1
|
Sun Y, Wu Z, Lan J, Liu Y, Du Y, Ye H, Du D. Effect of sulfate-reducing bacteria (SRB) and dissimilatory iron-reducing bacteria (DIRB) coexistence on the transport and transformation of arsenic in sediments. WATER RESEARCH 2025; 270:122834. [PMID: 39608159 DOI: 10.1016/j.watres.2024.122834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/04/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
Sulfate-reducing bacteria (SRBs) and dissimilatory iron-reducing bacteria (DIRBs) are recognized as significant contributors to the occurrence of elevated arsenic (As) levels in groundwater. However, the precise effects and underlying mechanisms of their interactions on As behavior within sediments remain poorly understood. In this investigation, we compared the impacts and mechanisms of DIRBs, SRBs, and mixed bacterial consortia on the migration behavior of As and Fe/S species. Our findings revealed that during the initial phase of the reaction (0-8 days, Stage 1), the mixed bacterial consortium facilitated As release by intensifying the reduction of Fe (III) and sulfate, resulting in a maximum As concentration 1.5 times higher than that observed with either DIRBs or SRBs in isolation. Subsequently, in the intermediate phase (8-20 days, Stage 2), the mixed consortium suppressed the synthesis of sulfate reductase and the secretion of toxic substances (e.g., o-Methyltoluene) associated with steroid degradation pathways. This inhibition consequently reduced the formation of secondary Fe minerals and the fixation of As. Finally, in the latter stage (20-30 days, Stage 3), the system responded to the threat of toxic substances by secreting significant amounts of organic acids to facilitate their decomposition. However, this process also led to the re-decomposition of iron oxides, resulting in the release of As. These observations shed light on the intricate interplay between DIRBs and SRBs within bacterial consortia, elucidating their coordinated actions in inducing the migration and transformation of arsenic.
Collapse
Affiliation(s)
- Yan Sun
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China; School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhaoyuan Wu
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Jirong Lan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Ying Liu
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Yaguang Du
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Hengpeng Ye
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China.
| | - Dongyun Du
- Engineering Research Center for Heavy Metal Pollution Control of Hubei Province, College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
2
|
Sevak P, Pushkar B, Mazumdar S. Unravelling the mechanism of arsenic resistance and bioremediation in Stenotrophomonas maltophilia: A molecular approach. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125066. [PMID: 39368626 DOI: 10.1016/j.envpol.2024.125066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
The mechanism of arsenic resistance in bacteria is under studied and still lacks a clear understanding despite of wide research work. The advanced technologies can help in analysing the arsenic bioremediating bacteria at a molecular level. With this line of idea, highly efficient arsenic bioremediating S. maltophilia was subjected to extensive analysis to understand the mechanism of arsenic resistance and bioremediation. The cell surface analysis revealed that S. maltophilia induces only slight changes in cell surface in the presence of arsenic. Whereas, TEM analysis has indicated the bioaccumulation of arsenic in S. maltophilia. Also, arsenic was found to generate ROS in a concentration dependant manner, and in response, S. maltophilia activated SOD, catalase, thioredoxin reductase etc. to manage oxidative stress which is very much crucial in managing arsenic toxicity. S. maltophilia was found to possess genes such as arsC, aoxB, aoxC and aioA. These genes are involved in arsenic reduction and oxidation. Transcriptomics and proteomics analysis have shown that S. maltophilia detoxifies arsenic by upregulating ars operon, arsH, BetB etc. which are responsible for arsenic reduction, efflux methylation, oxidation etc. A detailed molecular mechanism of arsenic bioremediation in S. maltophilia was put forth.
