1
|
McConnell SC, Hernandez KM, Andrade J, de Jong JLO. Immune gene variation associated with chromosome-scale differences among individual zebrafish genomes. Sci Rep 2023; 13:7777. [PMID: 37179373 PMCID: PMC10183018 DOI: 10.1038/s41598-023-34467-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023] Open
Abstract
Immune genes have evolved to maintain exceptional diversity, offering robust defense against pathogens. We performed genomic assembly to examine immune gene variation in zebrafish. Gene pathway analysis identified immune genes as significantly enriched among genes with evidence of positive selection. A large subset of genes was absent from analysis of coding sequences due to apparent lack of reads, prompting us to examine genes overlapping zero coverage regions (ZCRs), defined as 2 kb stretches without mapped reads. Immune genes were identified as highly enriched within ZCRs, including over 60% of major histocompatibility complex (MHC) genes and NOD-like receptor (NLR) genes, mediators of direct and indirect pathogen recognition. This variation was most highly concentrated throughout one arm of chromosome 4 carrying a large cluster of NLR genes, associated with large-scale structural variation covering more than half of the chromosome. Our genomic assemblies uncovered alternative haplotypes and distinct complements of immune genes among individual zebrafish, including the MHC Class II locus on chromosome 8 and the NLR gene cluster on chromosome 4. While previous studies have shown marked variation in NLR genes between vertebrate species, our study highlights extensive variation in NLR gene regions between individuals of the same species. Taken together, these findings provide evidence of immune gene variation on a scale previously unknown in other vertebrate species and raise questions about potential impact on immune function.
Collapse
Affiliation(s)
- Sean C McConnell
- Section of Hematology-Oncology and Stem Cell Transplant, Department of Pediatrics, The University of Chicago, Chicago, IL, 60637, USA
| | - Kyle M Hernandez
- Center for Research Informatics, The University of Chicago, Chicago, IL, 60637, USA
- Department of Medicine, Computational Biomedicine and Biomedical Data Science, Center for Translational Data Science, The University of Chicago, Chicago, IL, 60637, USA
| | - Jorge Andrade
- Center for Research Informatics, The University of Chicago, Chicago, IL, 60637, USA
- Kite Pharma, Santa Monica, CA, 90404, USA
| | - Jill L O de Jong
- Section of Hematology-Oncology and Stem Cell Transplant, Department of Pediatrics, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
2
|
Dawkins RL, Lloyd SS. MHC Genomics and Disease: Looking Back to Go Forward. Cells 2019; 8:cells8090944. [PMID: 31438577 PMCID: PMC6769595 DOI: 10.3390/cells8090944] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023] Open
Abstract
Ancestral haplotypes are conserved but extremely polymorphic kilobase sequences, which have been faithfully inherited over at least hundreds of generations in spite of migration and admixture. They carry susceptibility and resistance to diverse diseases, including deficiencies of CYP21 hydroxylase (47.1) and complement components (18.1), as well as numerous autoimmune diseases (8.1). The haplotypes are detected by segregation within ethnic groups rather than by SNPs and GWAS. Susceptibility to some other diseases is carried by specific alleles shared by multiple ancestral haplotypes, e.g., ankylosing spondylitis and narcolepsy. The difference between these two types of association may explain the disappointment with many GWAS. Here we propose a pathway for combining the two different approaches. SNP typing is most useful after the conserved ancestral haplotypes have been defined by other methods.
Collapse
Affiliation(s)
- Roger L Dawkins
- Centre for Innovation in Agriculture, Murdoch University and C Y O'Connor ERADE Village Foundation, North Dandalup 6207, Western Australia, Australia.
