1
|
Jiang L, Xu H, Wei M, Gu Y, Yan H, Pan L, Wei C. Transcriptional expression of PHR2 is positively controlled by the calcium signaling transcription factor Crz1 through its binding motif in the promoter. Microbiol Spectr 2024; 12:e0168923. [PMID: 38054721 PMCID: PMC10783099 DOI: 10.1128/spectrum.01689-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE The fungal cell wall consists of glucans, mannoproteins, and chitin and is essential for cell viability, morphogenesis, and pathogenesis. The enzymes of the GH72 family are responsible for ß-(1,3)-glucan elongation and branching, which is crucial for the formation of the glucan-chitin polymer at the bud neck of yeast cells. In the human fungal pathogen Candida albicans, there are five GH72 enzyme-encoding genes: PHR1, PHR2, PHR3, PGA4, and PGA5. It is known that expression of PHR1 and PHR2 is controlled by the pH-responsive Rim101 pathway through the transcription factor Rim101. In this study, we have demonstrated that the transcription expression of PHR2 is also controlled by the transcription factor Crz1 through its binding motif in the promoter. Therefore, we have uncovered a dual-control mechanism by which PHR2 expression is negatively regulated via CaRim101 through the pH-responsive pathway and positively modulated by CaCrz1 through the calcium/calcineurin signaling pathway.
Collapse
Affiliation(s)
- Linghuo Jiang
- Laboratory of Yeast Biology and Fermentation Technology, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Huihui Xu
- Department of Food Science, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Min Wei
- Laboratory of Yeast Biology and Fermentation Technology, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Yiying Gu
- Laboratory of Yeast Biology and Fermentation Technology, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Hongbo Yan
- Department of Food Science, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Lingxin Pan
- Laboratory of Yeast Biology and Fermentation Technology, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Chunyu Wei
- Laboratory of Yeast Biology and Fermentation Technology, Institute of Biological Sciences and Technology, Guangxi Academy of Sciences, Nanning, Guangxi, China
| |
Collapse
|
2
|
Hans S, Fatima Z, Ahmad A, Hameed S. Magnesium impairs Candida albicans immune evasion by reduced hyphal damage, enhanced β-glucan exposure and altered vacuole homeostasis. PLoS One 2022; 17:e0270676. [PMID: 35834579 PMCID: PMC9282612 DOI: 10.1371/journal.pone.0270676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022] Open
Abstract
With a limited arsenal of available antifungal drugs and drug-resistance emergence, strategies that seek to reduce Candida immune evasion and virulence could be a promising alternative option. Harnessing metal homeostasis against C. albicans has gained wide prominence nowadays as a feasible antifungal strategy. Herein, the effect of magnesium (Mg) deprivation on the immune evasion mechanisms of C. albicans is demonstrated. We studied host pathogen interaction by using the THP-1 cell line model and explored the avenue that macrophage-mediated killing was enhanced under Mg deprivation, leading to altered cytokine (TNFα, IL-6 and IL10) production and reduced pyroptosis. Insights into the mechanisms revealed that hyphal damage inside the macrophage was diminished under Mg deprivation. Additionally, Mg deprivation led to cell wall remodelling; leading to enhanced β-1,3-glucan exposure, crucial for immune recognition, along with concomitant alterations in chitin and mannan levels. Furthermore, vacuole homeostasis was disrupted under Mg deprivation, as revealed by abrogated morphology and defective acidification of the vacuole lumen. Together, we demonstrated that Mg deprivation affected immune evasion mechanisms by: reduced hyphal damage, enhanced β-1,3-glucan exposure and altered vacuole functioning. The study establishes that Mg availability is indispensable for successful C. albicans immune evasion and specific Mg dependent pathways could be targeted for therapy.
