1
|
Gallegos-Martínez S, Choy-Buentello D, Pérez-Álvarez KA, Lara-Mayorga IM, Aceves-Colin AE, Zhang YS, Trujillo-de Santiago G, Álvarez MM. A 3D-printed tumor-on-chip: user-friendly platform for the culture of breast cancer spheroids and the evaluation of anti-cancer drugs. Biofabrication 2024; 16:045010. [PMID: 38866003 DOI: 10.1088/1758-5090/ad5765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
Tumor-on-chips (ToCs) are useful platforms for studying the physiology of tumors and evaluating the efficacy and toxicity of anti-cancer drugs. However, the design and fabrication of a ToC system is not a trivial venture. We introduce a user-friendly, flexible, 3D-printed microfluidic device that can be used to culture cancer cells or cancer-derived spheroids embedded in hydrogels under well-controlled environments. The system consists of two lateral flow compartments (left and right sides), each with two inlets and two outlets to deliver cell culture media as continuous liquid streams. The central compartment was designed to host a hydrogel in which cells and microtissues can be confined and cultured. We performed tracer experiments with colored inks and 40 kDa fluorescein isothiocyanate dextran to characterize the transport/mixing performances of the system. We also cultured homotypic (MCF7) and heterotypic (MCF7-BJ) spheroids embedded in gelatin methacryloyl hydrogels to illustrate the use of this microfluidic device in sustaining long-term micro-tissue culture experiments. We further demonstrated the use of this platform in anticancer drug testing by continuous perfusion of doxorubicin, a commonly used anti-cancer drug for breast cancer. In these experiments, we evaluated drug transport, viability, glucose consumption, cell death (apoptosis), and cytotoxicity. In summary, we introduce a robust and friendly ToC system capable of recapitulating relevant aspects of the tumor microenvironment for the study of cancer physiology, anti-cancer drug transport, efficacy, and safety. We anticipate that this flexible 3D-printed microfluidic device may facilitate cancer research and the development and screening of strategies for personalized medicine.
Collapse
Affiliation(s)
- Salvador Gallegos-Martínez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, CP 64849 Monterrey, Nuevo León, Mexico
- Departamento de Mecatrónica e Ingeniería Eléctrica, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Nuevo León, CP 64849, Mexico
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, United States of America
| | - David Choy-Buentello
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, CP 64849 Monterrey, Nuevo León, Mexico
| | - Kristen Aideé Pérez-Álvarez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, CP 64849 Monterrey, Nuevo León, Mexico
| | | | | | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA 02139, United States of America
| | - Grissel Trujillo-de Santiago
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, CP 64849 Monterrey, Nuevo León, Mexico
- Departamento de Mecatrónica e Ingeniería Eléctrica, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Nuevo León, CP 64849, Mexico
| | - Mario Moisés Álvarez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, CP 64849 Monterrey, Nuevo León, Mexico
- Departamento de Mecatrónica e Ingeniería Eléctrica, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Monterrey, Nuevo León, CP 64849, Mexico
| |
Collapse
|
2
|
Mattioli R, Ilari A, Colotti B, Mosca L, Fazi F, Colotti G. Doxorubicin and other anthracyclines in cancers: Activity, chemoresistance and its overcoming. Mol Aspects Med 2023; 93:101205. [PMID: 37515939 DOI: 10.1016/j.mam.2023.101205] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/31/2023]
Abstract
Anthracyclines have been important and effective treatments against a number of cancers since their discovery. However, their use in therapy has been complicated by severe side effects and toxicity that occur during or after treatment, including cardiotoxicity. The mode of action of anthracyclines is complex, with several mechanisms proposed. It is possible that their high toxicity is due to the large set of processes involved in anthracycline action. The development of resistance is a major barrier to successful treatment when using anthracyclines. This resistance is based on a series of mechanisms that have been studied and addressed in recent years. This work provides an overview of the anthracyclines used in cancer therapy. It discusses their mechanisms of activity, toxicity, and chemoresistance, as well as the approaches used to improve their activity, decrease their toxicity, and overcome resistance.
Collapse
Affiliation(s)
- Roberto Mattioli
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy
| | - Beatrice Colotti
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Luciana Mosca
- Dept. Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic & Orthopaedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council IBPM-CNR, Rome, Italy.
| |
Collapse
|
3
|
Sang L, Wang X, Bai W, Shen J, Zeng Y, Sun J. The role of hepatocyte nuclear factor 4α (HNF4α) in tumorigenesis. Front Oncol 2022; 12:1011230. [PMID: 36249028 PMCID: PMC9554155 DOI: 10.3389/fonc.2022.1011230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatocyte Nuclear Factor 4 Alpha (HNF4α) is a master transcription factor mainly expressed in the liver, kidney, intestine and endocrine pancreas. It regulates multiple target genes involved in embryonic development and metabolism. HNF4α-related diseases include non-alcoholic fatty liver disease (NAFLD), obesity, hypertension, hyperlipidemia, metabolic syndrome and diabetes mellitus. Recently, HNF4α has been emerging as a key player in a variety of cancers. In this review, we summarized the role and mechanism of HNF4α in different types of cancers, especially in liver and colorectal cancer, aiming to provide additional guidance for intervention of these diseases.