| | - Sally S Lloyd
- Centre for Innovation in Agriculture, Murdoch University and C Y O'Connor ERADE Village Foundation, North Dandalup 6207, Western Australia, Australia
| |
Collapse
|
3
|
Tian S, Yan H, Klee EW, Kalmbach M, Slager SL. Comparative analysis of de novo assemblers for variation discovery in personal genomes. Brief Bioinform 2019; 19:893-904. [PMID: 28407084 PMCID: PMC6169673 DOI: 10.1093/bib/bbx037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/08/2017] [Indexed: 12/30/2022] Open
Abstract
Current variant discovery approaches often rely on an initial read mapping to the reference sequence. Their effectiveness is limited by the presence of gaps, potential misassemblies, regions of duplicates with a high-sequence similarity and regions of high-sequence divergence in the reference. Also, mapping-based approaches are less sensitive to large INDELs and complex variations and provide little phase information in personal genomes. A few de novo assemblers have been developed to identify variants through direct variant calling from the assembly graph, micro-assembly and whole-genome assembly, but mainly for whole-genome sequencing (WGS) data. We developed SGVar, a de novo assembly workflow for haplotype-based variant discovery from whole-exome sequencing (WES) data. Using simulated human exome data, we compared SGVar with five variation-aware de novo assemblers and with BWA-MEM together with three haplotype- or local de novo assembly-based callers. SGVar outperforms the other assemblers in sensitivity and tolerance of sequencing errors. We recapitulated the findings on whole-genome and exome data from a Utah residents with Northern and Western European ancestry (CEU) trio, showing that SGVar had high sensitivity both in the highly divergent human leukocyte antigen (HLA) region and in non-HLA regions of chromosome 6. In particular, SGVar is robust to sequencing error, k-mer selection, divergence level and coverage depth. Unlike mapping-based approaches, SGVar is capable of resolving long-range phase and identifying large INDELs from WES, more prominently from WGS. We conclude that SGVar represents an ideal platform for WES-based variant discovery in highly divergent regions and across the whole genome.
Collapse
Affiliation(s)
- Shulan Tian
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Huihuang Yan
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Eric W Klee
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA.,Center for Individualized Medicine Bioinformatics Program, Mayo Clinic, USA
| | - Michael Kalmbach
- Division of Information Management and Analytics, Department of Information Technology, Mayo Clinic, USA
| | - Susan L Slager
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
4
|
Steele EJ, Al-Mufti S, Augustyn KA, Chandrajith R, Coghlan JP, Coulson SG, Ghosh S, Gillman M, Gorczynski RM, Klyce B, Louis G, Mahanama K, Oliver KR, Padron J, Qu J, Schuster JA, Smith WE, Snyder DP, Steele JA, Stewart BJ, Temple R, Tokoro G, Tout CA, Unzicker A, Wainwright M, Wallis J, Wallis DH, Wallis MK, Wetherall J, Wickramasinghe DT, Wickramasinghe JT, Wickramasinghe NC, Liu Y. Cause of Cambrian Explosion - Terrestrial or Cosmic? PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 136:3-23. [PMID: 29544820 DOI: 10.1016/j.pbiomolbio.2018.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We review the salient evidence consistent with or predicted by the Hoyle-Wickramasinghe (H-W) thesis of Cometary (Cosmic) Biology. Much of this physical and biological evidence is multifactorial. One particular focus are the recent studies which date the emergence of the complex retroviruses of vertebrate lines at or just before the Cambrian Explosion of ∼500 Ma. Such viruses are known to be plausibly associated with major evolutionary genomic processes. We believe this coincidence is not fortuitous but is consistent with a key prediction of H-W theory whereby major extinction-diversification evolutionary boundaries coincide with virus-bearing cometary-bolide bombardment events. A second focus is the remarkable evolution of intelligent complexity (Cephalopods) culminating in the emergence of the Octopus. A third focus concerns the micro-organism fossil evidence contained within meteorites as well as the detection in the upper atmosphere of apparent incoming life-bearing particles from space. In our view the totality of the multifactorial data and critical analyses assembled by Fred Hoyle, Chandra Wickramasinghe and their many colleagues since the 1960s leads to a very plausible conclusion - life may have been seeded here on Earth by life-bearing comets as soon as conditions on Earth allowed it to flourish (about or just before 4.1 Billion years ago); and living organisms such as space-resistant and space-hardy bacteria, viruses, more complex eukaryotic cells, fertilised ova and seeds have been continuously delivered ever since to Earth so being one important driver of further terrestrial evolution which has resulted in considerable genetic diversity and which has led to the emergence of mankind.
