1
|
Hardies SC, Cho BC, Jang GI, Wang Z, Hwang CY. Identification of Structural and Morphogenesis Genes of Sulfitobacter Phage ΦGT1 and Placement within the Evolutionary History of the Podoviruses. Viruses 2023; 15:1475. [PMID: 37515163 PMCID: PMC10386132 DOI: 10.3390/v15071475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
ΦGT1 is a lytic podovirus of an alphaproteobacterial Sulfitobacter species, with few closely matching sequences among characterized phages, thus defying a useful description by simple sequence clustering methods. The history of the ΦGT1 core structure module was reconstructed using timetrees, including numerous related prospective prophages, to flesh out the evolutionary lineages spanning from the origin of the ejectosomal podovirus >3.2 Gya to the present genes of ΦGT1 and its closest relatives. A peculiarity of the ΦGT1 structural proteome is that it contains two paralogous tubular tail A (tubeA) proteins. The origin of the dual tubeA arrangement was traced to a recombination between two more ancient podoviral lineages occurring ~0.7 Gya in the alphaproteobacterial order Rhizobiales. Descendants of the ancestral dual A recombinant were tracked forward forming both temperate and lytic phage clusters and exhibiting both vertical transmission with patchy persistence and horizontal transfer with respect to host taxonomy. The two ancestral lineages were traced backward, making junctions with a major metagenomic podoviral family, the LUZ24-like gammaproteobacterial phages, and Myxococcal phage Mx8, and finally joining near the origin of podoviruses with P22. With these most conservative among phage genes, deviations from uncomplicated vertical and nonrecombinant descent are numerous but countable. The use of timetrees allowed conceptualization of the phage's evolution in the context of a sequence of ancestors spanning the time of life on Earth.
Collapse
Affiliation(s)
- Stephen C Hardies
- Department of Biochemistry and Structural Biology, UT Health, San Antonio, TX 78229, USA
| | - Byung Cheol Cho
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
- Saemangeum Environmental Research Center, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Gwang Il Jang
- Aquatic Disease Control Division, National Fishery Products Quality Management Service, Busan 46083, Republic of Korea
| | - Zhiqing Wang
- National Cryo-EM Facility, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Chung Yeon Hwang
- Microbial Oceanography Laboratory, School of Earth and Environmental Sciences and Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
The Concerted Action of Two B3-Like Prophage Genes Excludes Superinfecting Bacteriophages by Blocking DNA Entry into Pseudomonas aeruginosa. J Virol 2020; 94:JVI.00953-20. [PMID: 32461312 DOI: 10.1128/jvi.00953-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 12/15/2022] Open
Abstract
In this study, we describe seven vegetative phage genomes homologous to the historic phage B3 that infect Pseudomonas aeruginosa Like other phage groups, the B3-like group contains conserved (core) and variable (accessory) open reading frames (ORFs) grouped at fixed regions in their genomes; however, in either case, many ORFs remain without assigned functions. We constructed lysogens of the seven B3-like phages in strain Ps33 of P. aeruginosa, a novel clinical isolate, and assayed the exclusion phenotype against a variety of temperate and virulent superinfecting phages. In addition to the classic exclusion conferred by the phage immunity repressor, the phenotype observed in B3-like lysogens suggested the presence of other exclusion genes. We set out to identify the genes responsible for this exclusion phenotype. Phage Ps56 was chosen as the study subject since it excluded numerous temperate and virulent phages. Restriction of the Ps56 genome, cloning of several fragments, and resection of the fragments that retained the exclusion phenotype allowed us to identify two core ORFs, so far without any assigned function, as responsible for a type of exclusion. Neither gene expressed separately from plasmids showed activity, but the concurrent expression of both ORFs is needed for exclusion. Our data suggest that phage adsorption occurs but that phage genome translocation to the host's cytoplasm is defective. To our knowledge, this is the first report on this type of exclusion mediated by a prophage in P. aeruginosa IMPORTANCE Pseudomonas aeruginosa is a Gram-negative bacterium frequently isolated from infected immunocompromised patients, and the strains are resistant to a broad spectrum of antibiotics. Recently, the use of phages has been proposed as an alternative therapy against multidrug-resistant bacteria. However, this approach may present various hurdles. This work addresses the problem that pathogenic bacteria may be lysogenized by phages carrying genes encoding resistance against secondary infections, such as those used in phage therapy. Discovering phage genes that exclude superinfecting phages not only assigns novel functions to orphan genes in databases but also provides insight into selection of the proper phages for use in phage therapy.