Collapse
Affiliation(s)
- Sandeep Hans
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurugram, India
| | - Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurugram, India
- * E-mail: (ZF); (SH)
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, Faculty of Health Sciences, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- Infection Control, National Health Laboratory Service, Charlotte Maxeke Johannesburg Academic Hospital, Johannesburg, South Africa
| | - Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurugram, India
- * E-mail: (ZF); (SH)
| |
Collapse
|
3
|
Ramos Carvalho Â, Candice Genz Bazana L, Meneghello Fuentefria A, Flôres Ferrão M. Digital images coupled to PLS regression for pH prediction in sterile culture medium. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2021.103435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
4
|
Liu L, Jiang T, Zhou J, Mei Y, Li J, Tan J, Wei L, Li J, Peng Y, Chen C, Liu N, Wang H. Repurposing the FDA-approved anticancer agent ponatinib as a fluconazole potentiator by suppression of multidrug efflux and Pma1 expression in a broad spectrum of yeast species. Microb Biotechnol 2022; 15:482-498. [PMID: 33955652 PMCID: PMC8867973 DOI: 10.1111/1751-7915.13814] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 11/29/2022] Open
Abstract
Fungal infections have emerged as a major global threat to human health because of the increasing incidence and mortality rates every year. The emergence of drug resistance and limited arsenal of antifungal agents further aggravates the current situation resulting in a growing challenge in medical mycology. Here, we identified that ponatinib, an FDA-approved antitumour drug, significantly enhanced the activity of the azole fluconazole, the most widely used antifungal drug. Further detailed investigation of ponatinib revealed that its combination with fluconazole displayed broad-spectrum synergistic interactions against a variety of human fungal pathogens such as Candida albicans, Saccharomyces cerevisiae and Cryptococcus neoformans. Mechanistic insights into the mode of action unravelled that ponatinib reduced the efflux of fluconazole via Pdr5 and suppressed the expression of the proton pump, Pma1. Taken together, our study identifies ponatinib as a novel antifungal that enhances drug activity of fluconazole against diverse fungal pathogens.
Collapse
Affiliation(s)
- Lin Liu
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Tong Jiang
- Center for MicrobesDevelopment and HealthKey Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of ShanghaiChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijingChina
| | - Jia Zhou
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yikun Mei
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jinyang Li
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jingcong Tan
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Luqi Wei
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Jingquan Li
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Yibing Peng
- Department of Laboratory MedicineRuijin HospitalShanghai Jiao Tong University School of MedicineNo. 197 Ruijin ER RoadShanghai200025China
- Faculty of Medical Laboratory ScienceShanghai Jiao Tong University School of MedicineNo. 197 Ruijin ER RoadShanghai200025China
| | - Changbin Chen
- Center for MicrobesDevelopment and HealthKey Laboratory of Molecular Virology and ImmunologyInstitut Pasteur of ShanghaiChinese Academy of SciencesShanghai200031China
- The Nanjing Unicorn Academy of InnovationInstitut Pasteur of ShanghaiChinese Academy of SciencesNanjing211135China
| | - Ning‐Ning Liu
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related GenesCenter for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghai200025China
| |
Collapse
|
5
|
Li J, Yang H, Tong L, Liu Z, Jin Z, Chen G. Effects of Mineral Salts on the Activity and Composition of a Mixed Culture of Acidophilic Microorganisms. Microbiology (Reading) 2021. [DOI: 10.1134/s0026261722010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
6
|
Hans S, Fatima Z, Hameed S. Mass spectrometry-based untargeted lipidomics reveals new compositional insights into membrane dynamics of Candida albicans under magnesium deprivation. J Appl Microbiol 2021; 132:978-993. [PMID: 34424599 DOI: 10.1111/jam.15265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/16/2021] [Accepted: 08/18/2021] [Indexed: 11/29/2022]
