QTL will allow further research in these QTL regions for candidate genes and their utilization in selection to improve the immune response and disease resistance in pig.
Collapse
|
24
|
Reiner G, Clemens N, Lohner E, Willems H. SNPs in the porcine GOT1 gene improve a QTL for serum aspartate aminotransferase activity on SSC14. Anim Genet 2009; 41:319-23. [PMID: 19968637 DOI: 10.1111/j.1365-2052.2009.01997.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Clinical-chemical traits are essential parameters to quantify the health status of individuals and herds, but the knowledge about their genetic architecture is sparse, especially in swine. We have recently described three QTL for serum aspartate aminotransferase activity (sAST), and one of these maps to a region on SSC14 where the aspartate aminotransferase coding gene GOT1 is located. This QTL was only apparent under the acute burden of a model disease. The aim of the present study was to characterize GOT1 as a candidate gene and to test the effects of different GOT1 SNPs as potential quantitative trait nucleotides (QTNs) for sAST. Nine SNPs within GOT1 were identified, and SNP c.-793C>G significantly increased the QTL effects and narrowed the confidence interval from 90 to 15 cM. Additionally, we found a significant association of SNP c.-793C>G in a commercial outbred line, but with reversed phase. We conclude that GOT1 is a putative candidate gene for the sAST QTL on SSC14, and that SNP c.-793C>G is close to the responsible QTN.
Collapse
Affiliation(s)
- G Reiner
- Department of Veterinary Clinical Sciences, Justus-Liebig-University, D-35392 Giessen, Germany.
| | | | | | | |
Collapse
|
25
|
Reiner G, Köhler F, Berge T, Fischer R, Hübner-Weitz K, Scholl J, Willems H. Mapping of quantitative trait loci affecting behaviour in swine. Anim Genet 2009; 40:366-76. [DOI: 10.1111/j.1365-2052.2008.01847.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
26
|
Wimmers K, Murani E, Schellander K, Ponsuksili S. QTL for traits related to humoral immune response estimated from data of a porcine F2 resource population. Int J Immunogenet 2009; 36:141-51. [DOI: 10.1111/j.1744-313x.2009.00838.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
27
|
Reiner G. Investigations on genetic disease resistance in swine—A contribution to the reduction of pain, suffering and damage in farm animals. Appl Anim Behav Sci 2009. [DOI: 10.1016/j.applanim.2009.02.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Suffering in diseased pigs as expressed by behavioural, clinical and clinical–chemical traits, in a well defined parasite model. Appl Anim Behav Sci 2009. [DOI: 10.1016/j.applanim.2009.02.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
29
|
Hoeltig D, Hennig-Pauka I, Thies K, Rehm T, Beyerbach M, Strutzberg-Minder K, Gerlach GF, Waldmann KH. A novel Respiratory Health Score (RHS) supports a role of acute lung damage and pig breed in the course of an Actinobacillus pleuropneumoniae infection. BMC Vet Res 2009; 5:14. [PMID: 19383120 PMCID: PMC2680854 DOI: 10.1186/1746-6148-5-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Accepted: 04/21/2009] [Indexed: 12/05/2022] Open
Abstract
Background Bacterial lung infections are a major cause of economic losses in the pig industry; they are responsible for approximately 50% of the antibiotics used in pigs and, therefore, also present an increasing concern to consumer protection agencies. In response to this changing market we investigated the feasibility of an old approach aimed at the breeding selection of more resistant pigs. As a first step in this direction we applied a new respiratory health score system to study the susceptibility of four different pig breeding lines (German Landrace, Piétrain, Hampshire, Large White) towards the respiratory tract pathogen Actinobacillus (A.) pleuropneumoniae. Results A controlled experimental aerosol infection with an A. pleuropneumoniae serotype 7 isolate was performed using 106 weaning pigs of defined breeding lines from the breeds German Landrace, Piétrain, Hamphire, and Large White. Pigs were clinically assessed on days 4 and 20 post infection following a novel scoring system, the Respiratory Health Score (RHS), which combines clinical, sonographic and radiographic examination results. The ranking on day 4 was significantly correlated with the ranking based on the pathomorphological Lung Lesion Score (LLS; Spearman Rank Correlation Coefficient of 0.86 [p < 0.0001]). Based on their RHS pigs were assigned to the different quartiles independent of the breeding line. The RHS-based rankings of pigs on day 4 and on day 20 were highly correlated (Spearman Rank Correlation Coefficient of 0.82 [p < 0.0001]) independent of the breeding line. Pigs of the Hampshire line were predominantly found in the lowest scoring quartile (47.6%) and absent in the highest scoring quartile. In contrast, pigs of the German Landrace and Piétrain breeding lines were predominantly found in the highest scoring quartile (32.3% and 35.7%, respectively). Conclusion These results demonstrate that the RHS obtained from live pigs shows a highly significant correlation to the lung lesion score considered as a "gold standard". The correlation of the ranking at days 4 and 20 post infection implies that the course of disease is highly dependent on the acute lung damage. The different severity of signs among the tested pig breeding lines clearly suggests a genetic difference in the susceptibility of pigs to A. pleuropneumoniae infection.