Collapse
|
3
|
Complete Genome Sequence of Brucella abortus Phage EF4, Determined Using Long-Read Sequencing. Microbiol Resour Announc 2020; 9:9/18/e00212-20. [PMID: 32354974 PMCID: PMC7193929 DOI: 10.1128/mra.00212-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brucellaphage EF4 was isolated from elk feces. The 38,321-bp double-stranded DNA genome is predicted to contain 72 coding regions, 38 of which have been assigned predicted functions. This phage displays nucleotide similarity to other brucellaphages of the genus Perisivirus. Brucellaphage EF4 was isolated from elk feces. The 38,321-bp double-stranded DNA genome is predicted to contain 72 coding regions, 38 of which have been assigned predicted functions. This phage displays nucleotide similarity to other brucellaphages of the genus Perisivirus.
Collapse
|
4
|
Pérez-Sánchez G, Jiménez A, Quezada-Ramírez MA, Estudillo E, Ayala-Sarmiento AE, Mendoza-Hernández G, Hernández-Soto J, Hernández-Hernández FC, Cázares-Raga FE, Segovia J. Annexin A1, Annexin A2, and Dyrk 1B are upregulated during GAS1-induced cell cycle arrest. J Cell Physiol 2018; 233:4166-4182. [PMID: 29030970 DOI: 10.1002/jcp.26226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 10/03/2017] [Indexed: 12/18/2022]
Abstract
GAS1 is a pleiotropic protein that has been investigated because of its ability to induce cell proliferation, cell arrest, and apoptosis, depending on the cellular or the physiological context in which it is expressed. At this point, we have information about the molecular mechanisms by which GAS1 induces proliferation and apoptosis; but very few studies have been focused on elucidating the mechanisms by which GAS1 induces cell arrest. With the aim of expanding our knowledge on this subject, we first focused our research on finding proteins that were preferentially expressed in cells arrested by serum deprivation. By using a proteomics approach and mass spectrometry analysis, we identified 17 proteins in the 2-DE protein profile of serum deprived NIH3T3 cells. Among them, Annexin A1 (Anxa1), Annexin A2 (Anxa2), dual specificity tyrosine-phosphorylation-regulated kinase 1B (Dyrk1B), and Eukaryotic translation initiation factor 3, F (eIf3f) were upregulated at transcriptional the level in proliferative NIH3T3 cells. Moreover, we demonstrated that Anxa1, Anxa2, and Dyrk1b are upregulated at both the transcriptional and translational levels by the overexpression of GAS1. Thus, our results suggest that the upregulation of Anxa1, Anxa2, and Dyrk1b could be related to the ability of GAS1 to induce cell arrest and maintain cell viability. Finally, we provided further evidence showing that GAS1 through Dyrk 1B leads not only to the arrest of NIH3T3 cells but also maintains cell viability.
