1
|
Begum NF, Ramalingam K, Ramani P. Storage, Retention, and Use of Leftover Pathology Specimens: The Underestimated Treasures. Cureus 2024; 16:e53025. [PMID: 38410328 PMCID: PMC10895552 DOI: 10.7759/cureus.53025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2024] [Indexed: 02/28/2024] Open
Abstract
The proper regulations for storage, retention, and use of archived specimens in pathology laboratories and academic institutions are yet to be established. These specimens could be used appropriately for research purposes. Ideal storage and retention in a controlled environment is necessary, and there is a lack of established rules regarding the ownership of the tissue specimens, paraffin blocks, and slides. Though there are numerous uses of formalin-fixed tissue specimens, blocks, and slides, there are also problems in archiving them that hinder their use. This review article addresses the above issues and proposes simple guidelines for the effective use of archived specimens.
Collapse
Affiliation(s)
- N Fazulunnisa Begum
- Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Karthikeyan Ramalingam
- Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Pratibha Ramani
- Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
2
|
Biomedical analysis of formalin-fixed, paraffin-embedded tissue samples: The Holy Grail for molecular diagnostics. J Pharm Biomed Anal 2018; 155:125-134. [PMID: 29627729 DOI: 10.1016/j.jpba.2018.03.065] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/30/2018] [Accepted: 03/31/2018] [Indexed: 02/07/2023]
Abstract
More than a century ago in 1893, a revolutionary idea about fixing biological tissue specimens was introduced by Ferdinand Blum, a German physician. Since then, a plethora of fixation methods have been investigated and used. Formalin fixation with paraffin embedment became the most widely used types of fixation and preservation method, due to its proper architectural conservation of tissue structures and cellular shape. The huge collection of formalin-fixed, paraffin-embedded (FFPE) sample archives worldwide holds a large amount of unearthed information about diseases that could be the Holy Grail in contemporary biomarker research utilizing analytical omics based molecular diagnostics. The aim of this review is to critically evaluate the omics options for FFPE tissue sample analysis in the molecular diagnostics field.
Collapse
|
3
|
Iddawela M, Rueda OM, Klarqvist M, Graf S, Earl HM, Caldas C. Reliable gene expression profiling of formalin-fixed paraffin-embedded breast cancer tissue (FFPE) using cDNA-mediated annealing, extension, selection, and ligation whole-genome (DASL WG) assay. BMC Med Genomics 2016; 9:54. [PMID: 27542606 PMCID: PMC4992321 DOI: 10.1186/s12920-016-0215-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 08/05/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The difficulties in using formalin-fixed and paraffin-embedded (FFPE) tumour specimens for molecular marker studies have hampered progress in translational cancer research. The cDNA-mediated, annealing, selection, extension, and ligation (DASL) assay is a platform for gene expression profiling from FFPE tissue and hence could allow analysis of large collections of tissue with associated clinical data from existing archives, therefore facilitating the development of novel biomarkers. METHOD RNA isolated from matched fresh frozen (FF) and FFPE cancer specimens was profiled using both the DASL whole-genome (WG) platform, and Illumina BeadArray's, and results were compared. Samples utilized were obtained from the breast cancer tumour bank held at the Cambridge University Hospitals NHS Foundation Trust. RESULTS The number of reliably detected probes was comparable between the DASL and BeadArray platforms, indicating that the source of RNA did not result in a significant difference in the detection rates (Mean probes- 17114 in FFPE & 17400 in FF). There was a significant degree of correlation between replicates within the FF and FFPE sample sets (r (2) = 0.96-0.98) as well as between the two platforms (DASL vs. BeadArray r (2) = range 0.83-0.89). Hierarchical clustering using the most informative probes showed that replicate and matched samples were grouped into the same sub-cluster, regardless of whether RNA was derived from FF or FFPE tissue. CONCLUSION Both FF and FFPE material generated reproducible gene expression profiles, although there was more noise in profiles from FFPE specimens. We have shown that the DASL WG platform is suitable for profiling formalin-fixed paraffin-embedded samples, but robust bioinformatics analysis is required.