Collapse
Affiliation(s)
- Doris Hoeltig
- Clinic of Swine and Small Ruminants, Forensic Medicine and Ambulatory Service, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Reiner G, Fischer R, Köhler F, Berge T, Hepp S, Willems H. Heritabilities and quantitative trait loci for blood gases and blood pH in swine. Anim Genet 2009; 40:142-8. [DOI: 10.1111/j.1365-2052.2008.01813.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Uenishi H, Shinkai H. Porcine Toll-like receptors: the front line of pathogen monitoring and possible implications for disease resistance. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:353-361. [PMID: 18590761 DOI: 10.1016/j.dci.2008.06.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 06/04/2008] [Accepted: 06/04/2008] [Indexed: 05/26/2023]
Abstract
Toll-like receptors (TLRs) are the most famous pattern-recognition receptors (PRRs); they monitor pathogen-associated molecular patterns and play a critical role in activation of the immune system against infection. TLR gene mutations may affect the gene products in terms of their ligand-binding ability or their signal transduction ability after ligand binding; such changes have a great influence on pathogen monitoring and disease resistance. Thirteen mammalian TLRs have been identified, and genes corresponding to all 10 TLR genes identified in humans have been fully cloned in pigs. Porcine TLR gene coding sequences possess a large number of nonsynonymous single nucleotide polymorphisms (SNPs). They are concentrated in ectodomains, and may increase the variability of pathogen recognition in pig populations. We summarize the current knowledge of TLR molecules in mammals and livestock (particularly pigs) and speculate on the relationship between SNPs in porcine TLRs and their application to vaccine design and disease-resistance breeding.
Collapse
Affiliation(s)
- Hirohide Uenishi
- Division of Animal Sciences, National Institute of Agrobiological Sciences (NIAS), 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan.
| | | |
Collapse
|
32
|
Reiner G, Clemens N, Fischer R, Köhler F, Berge T, Hepp S, Willems H. Mapping of quantitative trait loci for clinical-chemical traits in swine. Anim Genet 2009; 40:57-64. [DOI: 10.1111/j.1365-2052.2008.01804.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Reiner G, Fischer R, Hepp S, Berge T, Köhler F, Willems H. Quantitative trait loci for white blood cell numbers in swine. Anim Genet 2008; 39:163-8. [PMID: 18307579 DOI: 10.1111/j.1365-2052.2008.01700.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Differential white blood cell counts are essential diagnostic parameters in veterinary practice but knowledge on the genetic architecture controlling variability of leucocyte numbers and relationships is sparse, especially in swine. Total leucocyte numbers (Leu) and the differential leucocyte counts, i.e. the fractions of lymphocytes (Lym), polymorphonuclear leucocytes [neutrophils (Neu), eosinophils (Eos) and basophils (Bas)] and monocytes (Mon) were measured in 139 F(2) pigs from a Meishan/Pietrain family, before and after challenge with the protozoan pathogen Sarcocystis miescheriana for genome-wide quantitative trait loci (QTL) analysis. After infection, the pigs passed through three stages representing acute disease, reconvalescence and chronic disease. Nine genome-wide significant and 29 putative, single QTL controlling leucocyte traits were identified on 15 chromosomes. Because leucocyte traits varied with health and disease status, QTL influencing the leucocyte phenotypes showed specific health/disease patterns. Regions on SSC1, 8 and 12 contained QTL for baseline leucocyte traits. Other QTL regions reached control on leucocyte traits only at distinct stages of the disease model. Two-thirds of the QTL have not been described before. Single QTL explained up to 19% of the phenotypic variance in the F(2) animals. Related traits were partly under common genetic influence. Our analysis confirms that leucocyte trait variation is associated with multiple chromosomal regions.
Collapse
Affiliation(s)
- G Reiner
- Department of Veterinary Clinical Sciences, University of Giessen, D-35392 Giessen, Germany.
| | | | | | | | | | | |
Collapse
|
34
|
Reiner G, Fischer R, Hepp S, Berge T, Köhler F, Willems H. Quantitative trait loci for red blood cell traits in swine. Anim Genet 2007; 38:447-52. [PMID: 17627803 DOI: 10.1111/j.1365-2052.2007.01629.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Haematological traits are essential diagnostic parameters in veterinary practice but knowledge on the genetic architecture controlling variability of erythroid traits is sparse, especially in swine. To identify QTL for erythroid traits in the pig, haematocrit (HCT), haemoglobin (HB), erythrocyte counts (RBC) and mean corpuscular haemoglobin content (MCHC) were measured in 139 F(2) pigs from a Meishan/Pietrain family, before and after challenge with the protozoan pathogen Sarcocystis miescheriana. The pigs passed through three stages representing acute disease, reconvalescence and chronic disease. Forty-three single QTL controlling erythroid traits were identified on 16 chromosomes. Twelve of the QTL were significant at the genome-wide level while 31 were significant at a chromosome-wide level. Because erythroid traits varied with health and disease status, QTL influencing the erythroid phenotypes showed specific health/disease patterns. Regions on SSC5, 7, 8, 12 and 13 contained QTL for baseline erythroid traits, while the other QTL regions affected distinct stages of the disease model. Single QTL explained 9-17% of the phenotypic variance in the F(2) animals. Related traits were partly under common genetic influence. Our analysis confirms that erythroid trait variation differs between Meishan and Pietrain breeds and that this variation is associated with multiple chromosomal regions.
Collapse
Affiliation(s)
- G Reiner
- Department of Veterinary Clinical Sciences, University of Giessen, D-35392 Giessen, Germany.
| | | | | | | | | | | |
Collapse
|