Collapse
Affiliation(s)
- Gilberto Pérez-Sánchez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Adriana Jiménez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Marco A Quezada-Ramírez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Enrique Estudillo
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Alberto E Ayala-Sarmiento
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | | | - Justino Hernández-Soto
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Fidel C Hernández-Hernández
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Febe E Cázares-Raga
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| | - Jose Segovia
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Ciudad de México, México
| |
Collapse
|
5
|
Highly Sensitive Bacteriophage-Based Detection of Brucella abortus in Mixed Culture and Spiked Blood. Viruses 2017; 9:v9060144. [PMID: 28604602 PMCID: PMC5490821 DOI: 10.3390/v9060144] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/25/2017] [Accepted: 06/06/2017] [Indexed: 01/18/2023] Open
Abstract
For decades, bacteriophages (phages) have been used for Brucella species identification in the diagnosis and epidemiology of brucellosis. Traditional Brucella phage typing is a multi-day procedure including the isolation of a pure culture, a step that can take up to three weeks. In this study, we focused on the use of brucellaphages for sensitive detection of the pathogen in clinical and other complex samples, and developed an indirect method of Brucella detection using real-time quantitative PCR monitoring of brucellaphage DNA amplification via replication on live Brucella cells. This assay allowed the detection of single bacteria (down to 1 colony-forming unit per milliliter) within 72 h without DNA extraction and purification steps. The technique was equally efficient with Brucella abortus pure culture and with mixed cultures of B. abortus and α-proteobacterial near neighbors that can be misidentified as Brucella spp., Ochrobactrum anthropi and Afipia felis. The addition of a simple short sample preparation step enabled the indirect phage-based detection of B. abortus in spiked blood, with the same high sensitivity. This indirect phage-based detection assay enables the rapid and sensitive detection of live B. abortus in mixed cultures and in blood samples, and can potentially be applied for detection in other clinical samples and other complex sample types.
Collapse
|
6
|
Flores V, Sepúlveda-Robles O, Cazares A, Kameyama L, Guarneros G. Comparative genomic analysis of Pseudomonas aeruginosa phage PaMx25 reveals a novel siphovirus group related to phages infecting hosts of different taxonomic classes. Arch Virol 2017; 162:2345-2355. [PMID: 28462462 DOI: 10.1007/s00705-017-3366-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/12/2017] [Indexed: 12/20/2022]
Abstract
Bacteriophages (phages) are estimated to be the most abundant and diverse entities in the biosphere harboring vast amounts of novel genetic information. Despite the genetic diversity observed, many phages share common features, such as virion morphology, genome size and organization, and can readily be associated with clearly defined phage groups. However, other phages display unique genomes or, alternatively, mosaic genomes composed of regions that share homology with those of phages of diverse origins; thus, their relationships cannot be easily assessed. In this work, we present a functional and comparative genomic analysis of Pseudomonas aeruginosa phage PaMx25, a virulent member of the Siphoviridae family. The genomes of PaMx25 and a highly homologous phage NP1, bore sequence homology and synteny with the genomes of phages that infect hosts different than Pseudomonas. In order to understand the relationship of the PaMx25 genome with that of other phages, we employed several computational approaches. We found that PaMx25 and NP1 effectively bridged several phage groups. It is expected that as more phage genomes become available, more gaps will be filled, blurring the boundaries that currently separate phage groups.
Collapse
Affiliation(s)
- Víctor Flores
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Omar Sepúlveda-Robles
- Catedrático CONACyT - Coordinación de Investigación en Salud, Instituto Mexicano del Seguro Social (IMSS), Centro Médico Nacional Siglo XXI, Mexico City, Mexico
| | - Adrián Cazares
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Luis Kameyama
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Gabriel Guarneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico.
| |
Collapse
|
7
|
Hammerl JA, Göllner C, Jäckel C, Scholz HC, Nöckler K, Reetz J, Al Dahouk S, Hertwig S. Genetic Diversity of Brucella Reference and Non-reference Phages and Its Impact on Brucella-Typing. Front Microbiol 2017; 8:408. [PMID: 28360895 PMCID: PMC5350156 DOI: 10.3389/fmicb.2017.00408] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/27/2017] [Indexed: 11/13/2022] Open
Abstract
Virulent phages have been used for many years to type Brucella isolates, but until recently knowledge about the genetic makeup of these phages remains limited. In this work the host specificity and genomic sequences of the original set (deposited in 1960) of VLA Brucella reference phages Tb, Fi, Wb, Bk2, R/C, and Iz were analyzed and compared with hitherto described brucellaphages. VLA phages turned out to be different from homonymous phages in other laboratories. The host range of the phages was defined by performing plaque assays with a wide selection of Brucella strains. Propagation of the phages on different strains did not alter host specificity. Sequencing of the phages TbV, FiV, WbV, and R/CV revealed nucleotide variations when compared to same-named phages previously described by other laboratories. The phages Bk2V and IzV were sequenced for the first time. While Bk2V exhibited the same deletions as WbV, IzV possesses the largest genome of all Brucella reference phages. The duplication of a 301 bp sequence in this phage and the large deletion in Bk2V, WbV, and R/CV may be a result of recombination caused by repetitive sequences located in this DNA region. To identify new phages as potential candidates for lysotyping, the host range and Single Nucleotide Polymorphisms (SNPs) of 22 non-reference Brucella phages were determined. The phages showed lysis patterns different from those of the reference phages and thus represent novel valuable candidates in the typing set.