Collapse
Affiliation(s)
- Pooja Sevak
- National Centre for Nanoscience and Nanotechnology, University of Mumbai, Santacruz (E), Mumbai- 400098, Maharashtra, India; Department of Biotechnology, University of Mumbai, Santacruz (E), Mumbai- 400098, Maharashtra, India.
| | - Bhupendra Pushkar
- Department of Biotechnology, University of Mumbai, Santacruz (E), Mumbai- 400098, Maharashtra, India.
| | - Shyamalava Mazumdar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai- 400005, Maharashtra, India.
| |
Collapse
|
3
|
Jia Y, Xiao E, Lan X, Lin W, Sun J, Xiao T. Microbial-mediated metal(loid) immobilization in mulch-covered tailings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116881. [PMID: 39151372 DOI: 10.1016/j.ecoenv.2024.116881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
Mulch coverage of mining tailings can create anaerobic conditions and consequently establish an anoxic environment that promotes the metabolic processes of anaerobic microorganisms. This anoxic environment has the potential to decrease heavy metal mobility and bioavailability. While tailings exposed to sunlight have been extensively studied, research on the effects of microbial-mediated geochemical cycling of heavy metals in mulch-covered tailings is scarce. This study aimed to examine the effects of mulch coverage-induced alterations in the structures of tailing microbial communities on the biogeochemical processes associated with heavy metals. Mulch coverage significantly reduced the pH of the tailings and the tailings exhibited heavy metal bioavailability. Random forest analysis demonstrated that mulch coverage-induced changes in the As/Cd-contaminated fractions and nutrients (total organic carbon and total nitrogen) were the most crucial predictors of microbial diversity and ecological clusters in the tailings. Notably, different from direct metal(loid) immobilization, mulch coverage can facilitate heavy metal immobilization in tailings by promoting microbial-mediated Fe, S, and As reduction. Overall, this study demonstrated that mulch coverage of tailings contributed to a reduction in heavy metal mobilization, which can be attributed to shifts in microbial-mediated Fe, S, and As reduction processes.The study provides valuable insights into the potential of mulch coverage as a remediation strategy and underscores the importance of microbial-mediated processes in managing heavy metal pollution in tailing systems.
Collapse
Affiliation(s)
- Yanlong Jia
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou 521041, China; School of Resources and Environmental Engineering, Guizhou Institute of Technology, Guiyang 550002, China
| | - Enzong Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xiaolong Lan
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou 521041, China.
| | - Wenjie Lin
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou 521041, China.
| | - Jialong Sun
- School of Resources and Environmental Engineering, Guizhou Institute of Technology, Guiyang 550002, China
| | - Tangfu Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
4
|
Kryuchkova YV, Neshko AA, Gogoleva NE, Balkin AS, Safronova VI, Kargapolova KY, Shagimardanova EI, Gogolev YV, Burygin GL. Genomics and taxonomy of the glyphosate-degrading, copper-tolerant rhizospheric bacterium Achromobacter insolitus LCu2. Antonie Van Leeuwenhoek 2024; 117:105. [PMID: 39043973 DOI: 10.1007/s10482-024-01989-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/15/2024] [Indexed: 07/25/2024]
Abstract
A rhizosphere strain, Achromobacter insolitus LCu2, was isolated from alfalfa (Medicago sativa L.) roots. It was able to degrade of 50% glyphosate as the sole phosphorus source, and was found resistant to 10 mM copper (II) chloride, and 5 mM glyphosate-copper complexes. Inoculation of alfalfa seedlings and potato microplants with strain LCu2 promoted plant growth by 30-50%. In inoculated plants, the toxicity of the glyphosate-copper complexes to alfalfa seedlings was decreased, as compared with the noninoculated controls. The genome of A. insolitus LCu2 consisted of one circular chromosome (6,428,890 bp) and encoded 5843 protein genes and 76 RNA genes. Polyphasic taxonomic analysis showed that A. insolitus LCu2 was closely related to A. insolitus DSM23807T on the basis of the average nucleotide identity of the genomes of 22 type strains and the multilocus sequence analysis. Genome analysis revealed genes putatively responsible for (1) plant growth promotion (osmolyte, siderophore, and 1-aminocyclopropane-1-carboxylate deaminase biosynthesis and auxin metabolism); (2) degradation of organophosphonates (glyphosate oxidoreductase and multiple phn clusters responsible for the transport, regulation and C-P lyase cleavage of phosphonates); and (3) tolerance to copper and other heavy metals, effected by the CopAB-CueO system, responsible for the oxidation of copper (I) in the periplasm, and by the efflux Cus system. The putative catabolic pathways involved in the breakdown of phosphonates are predicted. A. insolitus LCu2 is promising in the production of crops and the remediation of soils contaminated with organophosphonates and heavy metals.