Abstract
AIMS There is growing appreciation in adopting new approaches to disrupt multidrug resistance in human fungal pathogen, Candida albicans. The plasma membrane of C. albicans comprises potential lipid moieties that contribute towards the survival of pathogen and could be utilized as antifungal targets. Considering promising applications of developments in mass spectrometry (MS)-based lipidomics technology, the aim of the study was to analyse lipidome profile and expose lipid-dependent changes in response to Mg deprivation. METHODS AND RESULTS We found that both phosphatidylcholine (PC) and lysophosphatidylcholine (LysoPC) were decreased. Increased flip (inward translocation) in the fluorophore labelled NBD-PC was ascribed to enhanced PC-specific flippase activity. Furthermore, a decrease in phosphatidylethanolamine (PE) leading to altered membrane fluidity and loss of cellular material was prominent. Additionally, we observed decreased phosphatidylglycerol (PG) and phosphatidylinositol (PI) leading to genotoxic stress. Besides, we could detect enhanced levels of phosphatidylserine (PS), diacylglycerol (DAG) and triacylglycerides (TAG). The altered gene expressions of lipid biosynthetic pathway by RT-PCR correlated with the lipidome profile. Lastly, we explored abrogated ionic (Na+ and K+ ) transport across the plasma membrane. CONCLUSIONS We propose that C. albicans exposed to Mg deprivation could reorganize plasma membrane (lipid species, membrane fluidity and ionic transport), and possibly redirected carbon flux to store energy in TAGs as an adaptive stress response. This work unravels several vulnerable targets governing lipid metabolism in C. albicans and pave way for better antifungal strategies. SIGNIFICANCE AND IMPACT OF THE STUDY This study demonstrates that magnesium availability is important when one considers dissecting drug resistance mechanisms in Candida albicans. Through mass spectrometry (MS)-based lipidomics technology, the study analyses lipidome profile and exposes lipid-dependent changes that are vulnerable to magnesium availability and presents an opportunity to employ this new information in improving treatment strategies.
Collapse
Affiliation(s)
- Sandeep Hans
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurugram, India
| | - Zeeshan Fatima
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurugram, India
| | - Saif Hameed
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurugram, India
| |
Collapse
|
7
|
Insights into the modulatory effect of magnesium on efflux mechanisms of Candida albicans reveal inhibition of ATP binding cassette multidrug transporters and dysfunctional mitochondria. Biometals 2021; 34:329-339. [PMID: 33394279 DOI: 10.1007/s10534-020-00282-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
Candida infections pose a serious hazard to public health followed by widespread and prolonged deployment of antifungal drugs has which has led multidrug resistance (MDR) progress in prevalent human fungal pathogen, Candida albicans. Despite the fact that MDR is multifactorial phenomenon govern by several mechanisms in C. albicans, overexpression of drug efflux transporters by far remains the leading cause of MDR govern by ATP Binding Cassette (ABC) or major facilitator superfamily (MFS) transporters. Hence searching for strategies to target efflux pumps transporter still signifies a promising approach. In this study we analyzed the effect of magnesium (Mg) deprivation, on efflux pump action of C. albicans. We explored that Mg deprivation specially inhibits efflux of transporters (CaCdr1p and CaCdr2p) belonging to ABC superfamily as revealed by rhodamine 6G and Nile red accumulation. Furthermore, Mg deprivation causes mislocalization of CaCdr1p and CaCdr2p and reduced transcripts of CDR1 and CDR2 with no effect on CaMdr1p. Additionally, Mg deprivation causes depletion of ergosterol content in azole sensitive and resistant clinical matched pair of isolates Gu4/Gu5 and F2/F5 of C. albicans. Lastly, we observed that Mg deprivation impairs mitochondrial potential which could be the causal reason for abrogated efflux activity. With growing appreciation of manipulating metal homeostasis to combat MDR, inhibition of efflux activity under Mg deprivation warrants further studies to be utilized as an effective antifungal strategy.