Collapse
Affiliation(s)
- Mahesh Iddawela
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE UK
- Department of Oncology, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge, CB1 9RN UK
- Cambridge Breast Unit, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre and Cambridge Experimental Cancer Medicine Centre, Cambridge, UK
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3800 Australia
- School of Clinical Sciences, Monash University, Clayton, Victoria Australia
| | - Oscar M. Rueda
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE UK
| | - Marcus Klarqvist
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE UK
| | - Stefan Graf
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE UK
| | - Helena M. Earl
- Department of Oncology, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge, CB1 9RN UK
- Cambridge Breast Unit, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre and Cambridge Experimental Cancer Medicine Centre, Cambridge, UK
| | - Carlos Caldas
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE UK
- Department of Oncology, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge, CB1 9RN UK
- Cambridge Breast Unit, Addenbrooke’s Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- NIHR Cambridge Biomedical Research Centre and Cambridge Experimental Cancer Medicine Centre, Cambridge, UK
| |
Collapse
|
4
|
Abstract
Much progress has been made in understanding the molecular genetics of brain tumors, especially gliomas.The development and use of high-throughput platforms that can interrogate molecular lesions on a variety of platforms will increase our ability to identify molecular subclasses of these tumors. Future challenges will include the development of methods to integrate these data among different platforms in order to identify optimal biomarkers and robust subclasses. The ultimate challenge, however, remains the translation of this biological knowledge into improved therapies for patients.
Collapse
Affiliation(s)
- Jing Li
- Department of Radiation Oncology, University of Texas-MD Anderson Cancer Center, Houston, TX, USA
| | | | | |
Collapse
|
5
|
Budczies J, Weichert W, Noske A, Müller BM, Weller C, Wittenberger T, Hofmann HP, Dietel M, Denkert C, Gekeler V. Genome-wide gene expression profiling of formalin-fixed paraffin-embedded breast cancer core biopsies using microarrays. J Histochem Cytochem 2011; 59:146-57. [PMID: 21339180 PMCID: PMC3201135 DOI: 10.1369/jhc.2010.956607] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 10/21/2010] [Indexed: 01/14/2023] Open
Abstract
The routine workflow for invasive cancer diagnostics includes biopsy processing by formalin fixation and paraffin embedding. It has been shown only recently that this kind of sample can be used for gene expression analysis with microarrays. To support this view, the authors conducted a microarray study using formalin-fixed paraffin-embedded (FFPE) core needle biopsies from breast cancers. Typically, for the 3'-biased chip type that was used, the probe sets interrogate sequences near the poly-A-tail of the transcripts, and this kind of probe turned out to be suitable to measure RNA levels in FFPE biopsies. For ER and HER2, the authors observed strong correlations between RNA levels and protein expression (p = 0.000003 and p = 0.0022). ER and HER2 classification of the biopsies by the RNA levels was feasible with high sensitivity and specificity (AUROC = 0.93 and AUROC = 0.96). Furthermore, a signature of 346 genes was identified that correlated with ER and a signature of 528 genes that correlated with HER2 protein status. Many of these genes (ER: 63%) could be confirmed by analysis of gene expression data from frozen tissues. The findings support the notion that clinically relevant information can be gained from microarray analyses of FFPE cancer biopsies. This opens new opportunities for biomarker detection studies and the integration of microarrays into the workflow of cancer diagnostics.
Collapse
Affiliation(s)
- Jan Budczies
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abdueva D, Wing M, Schaub B, Triche T, Davicioni E. Quantitative expression profiling in formalin-fixed paraffin-embedded samples by affymetrix microarrays. J Mol Diagn 2010; 12:409-17. [PMID: 20522636 DOI: 10.2353/jmoldx.2010.090155] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
To date, few studies have systematically characterized microarray gene expression signal performance with degraded RNA from fixed (FFPE) in comparison with intact RNA from unfixed fresh-frozen (FF) specimens. RNA was extracted and isolated from paired tumor and normal samples from both FFPE and FF kidney, lung, and colon tissue specimens and microarray signal dynamics on both the raw probe and probeset level were evaluated. A contrast metric was developed to directly compare microarray signal derived from RNA extracted from matched FFPE and FF specimens. Gene-level summaries were then compared to determine the degree of overlap in expression profiles. RNA extracted from FFPE material was more degraded and fragmented than FF, resulting in a reduced dynamic range of expression signal. In addition, probe performance was not affected uniformly and declined sharply toward 5' end of genes. The most significant differences in FFPE versus FF signal were consistent across three tissue types and enriched with ribosomal genes. Our results show that archived FFPE samples can be used to profile for expression signatures and assess differential expression similar to unfixed tissue sources. This study provides guidelines for application of these methods in the discovery, validation, and clinical application of microarray expression profiling with FFPE material.