Collapse
Affiliation(s)
- Yelena V Kryuchkova
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov, Russia, 410049.
| | - Alexandra A Neshko
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov, Russia, 410049
| | - Natalia E Gogoleva
- Institute for Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences, 11 Pionerskaya Street, Orenburg, Russia, 460000
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan, Russia, 420111
| | - Alexander S Balkin
- Institute for Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences, 11 Pionerskaya Street, Orenburg, Russia, 460000
| | - Vera I Safronova
- All-Russia Research Institute for Agricultural Microbiology, 3 Podbelsky Shausse, Pushkin 8, St. Petersburg, Russia, 196608
| | - Kristina Yu Kargapolova
- Faculty of Agronomy, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, 4 Pyotr Stolypin Avenue, Saratov, Russia, 410012
| | - Elena I Shagimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan, Russia, 420111
- Moscow Clinical Scientific Center named after Loginov MHD, 1 Novogireevskaya Street, Moscow, Russia, 111123
| | - Yuri V Gogolev
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya Street, Kazan, Russia, 420111
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevsky Street, Kazan, Russia, 420111
| | - Gennady L Burygin
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 13 Prospekt Entuziastov, Saratov, Russia, 410049
- Faculty of Agronomy, Saratov State University of Genetics, Biotechnology and Engineering named after N.I. Vavilov, 4 Pyotr Stolypin Avenue, Saratov, Russia, 410012
- Institute of Chemistry, Chernyshevsky Saratov State University, 83 Astrakhanskaya Street, Saratov, Russia, 410012
| |
Collapse
|
5
|
Loni PC, Wang W, Qiu X, Man B, Wu M, Qiu D, Wang H. Antimony precipitation and removal by antimony hyper resistant strain Achromobacter sp. 25-M. ENVIRONMENTAL RESEARCH 2024; 245:118011. [PMID: 38141916 DOI: 10.1016/j.envres.2023.118011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/13/2023] [Accepted: 12/21/2023] [Indexed: 12/25/2023]
Abstract
Microbes have been confirmed to play key role in biogeochemistry of antimony. However, the impact of indigenous bacteria (from active mines) on the behavior of dissolved antimony remained poorly understood. In current study, the hyper antimony-resistant strain, Achromobacter sp. 25-M, isolated from the world largest antimony deposit, Xikuangshan antimony deposit, was evaluated for its role in dissolved Sb(V) and Sb(III) precipitation and removal. Despite of the high resistance to Sb(III) (up to 50 mM), the facultative alkaliphile, 25-M was not capable of Sb(III) oxidation. Meanwhile 25-M can produce high amount of exopolymeric substance (EPS) with the presence of Sb, which prompted us to investigate the potential role of EPS in the precipitation and removal of Sb. To this end, 2 mM of Sb(III) and Sb(V) were added into the experimental systems with and without 25-M to discern the interaction mechanism between microbe and antimony. After 96 hrs' incubation, 88% [1.73 mM (210 mg/L)] of dissolved Sb(V) and 80% [1.57 mM (190 mg/L)] of dissolved Sb(III) were removed. X-ray diffraction and energy dispersive spectroscopy analysis confirmed the formation of valentinite (Sb2O3) in Sb(III) amended system and a solitary Sb(V) mineral mopungite [NaSb(OH)6] in Sb(V) amended group with microbes. Conversely, no precipitate was detected in abiotic systems. Morphologically valentinite was bowtie and mopungite was pseudo-cubic as indicated by scanning electronic microscopy. EPS was subjected to fourier transform infrared (FT-IR) analysis. FT-IR analysis suggested that -OH and -COO groups were responsible for the complexation and ligand exchange with Sb(III) and Sb(V), respectively. Additionally, the C-H group and N-H group could be involved in π-π interaction and chelation with Sb species. All these interactions between Sb and functional groups in EPS may subsequently favore the formation of valentinite and mopungite. Collectively, current results suggested that EPS play fundamental role in bioprecipitation of Sb, which offered a new strategy in Sb bioremediation.