Collapse
Affiliation(s)
- Lei Sang
- The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, China
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Xingshun Wang
- The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, China
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Weiyu Bai
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Junling Shen
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Yong Zeng
- The Sixth Affiliated Hospital of Kunming Medical University, Yuxi, China
- The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jianwei Sun
- Center for Life Sciences, School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| |
Collapse
|
4
|
Luo W, Ali YF, Liu C, Wang Y, Liu C, Jin X, Zhou G, Liu NA. Particle Therapy for Breast Cancer: Benefits and Challenges. Front Oncol 2021; 11:662826. [PMID: 34026640 PMCID: PMC8131859 DOI: 10.3389/fonc.2021.662826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/07/2021] [Indexed: 01/06/2023] Open
Abstract
Hadron therapy with protons and carbon ions is widely attracting interest as a potential competitor of conventional photon radiotherapy. Exquisite dose distribution of charged particles allows for a higher local control of the tumor and lower probability of damage to nearby healthy tissues. Heavy ions have presumed biological advantages rising from their high-linear energy transfer (LET) characteristics, including greater cell-killing effectiveness and reduced heterogeneity dependence of radiation response. Although these advantages are clear and supported by data, only 18.0% of proton and carbon ion radiotherapy (CIRT) facilities in Europe are treating breast cancers. This review summarizes the physical and radiobiological properties of charged particles, clinical use of particle beam for breast cancer, and suggested approaches to overcome technical and financial challenges.
Collapse
Affiliation(s)
- Wanrong Luo
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Yasser F. Ali
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
- Biophysics Lab, Physics Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Chong Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Yuchen Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Caorui Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Xiaoni Jin
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Ning-Ang Liu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| |
Collapse
|
5
|
Jarrar Y, Zihlif M, Al Bawab AQ, Sharab A. Effects of Intermittent Hypoxia on Expression of Glucose Metabolism Genes in MCF7 Breast Cancer Cell Line. Curr Cancer Drug Targets 2020; 20:216-222. [PMID: 31738135 DOI: 10.2174/1568009619666191116095847] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/10/2019] [Accepted: 10/03/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Hypoxic condition induces molecular alterations which affect the survival rate and chemo-resistant phenotype of cancer cells. OBJECTIVE The aim of this study is to investigate the influence of intermittent hypoxic conditions on the expression of glucose metabolism genes in breast cancer MCF7 cell line. METHODS The gene expression was analyzed using a polymerase chain reaction-array method. In addition, the cell resistance, survival and migration rates were examined to assure the hypoxic influence on the cells. RESULTS 30 hypoxic episodes induced the Warburg effect through significant (p-value < 0.05) upregulation of the expression of PCK2, PHKG1, ALDOC, G6PC, GYS2, ALDOB, HK3, PKLR, PGK2, PDK2, ACO1 and H6PD genes that are involved in glycolysis, were obtained. Furthermore, the expression of the major gluconeogenesis enzyme genes was significantly (ANOVA, p-value < 0.05) downregulated. These molecular alterations were associated with increased MCF7 cell division and migration rate. However, molecular and phenotypic changes induced after 30 episodes were normalized in MCF7 cells exposed to 60 hypoxic episodes. CONCLUSION It is concluded, from this study, that 30 intermitted hypoxic episodes increased the survival rate of MCF7 breast cancer cells and induced the Warburg effect through upregulation of the expression of genes involved in the glycolysis pathway. These results may increase our understanding of the molecular alterations of breast cancer cells under hypoxic conditions.