Collapse
Affiliation(s)
- Diana Abdueva
- Department of Pathology, Children's Hospital Los Angeles, Research Institute and Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
7
|
|
8
|
Gorlov IP, Byun J, Gorlova OY, Aparicio AM, Efstathiou E, Logothetis CJ. Candidate pathways and genes for prostate cancer: a meta-analysis of gene expression data. BMC Med Genomics 2009; 2:48. [PMID: 19653896 PMCID: PMC2731785 DOI: 10.1186/1755-8794-2-48] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Accepted: 08/04/2009] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The genetic mechanisms of prostate tumorigenesis remain poorly understood, but with the advent of gene expression array capabilities, we can now produce a large amount of data that can be used to explore the molecular and genetic mechanisms of prostate tumorigenesis. METHODS We conducted a meta-analysis of gene expression data from 18 gene array datasets targeting transition from normal to localized prostate cancer and from localized to metastatic prostate cancer. We functionally annotated the top 500 differentially expressed genes and identified several candidate pathways associated with prostate tumorigeneses. RESULTS We found the top differentially expressed genes to be clustered in pathways involving integrin-based cell adhesion: integrin signaling, the actin cytoskeleton, cell death, and cell motility pathways. We also found integrins themselves to be downregulated in the transition from normal prostate tissue to primary localized prostate cancer. Based on the results of this study, we developed a collagen hypothesis of prostate tumorigenesis. According to this hypothesis, the initiating event in prostate tumorigenesis is the age-related decrease in the expression of collagen genes and other genes encoding integrin ligands. This concomitant depletion of integrin ligands leads to the accumulation of ligandless integrin and activation of integrin-associated cell death. To escape integrin-associated death, cells suppress the expression of integrins, which in turn alters the actin cytoskeleton, elevates cell motility and proliferation, and disorganizes prostate histology, contributing to the histologic progression of prostate cancer and its increased metastasizing potential. CONCLUSION The results of this study suggest that prostate tumor progression is associated with the suppression of integrin-based cell adhesion. Suppression of integrin expression driven by integrin-mediated cell death leads to increased cell proliferation and motility and increased tumor malignancy.
Collapse
Affiliation(s)
- Ivan P Gorlov
- Department of Genitourinary Medical Oncology, The University of Texas M, D, Anderson Cancer Center, Houston, TX, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Roberts L, Bowers J, Sensinger K, Lisowski A, Getts R, Anderson MG. Identification of methods for use of formalin-fixed, paraffin-embedded tissue samples in RNA expression profiling. Genomics 2009; 94:341-8. [PMID: 19660539 DOI: 10.1016/j.ygeno.2009.07.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 06/05/2009] [Accepted: 07/28/2009] [Indexed: 11/28/2022]
Abstract
Formalin-fixed paraffin-embedded (FFPE) tissue samples are a potentially valuable resource of expression information for medical research, but are under-utilized due to degradation and modification of the RNA. Using a random primer-based RNA amplification strategy, we have evaluated multiple protocols for the extraction and isolation of RNA from FFPE samples. We found that the RecoverAll RNA isolation procedure with three or four slices (ten-microns in thickness), supplemented with additional DNAse, gave optimal results. RNA integrity as assessed by Agilent Bioanalyzer, and amplification of the 28S ribosomal RNA, were predictive for the number of genes detected on Affymetrix arrays. We obtained expression data for colon and lung tumor and normal FFPE samples and matched frozen samples and found a high correlation between frozen and matched FFPE samples (R(2) between 0.82 and 0.89), while the signature sets in tumor versus normal comparisons were also quite similar. QPCR confirmed all 16 of the differential expression results from the microarrays that we tested. Differentially expressed signature genes from tumor versus matched normal FFPE tissue from colon and lung were identified as cancer-related, with 95 colon tumor and 67 lung tumor genes identified, respectively.
Collapse
Affiliation(s)
- Lisa Roberts
- Global Pharmaceutical Product Research Division, Dept R4CD, AP10-2, Abbott Laboratories, IL 60064-6099, USA
| | | | | | | | | | | |
Collapse
|
10
|
Gnanapragasam VJ. Unlocking the molecular archive: the emerging use of formalin-fixed paraffin-embedded tissue for biomarker research in urological cancer. BJU Int 2009; 105:274-8. [PMID: 19519763 DOI: 10.1111/j.1464-410x.2009.08665.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Rapid developments have been made in identifying predictive and prognostic markers in urological cancers. Most biomarker profiling has been primarily conducted in fresh-frozen tissue taken at the time of diagnosis or surgery. The disadvantage of this process is that the sampled tissue might not be entirely representative of the tumour and there is a lack of adequate numbers and follow-up to make clear conclusions as to a biomarker's prognostic potential. Formalin fixation and paraffin embedding (FFPE) is the clinical standard for preparing samples for histopathological assessment; this preserves tissue architecture and allows the storage of diagnostic and surplus tissue in archival banks. This resource represents a vast repository of tissue material with a long-term clinical follow-up. With the advent of high-throughput profiling technologies, there is a unique opportunity to screen and comprehensively evaluate many biomarkers. Such studies require the large sample numbers and outcome data which is a key feature of archival FFPE tissue. However, the process of FFPE induces chemical changes and degradation in tissue DNA, RNA and protein, which can make subsequent analysis unreliable. Recently, several technical advances have been made to overcome the degrading effects of FFPE. This review highlights the key advances that are beginning to allow the use of FFPE archives for molecular biomarker profiling.