Collapse
Affiliation(s)
- Prakash C Loni
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China; Department of Earth Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Weiqi Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
| | - Xuan Qiu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
| | - Baiying Man
- College of Life Science, Shangrao Normal University, Shangrao, 334001, China
| | - Mengxiaojun Wu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China; Zhejiang Economic and Information Center, Hangzhou, 310006, China
| | - Dongru Qiu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430078, China; School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China.
| |
Collapse
|
6
|
Sorlin P, Brivet E, Jean-Pierre V, Aujoulat F, Besse A, Dupont C, Chiron R, Jumas-Bilak E, Menetrey Q, Marchandin H. Prevalence and variability of siderophore production in the Achromobacter genus. Microbiol Spectr 2024; 12:e0295323. [PMID: 38315029 PMCID: PMC10913535 DOI: 10.1128/spectrum.02953-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/08/2023] [Indexed: 02/07/2024] Open
Abstract
Achromobacter spp. are opportunistic pathogens of environmental origin increasingly isolated in patients with underlying conditions like cystic fibrosis (CF). Despite recent advances, their virulence factors remain incompletely studied, and siderophore production has not yet been investigated in this genus. The aim of this study was to evaluate the production of siderophores in a large collection of Achromobacter spp. and evaluate the variability according to the origin of the strain and species. A total of 163 strains were studied, including 128 clinical strains (CF and non-CF patients) and 35 strains of environmental origin. Siderophores were quantified by the liquid chrome azurol-sulphonate assay. Species were identified by nrdA gene-based phylogeny. Strains were assigned to 20 species, with Achromobacter xylosoxidans being the most represented (51.5% of strains). Siderophore production was observed in 72.4% of the strains, with amounts ranging from 10.1% to 90% siderophore units. A significantly higher prevalence of siderophore-producing strains and greater production of siderophores were observed for clinical strains compared with strains of environmental origin. Highly variable observations were made according to species: A. xylosoxidans presented unique characteristics (one of the highest prevalence of producing strains and highest amounts produced, particularly by CF strains). Siderophores are important factors for bacterial growth commonly produced by members of the Achromobacter genus. The significance of the observations made during this study must be further investigated. Indeed, the differences observed according to species and the origin of strains suggest that siderophores may represent important determinants of the pathophysiology of Achromobacter spp. infections and also contribute to the particular epidemiological success of A. xylosoxidans in human infections. IMPORTANCE Achromobacter spp. are recognized as emerging opportunistic pathogens in humans with various underlying diseases, including cystic fibrosis (CF). Although their pathophysiological traits are increasingly studied, their virulence factors remain incompletely described. Particularly, siderophores that represent important factors of bacterial growth have not yet been studied in this genus. A population-based study was performed to explore the ability of members of the Achromobacter genus to produce siderophores, both overall and in relevant subgroups (Achromobacter species; strain origin, either clinical-from CF or non-CF patients-or environmental). This study provides original data showing that siderophore production is a common trait of Achromobacter strains, particularly observed among clinical strains. The major species, Achromobacter xylosoxidans, encompassed both one of the highest prevalence of siderophore-producing strains and strains producing the largest amounts of siderophores, particularly observed for CF strains. These observations may represent additional advantages accounting for the epidemiological success of this species.