Collapse
Affiliation(s)
- Jens A. Hammerl
- Department of Biological Safety, German Federal Institute for Risk AssessmentBerlin, Germany
| | - Cornelia Göllner
- Department of Biological Safety, German Federal Institute for Risk AssessmentBerlin, Germany
| | - Claudia Jäckel
- Department of Biological Safety, German Federal Institute for Risk AssessmentBerlin, Germany
| | - Holger C. Scholz
- German Center for Infection Research, Bundeswehr Institute of MicrobiologyMunich, Germany
| | - Karsten Nöckler
- Department of Biological Safety, German Federal Institute for Risk AssessmentBerlin, Germany
| | - Jochen Reetz
- Department of Biological Safety, German Federal Institute for Risk AssessmentBerlin, Germany
| | - Sascha Al Dahouk
- Department of Biological Safety, German Federal Institute for Risk AssessmentBerlin, Germany
| | - Stefan Hertwig
- Department of Biological Safety, German Federal Institute for Risk AssessmentBerlin, Germany
| |
Collapse
|
8
|
Genomic and Transcriptional Mapping of PaMx41, Archetype of a New Lineage of Bacteriophages Infecting Pseudomonas aeruginosa. Appl Environ Microbiol 2016; 82:6541-6547. [PMID: 27590812 DOI: 10.1128/aem.01415-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/22/2016] [Indexed: 12/11/2022] Open
Abstract
Previously, a collection of virulent phages infecting Pseudomonas aeruginosa was isolated from open water reservoirs and residual waters. Here, we described the comparative genomics of a set of five related phages from the collection, the physical structure of the genome, the structural proteomics of the virion, and the transcriptional program of archetypal phage PaMx41. The phage genomes were closely associated with each other and with those of two other P. aeruginosa phages, 119X and PaP2, which were previously filed in the databases. Overall, the genomes were approximately 43 kb, harboring 53 conserved open reading frames (ORFs) and three short ORFs in indel regions and containing 45% GC content. The genome of PaMx41 was further characterized as a linear, terminally redundant DNA molecule. A total of 16 ORFs were associated with putative functions, including nucleic acid metabolism, morphogenesis, and lysis, and eight virion proteins were identified through mass spectrometry. However, the coding sequences without assigned functions represent 70% of the ORFs. The PaMx41 transcription program was organized in early, middle, and late expressed genomic modules, which correlated with regions containing functionally related genes. The high genomic conservation among these distantly isolated phages suggests that these viruses undergo selective pressure to remain unchanged. The 119X lineage represents a unique set of phages that corresponds to a novel phage group. The features recognized in the genomes and the broad host range of clinical strains suggest that these phages are candidates for therapy applications. IMPORTANCE Pseudomonas aeruginosa is an opportunistic pathogen that causes stubborn nosocomial infections that are frequently resistant to multiple antibiotics. Bacterial viruses (bacteriophages or phages) represent a natural mechanism for pathogenic bacterial control. Here, a group of virulent phages, previously shown to infect a broad range of clinical P. aeruginosa strains, was characterized at the genomic and molecular levels. These phages belong to a unique and tightly related group. In addition, we conducted a transcriptional study of an archetypal phage of this group to characterize the role of many unknown coding sequences based on expression temporalities. These results contribute to our knowledge of 119X-like phages and, in general, provide information concerning P. aeruginosa podophage diversity and lytic cycles.
