1
|
|
2
|
Almojil D, Bourgeois Y, Falis M, Hariyani I, Wilcox J, Boissinot S. The Structural, Functional and Evolutionary Impact of Transposable Elements in Eukaryotes. Genes (Basel) 2021; 12:genes12060918. [PMID: 34203645 PMCID: PMC8232201 DOI: 10.3390/genes12060918] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/22/2022] Open
Abstract
Transposable elements (TEs) are nearly ubiquitous in eukaryotes. The increase in genomic data, as well as progress in genome annotation and molecular biology techniques, have revealed the vast number of ways mobile elements have impacted the evolution of eukaryotes. In addition to being the main cause of difference in haploid genome size, TEs have affected the overall organization of genomes by accumulating preferentially in some genomic regions, by causing structural rearrangements or by modifying the recombination rate. Although the vast majority of insertions is neutral or deleterious, TEs have been an important source of evolutionary novelties and have played a determinant role in the evolution of fundamental biological processes. TEs have been recruited in the regulation of host genes and are implicated in the evolution of regulatory networks. They have also served as a source of protein-coding sequences or even entire genes. The impact of TEs on eukaryotic evolution is only now being fully appreciated and the role they may play in a number of biological processes, such as speciation and adaptation, remains to be deciphered.
Collapse
Affiliation(s)
- Dareen Almojil
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates; (D.A.); (M.F.); (I.H.); (J.W.)
| | - Yann Bourgeois
- School of Biological Sciences, University of Portsmouth, Portsmouth, UK;
| | - Marcin Falis
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates; (D.A.); (M.F.); (I.H.); (J.W.)
| | - Imtiyaz Hariyani
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates; (D.A.); (M.F.); (I.H.); (J.W.)
| | - Justin Wilcox
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates; (D.A.); (M.F.); (I.H.); (J.W.)
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates
| | - Stéphane Boissinot
- New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates; (D.A.); (M.F.); (I.H.); (J.W.)
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi P.O. Box 129188, United Arab Emirates
- Correspondence:
| |
Collapse
|
3
|
Li B, Luo H, Weng Q, Wang S, Pan Z, Xie Z, Wu W, Liu H, Li Q. Differential DNA methylation of the meiosis-specific geneFKBP6in testes of yak and cattle-yak hybrids. Reprod Domest Anim 2016; 51:1030-1038. [DOI: 10.1111/rda.12794] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/17/2016] [Indexed: 12/15/2022]
Affiliation(s)
- B Li
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - H Luo
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - Q Weng
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - S Wang
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - Z Pan
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - Z Xie
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - W Wu
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - H Liu
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - Q Li
- College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| |
Collapse
|
4
|
Fablet M, Vieira C. Evolvability, epigenetics and transposable elements. Biomol Concepts 2015; 2:333-41. [PMID: 25962041 DOI: 10.1515/bmc.2011.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Accepted: 07/11/2011] [Indexed: 12/31/2022] Open
Abstract
Evolvability can be defined as the capacity of an individual to evolve and thus to capture adaptive mutations. Transposable elements (TE) are an important source of mutations in organisms. Their capacity to transpose within a genome, sometimes at a high rate, and their copy number regulation are environment-sensitive, as are the epigenetic pathways that mediate TE regulation in a genome. In this review we revisit the way we see evolvability with regard to transposable elements and epigenetics.
Collapse
|
5
|
Arkhipova IR, Rodriguez F. Genetic and epigenetic changes involving (retro)transposons in animal hybrids and polyploids. Cytogenet Genome Res 2013; 140:295-311. [PMID: 23899811 DOI: 10.1159/000352069] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Transposable elements (TEs) are discrete genetic units that have the ability to change their location within chromosomal DNA, and constitute a major and rapidly evolving component of eukaryotic genomes. They can be subdivided into 2 distinct types: retrotransposons, which use an RNA intermediate for transposition, and DNA transposons, which move only as DNA. Rapid advances in genome sequencing significantly improved our understanding of TE roles in genome shaping and restructuring, and studies of transcriptomes and epigenomes shed light on the previously unknown molecular mechanisms underlying genetic and epigenetic TE controls. Knowledge of these control systems may be important for better understanding of reticulate evolution and speciation in the context of bringing different genomes together by hybridization and perturbing the established regulatory balance by ploidy changes. See also sister article focusing on plants by Bento et al. in this themed issue.