Collapse
|
8
|
Xu H, Fang T, Omran RP, Whiteway M, Jiang L. RNA sequencing reveals an additional Crz1-binding motif in promoters of its target genes in the human fungal pathogen Candida albicans. Cell Commun Signal 2020; 18:1. [PMID: 31900175 PMCID: PMC6942403 DOI: 10.1186/s12964-019-0473-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/25/2019] [Indexed: 02/06/2023] Open
Abstract
Background The calcium/calcineurin signaling pathway is mediated by the transcription factors NFAT (nuclear factor of activated T cells) in mammals and Crz1 (calcineurin-responsive zinc finger 1) in yeasts and other lower eukaryotes. A previous microarray analysis identified a putative Crz1-binding motif in promoters of its target genes in Candida albicans, but it has not been experimentally demonstrated. Methods An inactivation mutant for CaCRZ1 was generated through CRISPR/Cas9 approach. Transcript profiling was carried out by RNA sequencing of the wild type and the inactivation mutant for CaCRZ1 in response to 0.2 M CaCl2. Gene promoters were scanned by the online MEME (Multiple Em for Motif Elicitation) software. Gel electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) analysis were used for in vitro and in vivo CaCrz1-binding experiments, respectively. Results RNA sequencing reveals that expression of 219 genes is positively, and expression of 59 genes is negatively, controlled by CaCrz1 in response to calcium stress. These genes function in metabolism, cell cycling, protein fate, cellular transport, signal transduction, transcription, and cell wall biogenesis. Forty of these positively regulated 219 genes have previously been identified by DNA microarray analysis. Promoter analysis of these common 40 genes reveals a consensus motif [5′-GGAGGC(G/A)C(T/A)G-3′], which is different from the putative CaCrz1-binding motif [5′-G(C/T)GGT-3′] identified in the previous study, but similar to Saccharomyces cerevisiae ScCrz1-binding motif [5′-GNGGC(G/T)CA-3′]. EMSA and ChIP assays indicate that CaCrz1 binds in vitro and in vivo to both motifs in the promoter of its target gene CaUTR2. Promoter mutagenesis demonstrates that these two CaCrz1-binding motifs play additive roles in the regulation of CaUTR2 expression. In addition, the CaCRZ1 gene is positively regulated by CaCrz1. CaCrz1 can bind in vitro and in vivo to its own promoter, suggesting an autoregulatory mechanism for CaCRZ1 expression. Conclusions CaCrz1 differentially binds to promoters of its target genes to regulate their expression in response to calcium stress. CaCrz1 also regulates its own expression through the 5′-TGAGGGACTG-3′ site in its promoter. Video abstract
Collapse
Affiliation(s)
- Huihui Xu
- Laboratory for Yeast Molecular and Cell Biology, Department of Food Science, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Tianshu Fang
- Laboratory for Yeast Molecular and Cell Biology, Department of Food Science, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China
| | - Raha Parvizi Omran
- Department of Biology, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Malcolm Whiteway
- Department of Biology, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Linghuo Jiang
- Laboratory for Yeast Molecular and Cell Biology, Department of Food Science, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, China.
| |
Collapse
|
9
|
The protein kinase Cmk2 negatively regulates the calcium/calcineurin signalling pathway and expression of calcium pump genes PMR1 and PMC1 in budding yeast. Cell Commun Signal 2019; 17:7. [PMID: 30665402 PMCID: PMC6341702 DOI: 10.1186/s12964-019-0320-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/14/2019] [Indexed: 12/16/2022] Open
Abstract
Through a genome-wide screen we have identified calcium-tolerant deletion mutants for five genes in the budding yeast Saccharomyces cerevisiae. In addition to CNB1 and RCN1 that are known to play a role in the calcium signalling pathway, the protein kinase gene CMK2, the sphingolipid homeostasis-related gene ORM2 and the gene SIF2 encoding the WD40 repeat-containing subunit of Set3C histone deacetylase complex are involved in the calcium sensitivity of yeast cells to extracellular calcium. Cmk2 and the transcription factor Crz1 have opposite functions in the response of yeast cells to calcium stress. Deletion of CMK2 elevates the level of calcium/calcineurin signalling and increases the expression level of PMR1 and PMC1, which is dependent on Crz1. Effects of Cmk2 on calcium sensitivity and calcium/calcineurin signalling are dependent on its kinase activity. Therefore, Cmk2 is a negative feedback controller of the calcium/calcineurin signalling pathway. Furthermore, the cmk2 crz1 double deletion mutant is more resistant than the crz1 deletion mutant, suggesting that Cmk2 has an additional Crz1-independent role in promoting calcium tolerance.
Collapse
|