Collapse
|
9
|
Hammerl JA, Göllner C, Al Dahouk S, Nöckler K, Reetz J, Hertwig S. Analysis of the First Temperate Broad Host Range Brucellaphage (BiPBO1) Isolated from B. inopinata. Front Microbiol 2016; 7:24. [PMID: 26858702 PMCID: PMC4729917 DOI: 10.3389/fmicb.2016.00024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 01/11/2016] [Indexed: 11/13/2022] Open
Abstract
Brucella species are important human and animal pathogens. Though, only little is known about mobile genetic elements of these highly pathogenic bacteria. To date, neither plasmids nor temperate phages have been described in brucellae. We analyzed genomic sequences of various reference and type strains and identified a number of putative prophages residing within the Brucella chromosomes. By induction, phage BiPBO1 was isolated from Brucella inopinata. BiPBO1 is a siphovirus that infects several Brucella species including Brucella abortus and Brucella melitensis. Integration of the phage genome occurs adjacent to a tRNA gene in chromosome 1 (chr 1). The bacterial (attB) and phage (attP) attachment sites comprise an identical sequence of 46 bp. This sequence exists in many Brucella and Ochrobactrum species. The BiPBO1 genome is composed of a 46,877 bp double-stranded DNA. Eighty-seven putative gene products were determined, of which 32 could be functionally assigned. Strongest similarities were found to a temperate phage residing in the chromosome of Ochrobactrum anthropi ATCC 49188 and to prophages identified in several families belonging to the order rhizobiales. The data suggest that horizontal gene transfer may occur between Brucella and Ochrobactrum and underpin the close relationship of these environmental and pathogenic bacteria.
Collapse
Affiliation(s)
- Jens A. Hammerl
- Department of Biological Safety, Federal Institute for Risk AssessmentBerlin, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Chachra D, Kaur P, Siddavatam P, Suravajhala P, Saxena HM. On genome annotation of Brucellaphage Gadvasu (BpG): discovery of ORFans for integrated systems biology approaches. SYSTEMS AND SYNTHETIC BIOLOGY 2015; 9:57-62. [PMID: 26702310 PMCID: PMC4688410 DOI: 10.1007/s11693-015-9185-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/12/2015] [Accepted: 11/16/2015] [Indexed: 02/05/2023]
Abstract
Brucellaphage Gadvasu (BpG) is a lytic phage infecting Brucella spp. Brucellaphages contain dsDNA as genetic material and are short-tailed particles with host-specificity. Here, we report the challenges on annotation in the complete genome sequence of BpG when compared with that of a recent broad host-range brucellaphage Pr, an original reference genome. The extracted DNA was subjected to genome sequencing with Illumina technology and assembled using SSAKE/Velvet. A significant number of genes were found to be similar between the phages with sequence analysis revealing conserved open reading frames that correspond to 33 gene ontology classifiers, transcriptional terminators and a few putative transcriptional promoters. The analyses revealed that the genome constitutes 1269 contigs and 275 genes encoding 260 proteins. The sequence comparison from the reference data indicated that the genome shares an approximately 70 % nucleotide similarity and differs mainly in the region encoding proteins. We bring this commentary providing an overview of how this exemplar genome can allow us to understand these known unknown regions in brucellaphages.
