1
|
Zhen Z, Zhang M, Yuan X, Li M. Transcription factor E2F4 is a positive regulator of milk biosynthesis and proliferation of bovine mammary epithelial cells. Cell Biol Int 2020; 44:229-241. [PMID: 31475773 DOI: 10.1002/cbin.11225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/22/2019] [Indexed: 01/24/2023]
Abstract
The transcription factor E2F4 is a key determinant of cell differentiation and cell-cycle progression, but its function and regulatory mechanism are not completely understood. Here, we report that E2F4 acts as a positive regulator of the biosynthesis of milk components and proliferation of bovine mammary epithelial cells (BMECs). Overexpression of E2F4 in BMECs resulted in the upregulation of β-casein, triglyceride, and lactose levels and increased cell proliferation, whereas E2F4 knockdown by small interfering RNA had the opposite effects. We further detected that overexpression of E2F4 significantly increased the messenger RNA expression of mTOR, SREBP-1c, and Cyclin D1, and increased protein levels of SREBP-1c, and Cyclin D1, and the ratio of p-mTOR/mTOR, whereas E2F4 knockdown had the opposite effects. E2F4 was almost entirely located in the nucleus, and we further identified, via ChIP-qPCR analysis, that mTOR, SREBP-1c, and Cyclin D1 were E2F4 target genes, and exogenous administration of methionine, leucine, β-estradiol, and prolactin markedly increased the protein levels of E2F4 and its binding to the promoters of these three genes. In summary, our data reveal that E2F4 responds to extracellular stimuli and regulates the expression of mTOR, SREBP-1c, and Cyclin D1 for milk biosynthesis and proliferation of BMECs.
Collapse
Affiliation(s)
- Zhen Zhen
- The Key Laboratory of Dairy Science of Education Ministry, Food College, Northeast Agricultural University, Changjiang Road 600, Xiangfang District, Harbin, 150030, China
| | - Minghui Zhang
- The Key Laboratory of Dairy Science of Education Ministry, Food College, Northeast Agricultural University, Changjiang Road 600, Xiangfang District, Harbin, 150030, China
| | - Xiaohan Yuan
- The Key Laboratory of Dairy Science of Education Ministry, Food College, Northeast Agricultural University, Changjiang Road 600, Xiangfang District, Harbin, 150030, China
| | - Meng Li
- The Key Laboratory of Dairy Science of Education Ministry, Food College, Northeast Agricultural University, Changjiang Road 600, Xiangfang District, Harbin, 150030, China
| |
Collapse
|
2
|
Fu Z, Liu F, Liu C, Jin B, Jiang Y, Tang M, Qi X, Guo X. Mutant huntingtin inhibits the mitochondrial unfolded protein response by impairing ABCB10 mRNA stability. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1428-1435. [PMID: 30802639 DOI: 10.1016/j.bbadis.2019.02.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/04/2019] [Accepted: 02/18/2019] [Indexed: 12/21/2022]
Abstract
Numerous studies have shown that mitochondrial dysfunction contributes to consequential phenotypes of Huntington's disease (HD), a fatal and inherited neurodegenerative disease caused by the expanded CAG repeats in the N-terminus of the huntingtin (Htt) gene. To maintain proper function, mitochondria develop a dedicated protein quality control mechanism by activating a stress response termed the mitochondrial unfolded protein response (UPRmt). Defects in the UPRmt have been linked to aging and are also associated with neurodegenerative diseases. However, little is known about the role of the UPRmt in HD. In this study, we find that ABCB10, a mitochondrial transporter involved in the UPRmt pathway, is downregulated in HD mouse striatal cells, HD patient fibroblasts, and HD R6/2 mice. Deletion of ABCB10 causes increased mitochondrial reactive oxygen species (ROS) production and cell death, whereas overexpression of ABCB10 reduces these aberrant events. Moreover, the mitochondrial chaperone HSP60 and mitochondrial protease Clpp, two well-established markers of the UPRmt, are reduced in the in vitro ABCB10-deficienct HD models. CHOP, a key transcription factor of HSP60 and Clpp, is regulated by ABCB10 in HD mouse striatal cells. Furthermore, we find that mutant huntingtin (mtHtt) inhibits the mtUPR by impairing ABCB10 mRNA stability. These findings demonstrate a suppression of the UPRmt by mtHtt, suggesting that disturbance of mitochondrial protein quality control may contribute to the pathogenesis of HD.
Collapse
Affiliation(s)
- Zixing Fu
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Fang Liu
- Department of Anatomy, College of Basic Medicine, Guilin Medical University, Guilin 541004, China
| | - Chunyue Liu
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Beifang Jin
- Department of Anatomy, College of Basic Medicine, Guilin Medical University, Guilin 541004, China
| | - Yueqing Jiang
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| | - Mingliang Tang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Xin Qi
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA; Center for Mitochondrial Disease, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | - Xing Guo
- Department of Neurobiology, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, Jiangsu, China.
| |
Collapse
|
3
|
Zhao ZD, Zan LS, Li AN, Cheng G, Li SJ, Zhang YR, Wang XY, Zhang YY. Characterization of the promoter region of the bovine long-chain acyl-CoA synthetase 1 gene: Roles of E2F1, Sp1, KLF15, and E2F4. Sci Rep 2016; 6:19661. [PMID: 26782942 PMCID: PMC4726046 DOI: 10.1038/srep19661] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 12/16/2015] [Indexed: 01/27/2023] Open
Abstract
The nutritional value and eating qualities of beef are enhanced when the unsaturated fatty acid content of fat is increased. Long-chain acyl-CoA synthetase 1 (ACSL1) plays key roles in fatty acid transport and degradation, as well as lipid synthesis. It has been identified as a plausible functional and positional candidate gene for manipulations of fatty acid composition in bovine skeletal muscle. In the present study, we determined that bovine ACSL1was highly expressed in subcutaneous adipose tissue and longissimus thoracis. To elucidate the molecular mechanisms involved in bovine ACSL1 regulation, we cloned and characterized the promoter region of ACSL1. Applying 5′-rapid amplification of cDNA end analysis (RACE), we identified multiple transcriptional start sites (TSSs) in its promoter region. Using a series of 5′ deletion promoter plasmids in luciferase reporter assays, we found that the proximal minimal promoter of ACSL1 was located within the region −325/−141 relative to the TSS and it was also located in the predicted CpG island. Mutational analysis and electrophoretic mobility shift assays demonstrated that E2F1, Sp1, KLF15 and E2F4 binding to the promoter region drives ACSL1 transcription. Together these interactions integrate and frame a key functional role for ACSL1 in mediating the lipid composition of beef.
Collapse
Affiliation(s)
- Zhi-Dong Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100 Shaanxi, People's Republic of China
| | - Lin-Sen Zan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100 Shaanxi, People's Republic of China.,National Beef Cattle Improvement Center, Northwest A&F University, Yangling 712100 Shaanxi, People's Republic of China
| | - An-Ning Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100 Shaanxi, People's Republic of China
| | - Gong Cheng
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100 Shaanxi, People's Republic of China.,National Beef Cattle Improvement Center, Northwest A&F University, Yangling 712100 Shaanxi, People's Republic of China
| | - Shi-Jun Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100 Shaanxi, People's Republic of China
| | - Ya-Ran Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100 Shaanxi, People's Republic of China
| | - Xiao-Yu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100 Shaanxi, People's Republic of China
| | - Ying-Ying Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100 Shaanxi, People's Republic of China
| |
Collapse
|