Collapse
Affiliation(s)
- Edward J Steele
- CY O'Connor ERADE Village Foundation, Piara Waters, WA, Australia; Centre for Astrobiology, University of Ruhuna, Matara, Sri Lanka.
| | - Shirwan Al-Mufti
- Buckingham Centre for Astrobiology, University of Buckingham, UK
| | - Kenneth A Augustyn
- Center for the Physics of Living Organisms, Department of Physics, Michigan Technological University, Michigan, United States
| | | | - John P Coghlan
- University of Melbourne, Office of the Dean, Faculty Medicine, Dentistry and Health Sciences, 3rd Level, Alan Gilbert Building, Australia
| | - S G Coulson
- Buckingham Centre for Astrobiology, University of Buckingham, UK
| | - Sudipto Ghosh
- Metallurgical & Materials Engineering IIT, Kanpur, India
| | - Mark Gillman
- South African Brain Research Institute, 6 Campbell Street, Waverly, Johannesburg, South Africa
| | - Reginald M Gorczynski
- University Toronto Health Network, Toronto General Hospital, University of Toronto, Canada
| | - Brig Klyce
- Buckingham Centre for Astrobiology, University of Buckingham, UK
| | - Godfrey Louis
- Department of Physics, Cochin University of Science and Technology Cochin, India
| | | | - Keith R Oliver
- School of Veterinary and Life Sciences Murdoch University, Perth, WA, Australia
| | - Julio Padron
- Studio Eutropi, Clinical Pathology and Nutrition, Via Pompei 46, Ardea, 00040, Rome, Italy
| | - Jiangwen Qu
- Department of Infectious Disease Control, Tianjin Center for Disease Control and Prevention, China
| | - John A Schuster
- School of History and Philosophy of Science, Faculty of Science, University of Sydney, Sydney, Australia
| | - W E Smith
- Institute for the Study of Panspermia and Astrobiology, Gifu, Japan
| | - Duane P Snyder
- Buckingham Centre for Astrobiology, University of Buckingham, UK
| | - Julian A Steele
- Centre for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200F, 3001, Leuven, Belgium
| | - Brent J Stewart
- CY O'Connor ERADE Village Foundation, Piara Waters, WA, Australia
| | - Robert Temple
- The History of Chinese Culture Foundation, Conway Hall, London, UK
| | - Gensuke Tokoro
- Institute for the Study of Panspermia and Astrobiology, Gifu, Japan
| | - Christopher A Tout
- Institute of Astronomy, The Observatories, Madingley Road, Cambridge, CB3 0HA, UK
| | | | - Milton Wainwright
- Buckingham Centre for Astrobiology, University of Buckingham, UK; Centre for Astrobiology, University of Ruhuna, Matara, Sri Lanka
| | - Jamie Wallis
- Buckingham Centre for Astrobiology, University of Buckingham, UK
| | - Daryl H Wallis
- Buckingham Centre for Astrobiology, University of Buckingham, UK
| | - Max K Wallis
- Buckingham Centre for Astrobiology, University of Buckingham, UK
| | - John Wetherall
- School of Biomedical Sciences, Perth, Curtin University, WA, Australia
| | - D T Wickramasinghe
- College of Physical and Mathematical Sciences, Australian National University, Canberra, Australia
| | | | - N Chandra Wickramasinghe
- Buckingham Centre for Astrobiology, University of Buckingham, UK; Centre for Astrobiology, University of Ruhuna, Matara, Sri Lanka; Institute for the Study of Panspermia and Astrobiology, Gifu, Japan
| | - Yongsheng Liu
- Henan Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, 453003, China; Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
5
|
Lloyd SS, Steele EJ, Valenzuela JL, Dawkins RL. Haplotypes for Type, Degree, and Rate of Marbling in Cattle Are Syntenic with Human Muscular Dystrophy. Int J Genomics 2017; 2017:6532837. [PMID: 28913347 PMCID: PMC5585636 DOI: 10.1155/2017/6532837] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/28/2017] [Indexed: 01/04/2023] Open
Abstract
Traditional analyses of a QTL on Bota 19 implicate a surfeit of candidates, but each is of marginal significance in explaining the deposition of healthy, low melting temperature fat within marbled muscle of Wagyu cattle. As an alternative approach, we have used genomic, multigenerational segregation to identify 14 conserved, ancestral 20 Mb haplotypes. These determine the degree and rate of marbling in Wagyu and other breeds of cattle. The melting temperature of intramuscular fat is highly heritable and traceable by haplotyping. Fortunately, for the production of healthy beef, some of these haplotypes are sufficiently penetrant to be expressed in heterozygous crossbreds, thereby allowing selection of sires which will improve the healthiness of beef produced under even harsh climatic conditions. The region of Bota 19 is syntenic to a region of Hosa 17 known to be important in muscle metabolism and in determining susceptibility to a form of human muscular dystrophy.