Collapse
Affiliation(s)
- Deepti Chachra
- />Department of Veterinary Microbiology, College of Veterinary Science, GADVASU, Ludhiana, Punjab 141004 India
| | - Pushpinder Kaur
- />Department of Veterinary Microbiology, College of Veterinary Science, GADVASU, Ludhiana, Punjab 141004 India
- />Food and Agricultural Products Center, Oklahoma State University, Stillwater, OK 74078-6055 USA
| | | | - Prashanth Suravajhala
- />Bioclues.org, Kukatpally, Hyderabad, 500 072 India
- />Bioinformatics Organization, 28 Pope St, Hudson, MA 01749 USA
- />Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, 8830 Tjele, Denmark
| | - Hari Mohan Saxena
- />Department of Veterinary Microbiology, College of Veterinary Science, GADVASU, Ludhiana, Punjab 141004 India
| |
Collapse
|
11
|
Tevdoradze E, Farlow J, Kotorashvili A, Skhirtladze N, Antadze I, Gunia S, Balarjishvili N, Kvachadze L, Kutateladze M. Whole genome sequence comparison of ten diagnostic brucellaphages propagated on two Brucella abortus hosts. Virol J 2015; 12:66. [PMID: 25896365 PMCID: PMC4422536 DOI: 10.1186/s12985-015-0287-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 03/24/2015] [Indexed: 11/24/2022] Open
Abstract
Background Recently the genome sequences of two brucellaphages, isolated in Georgia (Tb) and Mexico (Pr) were reported revealing pronounced sequence homogeneity and the presence of two major indels discriminating the two phages. Subsequent genome sequencing of six diagnostic brucellaphages: Tbilisi (Tb), Firenze (Fz), Weybridge (Wb), S708, Berkeley (Bk) and R/C phages identified three major genetic groups. However, the propensity for fine-scale genetic variability of diverse brucellaphages grown on multiple hosts within a single Brucella species remains unknown. Methods We sequenced the complete genomes of ten brucellaphages following initial propagation on B. abortus strain 141 and after subsequent propagation on B. abortus strain S19. All brucellaphages were isolated and propagated at the Eliava Institute including the original Tb phage. Genomic libraries were quantified using the Qbit and sheared on the Covaris M220. QC for fragmentation was performed on the BioAnalyzer 2100. DNA libraries were prepared using an Illumina Paired-End protocol and sequenced on the Illumina MiSeq. Sequence analysis was performed using Geneious and MEGA software. Results Comparative whole genome sequence analysis revealed genetic homogeneity consistent with previously published data as well as multiple nucleotide variations. Genomic changes as a result of passages were observed in similar genes and predominantly occurred at identical sites in separate phages. Multiple instances of within-sample genetic heterogeneity were observed often at shared genomics positions across phages. Positive selection was detected in the tail collar protein gene. We also identified a Staphylothermus marinus F1-like CRISPR spacer and sequences orthologous to both prophage antirepressors of Brucella spp. and intergenic sequences encoded by Ochrobactrum anthropi. Conclusion We surveyed whole genome level diversity in phage lytic for B. abortus as they are propagated on alternate vaccine strains within the species. Our data extend previous results indicating select variable hotspots and broad genomic homogeneity as well as multiple common polymorphisms and within-sample variation. These data also provide additional genomes for future reference in comparative studies involving the molecular evolution and host specificity of brucellaphages.
Collapse
Affiliation(s)
- Ekaterine Tevdoradze
- George Eliava Institute for Bacteriophages, Microbiology and Virology, Tbilisi, Georgia.
| | - Jason Farlow
- Academic Engagement Program (AEP) Pennsylvania State University, University Park, State College, USA. .,Farlow Scientific Consulting Company, LLC, Lewiston, Utah, USA.
| | - Adam Kotorashvili
- Lugar Center for Public Health Research at National Center for Disease Control, Tbilisi, Georgia.
| | - Natia Skhirtladze
- George Eliava Institute for Bacteriophages, Microbiology and Virology, Tbilisi, Georgia.
| | - Irina Antadze
- George Eliava Institute for Bacteriophages, Microbiology and Virology, Tbilisi, Georgia.
| | - Sophio Gunia
- George Eliava Institute for Bacteriophages, Microbiology and Virology, Tbilisi, Georgia.
| | - Nana Balarjishvili
- George Eliava Institute for Bacteriophages, Microbiology and Virology, Tbilisi, Georgia.
| | - Leila Kvachadze
- George Eliava Institute for Bacteriophages, Microbiology and Virology, Tbilisi, Georgia.
| | - Mzia Kutateladze
- George Eliava Institute for Bacteriophages, Microbiology and Virology, Tbilisi, Georgia.