Collapse
Affiliation(s)
- Yazun Jarrar
- Department of Pharmaceutical Science, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Malek Zihlif
- Department of Pharmacology, Faculty of Medicine, The University of Jordan, Amman, Jordan
| | - Abdel Qader Al Bawab
- Department of Pharmaceutical Science, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Ahmad Sharab
- Department of Pharmacology, Faculty of Medicine, The University of Jordan, Amman, Jordan
| |
Collapse
|
6
|
Low LE, Wu J, Lee J, Tey BT, Goh BH, Gao J, Li F, Ling D. Tumor-responsive dynamic nanoassemblies for targeted imaging, therapy and microenvironment manipulation. J Control Release 2020; 324:69-103. [DOI: 10.1016/j.jconrel.2020.05.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 01/01/2023]
|
7
|
Wang J, Wang Y, Xing P, Liu Q, Zhang C, Sui Y, Wu C. Development and validation of a hypoxia-related prognostic signature for breast cancer. Oncol Lett 2020; 20:1906-1914. [PMID: 32724434 PMCID: PMC7377061 DOI: 10.3892/ol.2020.11733] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 05/15/2020] [Indexed: 12/30/2022] Open
Abstract
Hypoxia, an important component of the tumor microenvironment, plays a crucial role in the occurrence and progression of cancer. However, to the best of our knowledge, a systematic analysis of a hypoxia-related prognostic signature for breast cancer is lacking and is urgently required. Therefore, in the present study, RNA-seq data and clinical information were downloaded from The Cancer Genome Atlas (TCGA) and served as a discovery cohort. Cox proportional hazards regression analysis was performed to construct a 14-gene prognostic signature (PFKL, P4HA2, GRHPR, SDC3, PPP1R15A, SIAH2, NDRG1, BTG1, TPD52, MAFF, ISG20, LALBA, ERRFI1 and VHL). The hypoxia-related signature successfully predicted survival outcomes of the discovery cohort (P<0.001 for the TCGA dataset). Three independent Gene Expression Omnibus databases (GSE10886, GSE20685 and GSE96058) were used as validation cohorts to verify the value of the predictive signature (P=0.007 for GSE10886, P=0.021 for GSE20685, P<0.001 for GSE96058). In the present study, a robust predictive signature was developed for patients with breast cancer, and the findings revealed that the 14-gene hypoxia-related signature could serve as a potential prognostic biomarker for breast cancer.
Collapse
Affiliation(s)
- Jianxin Wang
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yuquan Wang
- College of Bioinformatics, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Ping Xing
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Qianqi Liu
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Cong Zhang
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yang Sui
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Changjun Wu
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
8
|
Li W, Martinez-Useros J, Garcia-Carbonero N, Fernandez-Aceñero MJ, Orta A, Ortega-Medina L, Garcia-Botella S, Perez-Aguirre E, Diez-Valladares L, Celdran A, García-Foncillas J. The Clinical Significance of PIWIL3 and PIWIL4 Expression in Pancreatic Cancer. J Clin Med 2020; 9:1252. [PMID: 32357464 PMCID: PMC7287605 DOI: 10.3390/jcm9051252] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/17/2020] [Accepted: 04/23/2020] [Indexed: 12/26/2022] Open
Abstract
P-element-induced wimpy testis (PIWI) proteins have been described in several cancers. PIWIL1 and PIWIL2 have been recently evaluated in pancreatic cancer, and elevated expression of PIWIL2 conferred longer survival to patients. However, PIWIL3's and PIWIL4's role in carcinogenesis is rather controversial, and their clinical implication in pancreatic cancer has not yet been investigated. In the present study, we evaluated PIWIL1, PIWIL2, PIWIL3 and PIWIL4 expression in pancreatic cancer-derived cell lines and in one non-tumor cell line as healthy control. Here, we show a differential expression in tumor and non-tumor cell lines of PIWIL3 and PIWIL4. Subsequently, functional experiments with PIWIL3 and/or PIWIL4 knockdown revealed a decrease in the motility ratio of tumor and non-tumor cell lines through downregulation of mesenchymal factors in pro of epithelial factors. We also observed that PIWIL3 and/or PIWIL4 silencing impaired undifferentiated phenotype and enhanced drug toxicity in both tumor- and non-tumor-derived cell lines. Finally, PIWIL3 and PIWIL4 evaluation in human pancreatic cancer samples showed that patients with low levels of PIWIL4 protein expression presented poor prognosis. Therefore, PIWIL3 and PIWIL4 proteins may play crucial roles to keep pancreatic cell homeostasis not only in tumors but also in healthy tissues.
Collapse
Affiliation(s)
- Weiyao Li
- Translational Oncology Division, OncoHealth Institute, Fundacion Jimenez Diaz University Hospital, Av. Reyes Católicos 2, 28040 Madrid, Spain; (W.L.); (N.G.-C.); (A.O.)
| | - Javier Martinez-Useros
- Translational Oncology Division, OncoHealth Institute, Fundacion Jimenez Diaz University Hospital, Av. Reyes Católicos 2, 28040 Madrid, Spain; (W.L.); (N.G.-C.); (A.O.)
| | - Nuria Garcia-Carbonero
- Translational Oncology Division, OncoHealth Institute, Fundacion Jimenez Diaz University Hospital, Av. Reyes Católicos 2, 28040 Madrid, Spain; (W.L.); (N.G.-C.); (A.O.)
| | | | - Alberto Orta
- Translational Oncology Division, OncoHealth Institute, Fundacion Jimenez Diaz University Hospital, Av. Reyes Católicos 2, 28040 Madrid, Spain; (W.L.); (N.G.-C.); (A.O.)