Collapse
Affiliation(s)
- Vincent J Gnanapragasam
- Uro-oncology Group, Department of Oncology, Hutchison MRC Research Centre, University of Cambridge, UK.
| |
Collapse
|
11
|
Fedorowicz G, Guerrero S, Wu TD, Modrusan Z. Microarray analysis of RNA extracted from formalin-fixed, paraffin-embedded and matched fresh-frozen ovarian adenocarcinomas. BMC Med Genomics 2009; 2:23. [PMID: 19426511 PMCID: PMC2694827 DOI: 10.1186/1755-8794-2-23] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 05/08/2009] [Indexed: 11/18/2022] Open
Abstract
Background Gene expression profiling of formalin-fixed, paraffin-embedded (FFPE) samples represents a valuable approach for advancing oncology diagnostics and enhancing retrospective clinical studies; however, at present, this methodology still requires optimization and thus has not been extensively used. Here, we utilized thorough quality control methods to assess RNA extracted from FFPE samples and then compared it to RNA extracted from matched fresh-frozen (FF) counterparts. We preformed genome-wide expression profiling of FF and FFPE ovarian serous adenocarcinoma sample pairs and compared their gene signatures to normal ovary samples. Methods RNA from FFPE samples was extracted using two different methods, Ambion and Agencourt, and its quality was determined by profiling starting total RNA on Bioanalyzer and by amplifying increasing size fragments of beta actin (ACTB) and claudin 3 (CLDN3) by reverse-transcriptase polymerase chain reaction. Five matched FF and FFPE ovarian serous adenocarcinoma samples, as well as a set of normal ovary samples, were profiled using whole genome Agilent microarrays. Reproducibility of the FF and FFPE replicates was measured using Pearson correlation, whereas comparison between the FF and FFPE samples was done using a Z-score analysis. Results Data analysis showed high reproducibility of expression within each FF and FFPE method, whereas matched FF and FFPE pairs demonstrated lower similarity, emphasizing an inherent difference between the two sample types. Z-score analysis of matched FF and FFPE samples revealed good concordance of top 100 differentially expressed genes with the highest correlation of 0.84. Genes characteristic of ovarian serous adenocarcinoma, including a well known marker CLDN3, as well as potentially some novel markers, were identified by comparing gene expression profiles of ovarian adenocarcinoma to those of normal ovary. Conclusion Conclusively, we showed that systematic assessment of FFPE samples at the RNA level is essential for obtaining good quality gene expression microarray data. We also demonstrated that profiling of not only FF but also of FFPE samples can be successfully used to identify differentially expressed genes characteristic of ovarian carcinoma.
Collapse
Affiliation(s)
- Grazyna Fedorowicz
- Department of Molecular Biology, Genentech, Inc,, 1 DNA Way, South San Francisco, CA 94080, USA.
| | | | | | | |
Collapse
|
12
|
A novel approach for reliable microarray analysis of microdissected tumor cells from formalin-fixed and paraffin-embedded colorectal cancer resection specimens. J Mol Med (Berl) 2008; 87:211-24. [PMID: 19066834 DOI: 10.1007/s00109-008-0419-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 11/04/2008] [Accepted: 11/06/2008] [Indexed: 10/21/2022]
Abstract
We present a novel approach for microarray analysis of RNA derived from microdissected cells of routinely formalin-fixed and paraffin-embedded (FFPE) cancer resection specimens. Subsequent to RNA sample preparation and hybridization to standard GeneChips (Affymetrix), RNA samples yielded 36.43 +/- 9.60% (FFPE), 49.90 +/- 4.43% (fresh-frozen), and 53.9% (cell line) present calls. Quality control parameters and Q-RT-PCR validation demonstrated reliability of results. Microarray datasets of FFPE samples were informative and comparable to those of fresh-frozen samples. A systematic measurement difference of differentially processed tissues was eliminated by a correction step for comparative unsupervised data analysis of fresh-frozen and FFPE samples. Within FFPE samples, unsupervised clustering analyses clearly distinguished between normal and malignant tissues as well as to further separate tumor samples according to histological World Health Organization (WHO) subtypes. In summary, our approach represents a major step towards integration of microarrays into retrospective studies and enables further investigation of the relevance of microarray analysis for clinico-pathological diagnostics.
Collapse
|