Collapse
Affiliation(s)
- I R Arkhipova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA. iarkhipova @ mbl.edu
| | | |
Collapse
|
6
|
de Montera B, Fournier E, Shojaei Saadi HA, Gagné D, Laflamme I, Blondin P, Sirard MA, Robert C. Combined methylation mapping of 5mC and 5hmC during early embryonic stages in bovine. BMC Genomics 2013; 14:406. [PMID: 23773395 PMCID: PMC3689598 DOI: 10.1186/1471-2164-14-406] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 05/31/2013] [Indexed: 11/24/2022] Open
Abstract
Background It was recently established that changes in methylation during development are dynamic and involve both methylation and demethylation processes. Yet, which genomic sites are changing and what are the contributions of methylation (5mC) and hydroxymethylation (5hmC) to this epigenetic remodeling is still unknown. When studying early development, options for methylation profiling are limited by the unavailability of sufficient DNA material from these scarce samples and limitations are aggravated in non-model species due to the lack of technological platforms. We therefore sought to obtain a representation of differentially 5mC or 5hmC loci during bovine early embryo stages through the use of three complementary methods, based on selective methyl-sensitive restriction and enrichment by ligation-mediated PCR or on subtractive hybridization. Using these strategies, libraries of putative methylation and hydroxymethylated sites were generated from Day-7 and Day-12 bovine embryos. Results Over 1.2 million sequencing reads were analyzed, resulting in 151,501 contigs, of which 69,136 were uniquely positioned on the genome. A total of 101,461 putative methylated sites were identified. The output of the three methods differed in genomic coverage as well as in the nature of the identified sites. The classical MspI/HpaII combination of restriction enzymes targeted CpG islands whereas the other methods covered 5mC and 5hmC sites outside of these regions. Data analysis suggests a transition of these methylation marks between Day-7 and Day-12 embryos in specific classes of repeat-containing elements. Conclusions Our combined strategy offers a genomic map of the distribution of cytosine methylation/hydroxymethylation during early bovine embryo development. These results support the hypothesis of a regulatory phase of hypomethylation in repeat sequences during early embryogenesis.
Collapse
Affiliation(s)
- Béatrice de Montera
- Centre de Recherche en Biologie de la Reproduction, Institut des Nutraceutiques et des Aliments Fonctionnels, Université Laval, Québec, QC, G1V 0A6, Canada
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Brown JD, Piccuillo V, O'Neill RJ. Retroelement demethylation associated with abnormal placentation in Mus musculus x Mus caroli hybrids. Biol Reprod 2012; 86:88. [PMID: 22116807 DOI: 10.1095/biolreprod.111.095273] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The proper functioning of the placenta requires specific patterns of methylation and the appropriate regulation of retroelements, some of which have been co-opted by the genome for placental-specific gene expression. Our inquiry was initiated to determine the causes of the placental defects observed in crosses between two species of mouse, Mus musculus and Mus caroli. M. musculus × M. caroli fetuses are rarely carried to term, possibly as a result of genomic incompatibility in the placenta. Taking into account that placental dysplasia is observed in Peromyscus and other Mus hybrids, and that endogenous retroviruses are expressed in the placental transcriptome, we hypothesized that these placental defects could result, in part, from failure of the genome defense mechanism, DNA methylation, to regulate the expression of retroelements. Hybrid M. musculus × M. caroli embryos were produced by artificial insemination, and dysplastic placentas were subjected to microarray and methylation screens. Aberrant overexpression of an X-linked Mus retroelement in these hybrid placentas is consistent with local demethylation of this retroelement, concomitant with genome instability, disruption of gene regulatory pathways, and dysgenesis. We propose that the placenta is a specific site of control that is disrupted by demethylation and retroelement activation in interspecific hybridization that occur as a result of species incompatibility of methylation machinery. To our knowledge, the present data provide the first report of retroelement activation linked to decreased methylation in a eutherian hybrid system.
Collapse
Affiliation(s)
- Judith D Brown
- Diagnostic Genetic Sciences Program, Department of Allied Health Sciences, University of Connecticut, Storrs, Connecticut 06269-2131, USA
| | | | | |
Collapse
|
8
|
Peromyscus as a Mammalian epigenetic model. GENETICS RESEARCH INTERNATIONAL 2012; 2012:179159. [PMID: 22567379 PMCID: PMC3335729 DOI: 10.1155/2012/179159] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 11/10/2011] [Accepted: 12/02/2011] [Indexed: 12/12/2022]
Abstract
Deer mice (Peromyscus) offer an opportunity for studying the effects of natural genetic/epigenetic variation with several advantages over other mammalian models. These advantages include the ability to study natural genetic variation and behaviors not present in other models. Moreover, their life histories in diverse habitats are well studied. Peromyscus resources include genome sequencing in progress, a nascent genetic map, and >90,000 ESTs. Here we review epigenetic studies and relevant areas of research involving Peromyscus models. These include differences in epigenetic control between species and substance effects on behavior. We also present new data on the epigenetic effects of diet on coat-color using a Peromyscus model of agouti overexpression. We suggest that in terms of tying natural genetic variants with environmental effects in producing specific epigenetic effects, Peromyscus models have a great potential.