| | - Luis Ortega-Medina
- Pathology Department, Clinico San Carlos University Hospital, C/Profesor Martin Lagos, 28040 Madrid, Spain;
| | - Sandra Garcia-Botella
- Surgery Department (Pancreatobiliary Unit), Hospital Clínico San Carlos, C/Profesor Martin Lagos, 28040 Madrid, Spain; (S.G.-B.); (E.P.-A.); (L.D.-V.)
| | - Elia Perez-Aguirre
- Surgery Department (Pancreatobiliary Unit), Hospital Clínico San Carlos, C/Profesor Martin Lagos, 28040 Madrid, Spain; (S.G.-B.); (E.P.-A.); (L.D.-V.)
| | - Luis Diez-Valladares
- Surgery Department (Pancreatobiliary Unit), Hospital Clínico San Carlos, C/Profesor Martin Lagos, 28040 Madrid, Spain; (S.G.-B.); (E.P.-A.); (L.D.-V.)
| | - Angel Celdran
- Hepatobiliary and Pancreatic Surgery Unit, General and Digestive Tract Surgery Department, Fundacion Jimenez Diaz University Hospital, Av. Reyes Católicos 2, 28040 Madrid, Spain;
| | - Jesús García-Foncillas
- Translational Oncology Division, OncoHealth Institute, Fundacion Jimenez Diaz University Hospital, Av. Reyes Católicos 2, 28040 Madrid, Spain; (W.L.); (N.G.-C.); (A.O.)
| |
Collapse
|
9
|
Leiting JL, Murphy SJ, Bergquist JR, Hernandez MC, Ivanics T, Abdelrahman AM, Yang L, Lynch I, Smadbeck JB, Cleary SP, Nagorney DM, Torbenson MS, Graham RP, Roberts LR, Gores GJ, Smoot RL, Truty MJ. Biliary tract cancer patient-derived xenografts: Surgeon impact on individualized medicine. JHEP Rep 2020; 2:100068. [PMID: 32181445 PMCID: PMC7066236 DOI: 10.1016/j.jhepr.2020.100068] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND & AIMS Biliary tract tumors are uncommon but highly aggressive malignancies with poor survival outcomes. Due to their low incidence, research into effective therapeutics has been limited. Novel research platforms for pre-clinical studies are desperately needed. We sought to develop a patient-derived biliary tract cancer xenograft catalog. METHODS With appropriate consent and approval, surplus malignant tissues were obtained from surgical resection or radiographic biopsy and implanted into immunocompromised mice. Mice were monitored for xenograft growth. Established xenografts were verified by a hepatobiliary pathologist. Xenograft characteristics were correlated with original patient/tumor characteristics and oncologic outcomes. A subset of xenografts were then genomically characterized using Mate Pair sequencing (MPseq). RESULTS Between October 2013 and January 2018, 87 patients with histologically confirmed biliary tract carcinomas were enrolled. Of the 87 patients, 47 validated PDX models were successfully generated. The majority of the PDX models were created from surgical resection specimens (n = 44, 94%), which were more likely to successfully engraft when compared to radiologic biopsies (p = 0.03). Histologic recapitulation of original patient tumor morphology was observed in all xenografts. Successful engraftment was an independent predictor for worse recurrence-free survival. MPseq showed genetically diverse tumors with frequent alterations of CDKN2A, SMAD4, NRG1, TP53. Sequencing also identified worse survival in patients with tumors containing tetraploid genomes. CONCLUSIONS This is the largest series of biliary tract cancer xenografts reported to date. Histologic and genomic analysis of patient-derived xenografts demonstrates accurate recapitulation of original tumor morphology with direct correlations to patient outcomes. Successful development of biliary cancer tumografts is feasible and may be used to direct subsequent therapy in high recurrence risk patients. LAY SUMMARY Patient biliary tract tumors grown in immunocompromised mice are an invaluable resource in the treatment of biliary tract cancers. They can be used to guide individualized cancer treatment in high-risk patients.