| |
Collapse
|
12
|
Farlow J, Filippov AA, Sergueev KV, Hang J, Kotorashvili A, Nikolich MP. Comparative whole genome analysis of six diagnostic brucellaphages. Gene 2014; 541:115-22. [PMID: 24530704 DOI: 10.1016/j.gene.2014.01.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 11/04/2013] [Accepted: 01/07/2014] [Indexed: 11/24/2022]
Abstract
Whole genome sequencing of six diagnostic brucellaphages, Tbilisi (Tb), Firenze (Fz), Weybridge (Wb), S708, Berkeley (Bk) and R/C, was followed with genomic comparisons including recently described genomes of the Tb phage from Mexico (TbM) and Pr phage to elucidate genomic diversity and candidate host range determinants. Comparative whole genome analysis revealed high sequence homogeneity among these brucellaphage genomes and resolved three genetic groups consistent with defined host range phenotypes. Group I was composed of Tb and Fz phages that are predominantly lytic for Brucella abortus and Brucella neotomae; Group II included Bk, R/C, and Pr phages that are lytic mainly for B. abortus, Brucella melitensis and Brucella suis; Group III was composed of Wb and S708 phages that are lytic for B. suis, B. abortus and B. neotomae. We found that the putative phage collar protein is a variable locus with features that may be contributing to the host specificities exhibited by different brucellaphage groups. The presence of several candidate host range determinants is illustrated herein for future dissection of the differential host specificity observed among these phages.
Collapse
Affiliation(s)
| | - Andrey A Filippov
- Department of Emerging Bacterial Infections, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Kirill V Sergueev
- Department of Emerging Bacterial Infections, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jun Hang
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Adam Kotorashvili
- Richard G. Lugar Center for Public Health Research, Tbilisi, Georgia
| | - Mikeljon P Nikolich
- Department of Emerging Bacterial Infections, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| |
Collapse
|
13
|
F1 and tbilisi are closely related brucellaphages exhibiting some distinct nucleotide variations which determine the host specificity. GENOME ANNOUNCEMENTS 2014; 2:2/1/e01250-13. [PMID: 24482520 PMCID: PMC3907735 DOI: 10.1128/genomea.01250-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report on the 41,143-bp genome of brucellaphage F1, a podovirus that infects several Brucella species. The F1 genome is almost identical to the genome of brucellaphage Tb. However, some structural proteins of the phages exhibit extensive polymorphisms and might be responsible for their different host ranges.
Collapse
|
14
|
Bacteriophage orphan DNA methyltransferases: insights from their bacterial origin, function, and occurrence. Appl Environ Microbiol 2013; 79:7547-55. [PMID: 24123737 DOI: 10.1128/aem.02229-13] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Type II DNA methyltransferases (MTases) are enzymes found ubiquitously in the prokaryotic world, where they play important roles in several cellular processes, such as host protection and epigenetic regulation. Three classes of type II MTases have been identified thus far in bacteria which function in transferring a methyl group from S-adenosyl-l-methionine (SAM) to a target nucleotide base, forming N-6-methyladenine (class I), N-4-methylcytosine (class II), or C-5-methylcytosine (class III). Often, these MTases are associated with a cognate restriction endonuclease (REase) to form a restriction-modification (R-M) system protecting bacterial cells from invasion by foreign DNA. When MTases exist alone, which are then termed orphan MTases, they are believed to be mainly involved in regulatory activities in the bacterial cell. Genomes of various lytic and lysogenic phages have been shown to encode multi- and mono-specific orphan MTases that have the ability to confer protection from restriction endonucleases of their bacterial host(s). The ability of a phage to overcome R-M and other phage-targeting resistance systems can be detrimental to particular biotechnological processes such as dairy fermentations. Conversely, as phages may also be beneficial in certain areas such as phage therapy, phages with additional resistance to host defenses may prolong the effectiveness of the therapy. This minireview will focus on bacteriophage-encoded MTases, their prevalence and diversity, as well as their potential origin and function.
Collapse
|