Collapse
Affiliation(s)
- Sally S. Lloyd
- CY O'Connor ERADE Village Foundation, P.O. Box 5100, Canning Vale South, WA 6155, Australia
- Melaleuka Stud, 24 Genomics Rise, Piara Waters, WA 6112, Australia
- Centre for Innovation in Agriculture, Murdoch University, Murdoch, WA 6150, Australia
| | - Edward J. Steele
- CY O'Connor ERADE Village Foundation, P.O. Box 5100, Canning Vale South, WA 6155, Australia
| | - Jose L. Valenzuela
- CY O'Connor ERADE Village Foundation, P.O. Box 5100, Canning Vale South, WA 6155, Australia
- Melaleuka Stud, 24 Genomics Rise, Piara Waters, WA 6112, Australia
| | - Roger L. Dawkins
- CY O'Connor ERADE Village Foundation, P.O. Box 5100, Canning Vale South, WA 6155, Australia
- Melaleuka Stud, 24 Genomics Rise, Piara Waters, WA 6112, Australia
- Centre for Innovation in Agriculture, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
6
|
Tian S, Yan H, Kalmbach M, Slager SL. Impact of post-alignment processing in variant discovery from whole exome data. BMC Bioinformatics 2016; 17:403. [PMID: 27716037 PMCID: PMC5048557 DOI: 10.1186/s12859-016-1279-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 09/26/2016] [Indexed: 01/11/2023] Open
Abstract
Background GATK Best Practices workflows are widely used in large-scale sequencing projects and recommend post-alignment processing before variant calling. Two key post-processing steps include the computationally intensive local realignment around known INDELs and base quality score recalibration (BQSR). Both have been shown to reduce erroneous calls; however, the findings are mainly supported by the analytical pipeline that incorporates BWA and GATK UnifiedGenotyper. It is not known whether there is any benefit of post-processing and to what extent the benefit might be for pipelines implementing other methods, especially given that both mappers and callers are typically updated. Moreover, because sequencing platforms are upgraded regularly and the new platforms provide better estimations of read quality scores, the need for post-processing is also unknown. Finally, some regions in the human genome show high sequence divergence from the reference genome; it is unclear whether there is benefit from post-processing in these regions. Results We used both simulated and NA12878 exome data to comprehensively assess the impact of post-processing for five or six popular mappers together with five callers. Focusing on chromosome 6p21.3, which is a region of high sequence divergence harboring the human leukocyte antigen (HLA) system, we found that local realignment had little or no impact on SNP calling, but increased sensitivity was observed in INDEL calling for the Stampy + GATK UnifiedGenotyper pipeline. No or only a modest effect of local realignment was detected on the three haplotype-based callers and no evidence of effect on Novoalign. BQSR had virtually negligible effect on INDEL calling and generally reduced sensitivity for SNP calling that depended on caller, coverage and level of divergence. Specifically, for SAMtools and FreeBayes calling in the regions with low divergence, BQSR reduced the SNP calling sensitivity but improved the precision when the coverage is insufficient. However, in regions of high divergence (e.g., the HLA region), BQSR reduced the sensitivity of both callers with little gain in precision rate. For the other three callers, BQSR reduced the sensitivity without increasing the precision rate regardless of coverage and divergence level. Conclusions We demonstrated that the gain from post-processing is not universal; rather, it depends on mapper and caller combination, and the benefit is influenced further by sequencing depth and divergence level. Our analysis highlights the importance of considering these key factors in deciding to apply the computationally intensive post-processing to Illumina exome data. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1279-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shulan Tian
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Huihuang Yan
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Michael Kalmbach
- Division of Research and Education Support Systems, Department of Information Technology Mayo Clinic, Rochester, MN, 55905, USA
| | - Susan L Slager
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA.