Collapse
Key Words
- CCA, cholangiocarcinoma
- ECM, extracellular matrix
- GBCA, gallbladder carcinoma
- HRs, hazard ratios
- LOH, loss of heterozygosity
- MatePair sequencing
- OPTR, overall patient take rate
- OS, overall survival
- PDX, patient-derived xenograft
- Patient-derived xenografts
- TTF, time to tumor formation
- TTH, time to tumor harvest
- biliary tract
- cholangiocarcinoma
- dCCA, distal cholangiocarcinoma
- gallbladder carcinoma
- iCCA, intrahepatic cholangiocarcinoma
- pCCA, perihilar cholangiocarcinoma
Collapse
Affiliation(s)
| | | | | | | | - Tommy Ivanics
- Department of Surgery, Henry Ford Medical Center, Detroit, MI
| | | | - Lin Yang
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | - Isaac Lynch
- Department of Surgery, Mayo Clinic, Rochester, MN
| | | | | | | | | | | | - Lewis R. Roberts
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Gregory J. Gores
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | | | | |
Collapse
|
10
|
Design of Phthalocyanine‐Nanoparticle Hybrids for Photodynamic Therapy Applications in Oxygen‐Deficient Tumour Environment. ChemistrySelect 2019. [DOI: 10.1002/slct.201901466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Yu S, Zhou R, Yang T, Liu S, Cui Z, Qiao Q, Zhang J. Hypoxia promotes colorectal cancer cell migration and invasion in a SIRT1-dependent manner. Cancer Cell Int 2019; 19:116. [PMID: 31068761 PMCID: PMC6492435 DOI: 10.1186/s12935-019-0819-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/08/2019] [Indexed: 12/19/2022] Open
Abstract
Background Hypoxic microenvironments play a significant role in the progression of colorectal cancer (CRC). Silencing information regulator 1 (SIRT1), a class III histone deacetylase, modulates the multiple biological behaviors of cancer. However, its role in CRC remains unclear. This study aims to explore the role of SIRT1 in CRC migration and invasion under hypoxia. Methods SIRT1 protein and mRNA levels were detected by Western blotting and real-time PCR in CRC cells exposed to hypoxia (1% O2). The migration and invasion abilities of SW480 and HCT116 cells with SIRT1 overexpression or knockdown were studied with transwell assays, and the results were confirmed by those of treatment with specific SIRT1 activator (SRT1720) and inhibitor (EX527). The dual-luciferase reporter systems with a series of SIRT1 promoter truncations were used to analyze their transcriptional activities, respectively. After a bioinformatic analysis of potential transcription factors, the direct interaction between the transcription factor and SIRT1 promoter was determined by chromatin immunoprecipitation (ChIP) assays. Western blot and real-time PCR assays were used to detect the activation and acetylation levels of the NF-κB pathway. Results The protein and mRNA levels of SIRT1 were significantly decreased under hypoxia, and these effects were replicated by cobalt chloride treatment. Hypoxia promoted cell migration and invasion, which were impeded by the overexpression or activation of SIRT1 and promoted by the knockdown or inhibition of SIRT1. The dual-luciferase reporter gene and ChIP analyses revealed that the core regulatory elements located 100 bp upstream of the SIRT1 promoter and early growth response factor 1 (EGR1) could interact with this DNA sequence. Subsequent rescue experiments suggested that EGR1 was essential for hypoxia-mediated SIRT1 transcriptional suppression. Western blot analyses demonstrated that SIRT1 overexpression eliminated the p65 acetylation induced by hypoxia along with the decreased MMP-2/-9, suggesting that NF-κB was a direct downstream target of SIRT1 and might regulate cell migration and invasion through MMP-2/-9. Conclusions Our results establish for the first time that EGR1 plays an important role in regulating SIRT1 expression under hypoxia. Hypoxia promotes CRC cell migration and invasion in a SIRT1-dependent manner. And a potential SIRT1/NF-κB/MMP-2/-9 axis modulates this process. Electronic supplementary material The online version of this article (10.1186/s12935-019-0819-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shentong Yu
- 1State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032 China
| | - Ru Zhou
- 1State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032 China
| | - Tong Yang
- 1State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032 China
| | - Shuang Liu
- 2School of Basic Medicine, The Fourth Military Medical University, Xi'an, 710032 China
| | - Zhuqing Cui
- 1State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032 China
| | - Qing Qiao
- 3Department of General Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi'an, 710038 Shaanxi China
| | - Jing Zhang
- 1State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032 China
| |
Collapse
|
12
|
Hillebrand LE, Wickberg SM, Gomez-Auli A, Folio M, Maurer J, Busch H, Boerries M, Reinheckel T. MMP14 empowers tumor‐initiating breast cancer cells under hypoxic nutrient‐depleted conditions. FASEB J 2018; 33:4124-4140. [DOI: 10.1096/fj.201801127r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Larissa E. Hillebrand
- Institute of Molecular Medicine and Cell ResearchMedical Faculty Freiburg Germany
- BIOSS Centre for Biological Signaling Studies Freiburg Germany
| | - Sarah M. Wickberg
- Institute of Molecular Medicine and Cell ResearchMedical Faculty Freiburg Germany
| | - Alejandro Gomez-Auli
- Institute of Molecular Medicine and Cell ResearchMedical Faculty Freiburg Germany
| | - Marie Folio
- Department of Medicine ILighthouse Core FacilityFaculty of MedicineMedical CenterUniversity of Freiburg Freiburg Germany
| | - Jochen Maurer
- German Cancer ConsortiumGerman Cancer Research Center Heidelberg Germany
| | - Hauke Busch
- Institute of Molecular Medicine and Cell ResearchMedical Faculty Freiburg Germany
| | - Melanie Boerries
- Institute of Molecular Medicine and Cell ResearchMedical Faculty Freiburg Germany