Collapse
|
9
|
Brown JD, O'Neill RJ. Chromosomes, conflict, and epigenetics: chromosomal speciation revisited. Annu Rev Genomics Hum Genet 2010; 11:291-316. [PMID: 20438362 DOI: 10.1146/annurev-genom-082509-141554] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since Darwin first noted that the process of speciation was indeed the "mystery of mysteries," scientists have tried to develop testable models for the development of reproductive incompatibilities-the first step in the formation of a new species. Early theorists proposed that chromosome rearrangements were implicated in the process of reproductive isolation; however, the chromosomal speciation model has recently been questioned. In addition, recent data from hybrid model systems indicates that simple epistatic interactions, the Dobzhansky-Muller incompatibilities, are more complex. In fact, incompatibilities are quite broad, including interactions among heterochromatin, small RNAs, and distinct, epigenetically defined genomic regions such as the centromere. In this review, we will examine both classical and current models of chromosomal speciation and describe the "evolving" theory of genetic conflict, epigenetics, and chromosomal speciation.
Collapse
Affiliation(s)
- Judith D Brown
- Department of Allied Health Sciences, University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
10
|
Rebollo R, Horard B, Hubert B, Vieira C. Jumping genes and epigenetics: Towards new species. Gene 2010; 454:1-7. [DOI: 10.1016/j.gene.2010.01.003] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 01/06/2010] [Accepted: 01/19/2010] [Indexed: 01/13/2023]
|
11
|
Shapiro JA. Mobile DNA and evolution in the 21st century. Mob DNA 2010; 1:4. [PMID: 20226073 PMCID: PMC2836002 DOI: 10.1186/1759-8753-1-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 01/25/2010] [Indexed: 01/05/2023] Open
Abstract
Scientific history has had a profound effect on the theories of evolution. At the beginning of the 21st century, molecular cell biology has revealed a dense structure of information-processing networks that use the genome as an interactive read-write (RW) memory system rather than an organism blueprint. Genome sequencing has documented the importance of mobile DNA activities and major genome restructuring events at key junctures in evolution: exon shuffling, changes in cis-regulatory sites, horizontal transfer, cell fusions and whole genome doublings (WGDs). The natural genetic engineering functions that mediate genome restructuring are activated by multiple stimuli, in particular by events similar to those found in the DNA record: microbial infection and interspecific hybridization leading to the formation of allotetraploids. These molecular genetic discoveries, plus a consideration of how mobile DNA rearrangements increase the efficiency of generating functional genomic novelties, make it possible to formulate a 21st century view of interactive evolutionary processes. This view integrates contemporary knowledge of the molecular basis of genetic change, major genome events in evolution, and stimuli that activate DNA restructuring with classical cytogenetic understanding about the role of hybridization in species diversification.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, Gordon Center for Integrative Science W123B, 929 E 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
12
|
Affiliation(s)
- Judith D. Brown
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Rachel J. O'Neill
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
13
|
Carbone L, Harris RA, Vessere GM, Mootnick AR, Humphray S, Rogers J, Kim SK, Wall JD, Martin D, Jurka J, Milosavljevic A, de Jong PJ. Evolutionary breakpoints in the gibbon suggest association between cytosine methylation and karyotype evolution. PLoS Genet 2009; 5:e1000538. [PMID: 19557196 PMCID: PMC2695003 DOI: 10.1371/journal.pgen.1000538] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 05/26/2009] [Indexed: 01/30/2023] Open
Abstract
Gibbon species have accumulated an unusually high number of chromosomal changes since diverging from the common hominoid ancestor 15-18 million years ago. The cause of this increased rate of chromosomal rearrangements is not known, nor is it known if genome architecture has a role. To address this question, we analyzed sequences spanning 57 breaks of synteny between northern white-cheeked gibbons (Nomascus l. leucogenys) and humans. We find that the breakpoint regions are enriched in segmental duplications and repeats, with Alu elements being the most abundant. Alus located near the gibbon breakpoints (<150 bp) have a higher CpG content than other Alus. Bisulphite allelic sequencing reveals that these gibbon Alus have a lower average density of methylated cytosine that their human orthologues. The finding of higher CpG content and lower average CpG methylation suggests that the gibbon Alu elements are epigenetically distinct from their human orthologues. The association between undermethylation and chromosomal rearrangement in gibbons suggests a correlation between epigenetic state and structural genome variation in evolution.
Collapse
Affiliation(s)
- Lucia Carbone
- Children's Hospital and Research Center Oakland, Oakland, California, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ropiquet A, Gerbault-Seureau M, Deuve JL, Gilbert C, Pagacova E, Chai N, Rubes J, Hassanin A. Chromosome evolution in the subtribe Bovina (Mammalia, Bovidae): The karyotype of the Cambodian banteng (Bos javanicus birmanicus) suggests that Robertsonian translocations are related to interspecific hybridization. Chromosome Res 2008; 16:1107-18. [DOI: 10.1007/s10577-008-1262-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Revised: 08/18/2008] [Accepted: 08/18/2008] [Indexed: 12/26/2022]
|