| |
Collapse
|
7
|
Tian S, Yan H, Neuhauser C, Slager SL. An analytical workflow for accurate variant discovery in highly divergent regions. BMC Genomics 2016; 17:703. [PMID: 27590916 PMCID: PMC5010666 DOI: 10.1186/s12864-016-3045-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/25/2016] [Indexed: 02/07/2023] Open
Abstract
Background Current variant discovery methods often start with the mapping of short reads to a reference genome; yet, their performance deteriorates in genomic regions where the reads are highly divergent from the reference sequence. This is particularly problematic for the human leukocyte antigen (HLA) region on chromosome 6p21.3. This region is associated with over 100 diseases, but variant calling is hindered by the extreme divergence across different haplotypes. Results We simulated reads from chromosome 6 exonic regions over a wide range of sequence divergence and coverage depth. We systematically assessed combinations between five mappers and five callers for their performance on simulated data and exome-seq data from NA12878, a well-studied individual in which multiple public call sets have been generated. Among those combinations, the number of known SNPs differed by about 5 % in the non-HLA regions of chromosome 6 but over 20 % in the HLA region. Notably, GSNAP mapping combined with GATK UnifiedGenotyper calling identified about 20 % more known SNPs than most existing methods without a noticeable loss of specificity, with 100 % sensitivity in three highly polymorphic HLA genes examined. Much larger differences were observed among these combinations in INDEL calling from both non-HLA and HLA regions. We obtained similar results with our internal exome-seq data from a cohort of chronic lymphocytic leukemia patients. Conclusions We have established a workflow enabling variant detection, with high sensitivity and specificity, over the full spectrum of divergence seen in the human genome. Comparing to public call sets from NA12878 has highlighted the overall superiority of GATK UnifiedGenotyper, followed by GATK HaplotypeCaller and SAMtools, in SNP calling, and of GATK HaplotypeCaller and Platypus in INDEL calling, particularly in regions of high sequence divergence such as the HLA region. GSNAP and Novoalign are the ideal mappers in combination with the above callers. We expect that the proposed workflow should be applicable to variant discovery in other highly divergent regions. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3045-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shulan Tian
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Huihuang Yan
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Claudia Neuhauser
- Informatics Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Susan L Slager
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA.
| |
Collapse
|
8
|
Steele EJ, Lloyd SS. Soma-to-germline feedback is implied by the extreme polymorphism at IGHV relative to MHC: The manifest polymorphism of the MHC appears greatly exceeded at Immunoglobulin loci, suggesting antigen-selected somatic V mutants penetrate Weismann's Barrier. Bioessays 2015; 37:557-69. [PMID: 25810320 DOI: 10.1002/bies.201400213] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/15/2015] [Accepted: 02/24/2015] [Indexed: 01/22/2023]
Abstract
Soma-to-germline feedback is forbidden under the neo-Darwinian paradigm. Nevertheless, there is a growing realization it occurs frequently in immunoglobulin (Ig) variable (V) region genes. This is a surprising development. It arises from a most unlikely source in light of the exposure of co-author EJS to the haplotype data of RL Dawkins and others on the polymorphism of the Major Histocompatibility Complex, which is generally assumed to be the most polymorphic region in the genome (spanning ∼4 Mb). The comparison between the magnitude of MHC polymorphism with estimates for the human heavy chain immunoglobulin V locus (spanning ∼1 Mb), suggests IGHV could be many orders of magnitude more polymorphic than the MHC. This conclusion needs airing in the literature as it implies generational churn and soma-to-germline gene feedback. Pedigree-based experimental strategies to resolve the IGHV issue are outlined.
Collapse
Affiliation(s)
- Edward J Steele
- C.Y. O'Connor ERADE Village Foundation, Piara Waters, WA, Australia
| | | |
Collapse
|
9
|
Dawkins RL, Willamson JF, Lester S, Dawkins ST. Mutation versus polymorphism in evolution. Genomics 2013; 101:211-2. [DOI: 10.1016/j.ygeno.2013.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 01/23/2013] [Accepted: 01/26/2013] [Indexed: 11/27/2022]
|