- German Cancer ConsortiumGerman Cancer Research Center Heidelberg Germany
- Comprehensive Cancer Center Freiburg Freiburg Germany
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell ResearchMedical Faculty Freiburg Germany
- BIOSS Centre for Biological Signaling Studies Freiburg Germany
- German Cancer ConsortiumGerman Cancer Research Center Heidelberg Germany
- Comprehensive Cancer Center Freiburg Freiburg Germany
| |
Collapse
|
13
|
Enhanced nanoparticle delivery exploiting tumour-responsive formulations. Cancer Nanotechnol 2018; 9:10. [PMID: 30595759 PMCID: PMC6276285 DOI: 10.1186/s12645-018-0044-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/01/2018] [Indexed: 12/27/2022] Open
Abstract
Nanoparticles can be used as drug carriers, contrast
agents and radiosensitisers for the treatment of cancer. Nanoparticles can either passively accumulate within tumour sites, or be conjugated with targeting ligands to actively enable tumour deposition. With respect to passive accumulation, particles < 150 nm accumulate with higher efficiency within the tumour microenvironment, a consequence of the enhanced permeability and retention effect. Despite these favourable properties, clinical translation of nano-therapeutics is inhibited due to poor in vivo stability, biodistribution and target cell internalisation. Nano-therapeutics can be modified to exploit features of the tumour microenvironment such as elevated hypoxia, increased pH and a compromised extracellular matrix. This is in contrast to cytotoxic chemotherapies which generally do not exploit the characteristic pathological features of the tumour microenvironment, and as such are prone to debilitating systemic toxicities. This review examines strategies for tumour microenvironment targeting to improve nanoparticle delivery, with particular focus on the delivery of nucleic acids and gold nanoparticles. Evidence for key research areas and future technologies are presented and critically evaluated. Among the most promising technologies are the development of next-generation cell penetrating peptides and the incorporation of micro-environment responsive stealth molecules.
Collapse
|
14
|
Nunes AS, Costa EC, Barros AS, de Melo-Diogo D, Correia IJ. Establishment of 2D Cell Cultures Derived From 3D MCF-7 Spheroids Displaying a Doxorubicin Resistant Profile. Biotechnol J 2018; 14:e1800268. [PMID: 30242980 DOI: 10.1002/biot.201800268] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/14/2018] [Indexed: 01/09/2023]
Abstract
In vitro 3D cancer spheroids generally exhibit a drug resistance profile similar to that found in solid tumors. Due to this property, these models are an appealing for anticancer compounds screening. Nevertheless, the techniques and methods aimed for drug discovery are mostly standardized for cells cultured in 2D. The development of 2D cell culture models displaying a drug resistant profile is required to mimic the in vivo tumors, while the equipment, techniques, and methodologies established for conventional 2D cell cultures can continue to be employed in compound screening. In this work, the response of 3D-derived MCF-7 cells subsequently cultured in 2D in medium supplemented with glutathione (GSH) (antioxidant agent found in high levels in breast cancer tissues and a promoter of cancer cells resistance) to Doxorubicin (DOX) is evaluated. These cells demonstrated a resistance toward DOX closer to that displayed by 3D spheroids, which is higher than that exhibited by standard 2D cell cultures. In fact, the 50% inhibitory concentration (IC50 ) of DOX in 3D-derived MCF-7 cell cultures supplemented with GSH is about eight-times higher than that obtained for conventional 2D cell cultures (cultured without GSH), and is only about two-times lower than that attained for 3D MCF-7 spheroids (cultured without GSH). Further investigation revealed that this improved resistance of 3D-derived MCF-7 cells may result from their increased P-glycoprotein (P-gp) activity and reduced production of intracellular reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Ana S Nunes
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Elisabete C Costa
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Andreia S Barros
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Duarte de Melo-Diogo
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506, Covilhã, Portugal
| | - Ilídio J Correia
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506, Covilhã, Portugal.,CIEPQF - Departamento de Engenharia Química, Universidade de Coimbra, Rua Sílvio Lima, Polo II, 3030-790, Coimbra, Portugal
| |
Collapse
|
15
|
A Microdevice Platform Recapitulating Hypoxic Tumor Microenvironments. Sci Rep 2017; 7:15233. [PMID: 29123197 PMCID: PMC5680268 DOI: 10.1038/s41598-017-15583-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 10/30/2017] [Indexed: 12/19/2022] Open
Abstract
Hypoxia plays a central role in cancer progression and resistance to therapy. We have engineered a microdevice platform to recapitulate the intratumor oxygen gradients that drive the heterogeneous hypoxic landscapes in solid tumors. Our design features a "tumor section"-like culture by incorporating a cell layer between two diffusion barriers, where an oxygen gradient is established by cellular metabolism and physical constraints. We confirmed the oxygen gradient by numerical simulation and imaging-based oxygen sensor measurement. We also demonstrated spatially-resolved hypoxic signaling in cancer cells through immunostaining, gene expression assay, and hypoxia-targeted drug treatment. Our platform can accurately generate and control oxygen gradients, eliminates complex microfluidic handling, allows for incorporation of additional tumor components, and is compatible with high-content imaging and high-throughput applications. It is well suited for understanding hypoxia-mediated mechanisms in cancer disease and other biological processes, and discovery of new therapeutics.
Collapse
|
16
|
Velaei K, Samadi N, Barazvan B, Soleimani Rad J. Tumor microenvironment-mediated chemoresistance in breast cancer. Breast 2016; 30:92-100. [PMID: 27668856 DOI: 10.1016/j.breast.2016.09.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 09/02/2016] [Accepted: 09/02/2016] [Indexed: 12/20/2022] Open
Abstract
Therapy resistance or tumor relapse in cancer is common. Tumors develop resistance to chemotherapeutic through a variety of mechanisms, with tumor microenvironment (TM) serving pivotal roles. Using breast cancer as a paradigm, we propose that responses of cancer cells to drugs are not exclusively determined by their intrinsic characteristics but are also controlled by deriving signals from TM. Affected microenvironment by chemotherapy is an avenue to promote phenotype which tends to resist on to be ruined. Therefore, exclusively targeting cancer cells does not demolish tumor recurrence after chemotherapy. Regardless of tumor-microenvironment pathways and their profound influence on the responsiveness of treatment, diversity of molecular properties of breast cancer also behave differently in terms of response to chemotherapy. And also it is assumed that there is cross-talk between phenotypic diversity and TM. Collectively, raising complex signal from TM in chemotherapy condition often encourages cancer cells are not killed but strengthen. Here, we summarized how TM modifies responses to chemotherapy in breast cancer. We also discussed successful treatment strategies have been considered TM in breast cancer treatment.
Collapse
Affiliation(s)
- Kobra Velaei
- Department of Anatomical Science, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Samadi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Balal Barazvan
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleimani Rad
- Department of Anatomical Science, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
17
|
Theodoraki MA, Rezende CO, Chantarasriwong O, Corben AD, Theodorakis EA, Alpaugh ML. Spontaneously-forming spheroids as an in vitro cancer cell model for anticancer drug screening. Oncotarget 2016; 6:21255-67. [PMID: 26101913 PMCID: PMC4673263 DOI: 10.18632/oncotarget.4013] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 06/08/2015] [Indexed: 12/12/2022] Open
Abstract
The limited translational value in clinic of analyses performed on 2-D cell cultures has prompted a shift toward the generation of 3-dimensional (3-D) multicellular systems. Here we present a spontaneously-forming in vitro cancer spheroid model, referred to as spheroidsMARY-X, that precisely reflects the pathophysiological features commonly found in tumor tissues and the lymphovascular embolus. In addition, we have developed a rapid, inexpensive means to evaluate response following drug treatment where spheroid dissolution indices from brightfield image analyses are used to construct dose-response curves resulting in relevant IC50 values. Using the spheroidsMARY-X model, we demonstrate the unique ability of a new class of molecules, containing the caged Garcinia xanthone (CGX) motif, to induce spheroidal dissolution and apoptosis at IC50 values of 0.42 +/−0.02 μM for gambogic acid and 0.66 +/−0.02 μM for MAD28. On the other hand, treatment of spheroidsMARY-X with various currently approved chemotherapeutics of solid and blood-borne cancer types failed to induce any response as indicated by high dissolution indices and subsequent poor IC50 values, such as 7.8 +/−3.1 μM for paclitaxel. Our studies highlight the significance of the spheroidsMARY-X model in drug screening and underscore the potential of the CGX motif as a promising anticancer pharmacophore.
Collapse
Affiliation(s)
| | - Celso O Rezende
- Department of Chemistry and Biochemistry, University of California - San Diego, La Jolla, CA, USA
| | - Oraphin Chantarasriwong
- Department of Chemistry and Biochemistry, University of California - San Diego, La Jolla, CA, USA.,Department of Chemistry, Faculty of Science, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Adriana D Corben
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Emmanuel A Theodorakis
- Department of Chemistry and Biochemistry, University of California - San Diego, La Jolla, CA, USA
| | - Mary L Alpaugh
- Department of Chemistry and Biochemistry, University of California - San Diego, La Jolla, CA, USA.,Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
18
|
Wang F, Zhang H, Xu N, Huang N, Tian C, Ye A, Hu G, He J, Zhang Y. A novel hypoxia-induced miR-147a regulates cell proliferation through a positive feedback loop of stabilizing HIF-1α. Cancer Biol Ther 2016; 17:790-8. [PMID: 27260617 PMCID: PMC5004686 DOI: 10.1080/15384047.2016.1195040] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Hypoxia is a general event in solid tumor growth. Therefore, induced cellular responses by hypoxia are important for tumorigenesis and tumor growth. MicroRNAs (miRNAs) have recently emerged as important regulators of hypoxia induced cellular responses. Here we report that miR-147a is a novel and crucial hypoxia induced miRNA. HIF-1α up-regulates the expression of miR-147a, and miR-147a in turn stabilizes and accumulates HIF-1α protein via directly targeting HIF-3α, a dominant negative regulator of HIF-1α. Subsequent studies in xenograft mouse model reveal that miR-147a is capable of inhibiting tumor growth. Collectively, these data demonstrate a positive feedback loop between HIF-1α, miR-147a and HIF-3α, which provide a new insight into the mechanism of miR-147a induced cell proliferation arrest under hypoxia.
Collapse
Affiliation(s)
- Fan Wang
- a School of Life Sciences , Tsinghua University , Beijing , P.R. China.,b Key Lab in Healthy Science and Technology , Division of Life Science, Graduate School at Shenzhen, Tsinghua University , Shenzhen , P.R. China
| | - Haoxiang Zhang
- a School of Life Sciences , Tsinghua University , Beijing , P.R. China.,b Key Lab in Healthy Science and Technology , Division of Life Science, Graduate School at Shenzhen, Tsinghua University , Shenzhen , P.R. China
| | - Naihan Xu
- b Key Lab in Healthy Science and Technology , Division of Life Science, Graduate School at Shenzhen, Tsinghua University , Shenzhen , P.R. China
| | - Nunu Huang
- a School of Life Sciences , Tsinghua University , Beijing , P.R. China.,b Key Lab in Healthy Science and Technology , Division of Life Science, Graduate School at Shenzhen, Tsinghua University , Shenzhen , P.R. China
| | - Caiming Tian
- b Key Lab in Healthy Science and Technology , Division of Life Science, Graduate School at Shenzhen, Tsinghua University , Shenzhen , P.R. China.,c Department of Chemistry , Tsinghua University , Beijing , P.R. China
| | - Anlin Ye
- b Key Lab in Healthy Science and Technology , Division of Life Science, Graduate School at Shenzhen, Tsinghua University , Shenzhen , P.R. China
| | - Guangnan Hu
- d Department of Medicine , UMass Medical School , Worcester , Massachusetts , USA
| | - Jie He
- b Key Lab in Healthy Science and Technology , Division of Life Science, Graduate School at Shenzhen, Tsinghua University , Shenzhen , P.R. China.,e Department of Gastroenterology , Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University , Guangzhou , P.R. China
| | - Yaou Zhang
- b Key Lab in Healthy Science and Technology , Division of Life Science, Graduate School at Shenzhen, Tsinghua University , Shenzhen , P.R. China.,f Open FIESTA Center , Tsinghua University , Shenzhen , P.R. China
| |
Collapse
|
19
|
Wu Z, Cai X, Huang C, Xu J, Liu A. miR-497 suppresses angiogenesis in breast carcinoma by targeting HIF-1α. Oncol Rep 2015; 35:1696-702. [PMID: 26718330 DOI: 10.3892/or.2015.4529] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 11/11/2015] [Indexed: 11/05/2022] Open
Abstract
Angiogenesis is a key factor in the growth and dissemination of malignant diseases, including breast cancer, with significant implications for its clinical management. It is known that microRNAs (miRNAs) play important roles in regulating tumor properties in cancers. However, whether miR-497 contributes to breast cancer angiogenesis remains unknown. Our study demonstrated that miR-497 was significantly downregulated in breast cancer tissue samples and cell lines. Conditioned medium obtained from breast cancer cell line MCF-7, treated with miR-497 mimics, suppressed the proliferation and tube formation of human umbilical vein endothelial cells in vitro, in comparison with the untransfected cells or cells transfected with the control vector alone. Furthermore, western blot assay confirmed that the overexpression of miR-497 reduced VEGF and HIF-1α protein levels. In addition, stable transfection of miR-497 inhibited tumorigenicity and angiogenesis in vivo. Moreover, HIF-1α was also increased in the breast cancer cells under a hypoxic condition, while the ectopic expression of miR-497 partially restored its level. Taken together, our findings indicate that miR-497 is a potential target for the biological therapy of breast cancer. Moreover, miR-497 inhibited the growth of tumors and reduced angiogenesis in a nude mouse xenograft tumor model, which was probably caused by the downregulation of pro-angiogenic molecules, such as VEGF and HIF-1α.
Collapse
Affiliation(s)
- Zhihao Wu
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 414000, P.R. China
| | - Xuehong Cai
- The First People's Hospital of Yueyang, Yueyang, Hunan 325000, P.R. China
| | - Chenggang Huang
- The First People's Hospital of Yueyang, Yueyang, Hunan 325000, P.R. China
| | - Jia Xu
- The First People's Hospital of Yueyang, Yueyang, Hunan 325000, P.R. China
| | - An Liu
- The First People's Hospital of Yueyang, Yueyang, Hunan 325000, P.R. China
| |
Collapse
|