Collapse
Affiliation(s)
- P. Sorlin
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - E. Brivet
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - V. Jean-Pierre
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
- Service de Microbiologie et d’Hygiène hospitalière, CHU de Nîmes, Nîmes, France
| | - F. Aujoulat
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - A. Besse
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
| | - C. Dupont
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
- Laboratoire de Bactériologie, CHU de Montpellier, Montpellier, France
| | - R. Chiron
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
- Centre de Ressources et de Compétences de la Mucoviscidose, CHU de Montpellier, Montpellier, France
| | - E. Jumas-Bilak
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
- Laboratoire d’Écologie Microbienne Hospitalière, CHU de Montpellier, Montpellier, France
| | - Q. Menetrey
- INFINITE—Institute for Translational Research in Inflammation, Université de Lille, INSERM U1286, CHU Lille, Lille, France
| | - H. Marchandin
- HydroSciences Montpellier, Université de Montpellier, CNRS, IRD, Montpellier, France
- Service de Microbiologie et d’Hygiène hospitalière, CHU de Nîmes, Nîmes, France
| |
Collapse
|
7
|
Lv Y, Wang L, Liu X, Chen B, Zhang M. Construction and function of a high-efficient synthetic bacterial consortium to degrade aromatic VOCs. Bioprocess Biosyst Eng 2023; 46:851-865. [PMID: 37032387 DOI: 10.1007/s00449-023-02869-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 03/23/2023] [Indexed: 04/11/2023]
Abstract
Aromatic volatile organic compounds (VOCs) are a type of common pollution form in chemical contaminated sites. In this study, seven aromatic VOCs such as benzene, toluene, ethylbenzene, chlorobenzene, m-xylene, p-chlorotoluene and p-chlorotrifluorotoluene were used as the only carbon source, and four strains of highly efficient degrading bacteria were screened from the soil of chemical contaminated sites, then the synthetic bacterial consortium was constructed after mixing with an existing functional strain (Bacillus benzoevorans) preserved in the laboratory. After that, the synthetic bacterial consortium was used to explore the degradation effect of simulated aromatic VOCs polluted wastewater. The results showed that the functional bacterium could metabolize with aromatic VOCs as the only carbon source and energy. Meanwhile, the growth of the synthetic bacterial consortium increased with the additional carbon resources and the alternative of organic nitrogen source. Ultimately, the applicability of the synthetic bacterial consortium in organic contaminated sites was explored through the study of broad-spectrum activity.
Collapse
Affiliation(s)
- Ying Lv
- National Engineering Research Center for Environment-Friendly Metallurgy in Producing Premium Non-Ferrous Metals, GRINM Group Co., Ltd, Beijing, 101407, China
- School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- GRINM Resources and Environment Tech. Co., Ltd, Beijing, 101407, China
- General Research Institute for Nonferrous Metals, Beijing, 100088, China
| | - Liangshi Wang
- National Engineering Research Center for Environment-Friendly Metallurgy in Producing Premium Non-Ferrous Metals, GRINM Group Co., Ltd, Beijing, 101407, China
- GRINM Resources and Environment Tech. Co., Ltd, Beijing, 101407, China
- General Research Institute for Nonferrous Metals, Beijing, 100088, China
| | - Xingyu Liu
- National Engineering Research Center for Environment-Friendly Metallurgy in Producing Premium Non-Ferrous Metals, GRINM Group Co., Ltd, Beijing, 101407, China.
- General Research Institute for Nonferrous Metals, Beijing, 100088, China.
- Institute of Earth Science, China University of Geosciences, Beijing, 100083, China.
- Shenzhen Green-Tech Institute of Applied Environmental Technology Co., Ltd., Shenzhen, 518001, China.
| | - Bowei Chen
- National Engineering Research Center for Environment-Friendly Metallurgy in Producing Premium Non-Ferrous Metals, GRINM Group Co., Ltd, Beijing, 101407, China
- GRINM Resources and Environment Tech. Co., Ltd, Beijing, 101407, China
- General Research Institute for Nonferrous Metals, Beijing, 100088, China
| | - Mingjiang Zhang
- National Engineering Research Center for Environment-Friendly Metallurgy in Producing Premium Non-Ferrous Metals, GRINM Group Co., Ltd, Beijing, 101407, China
- GRINM Resources and Environment Tech. Co., Ltd, Beijing, 101407, China
- General Research Institute for Nonferrous Metals, Beijing, 100088, China
| |
Collapse
|
8
|
Wei D, Zhang X, Li C, Zhao M, Wei L. Efficiency and bacterial diversity of an improved anaerobic baffled reactor for the remediation of wastewater from alkaline-surfactant-polymer (ASP) flooding technology. PLoS One 2022; 17:e0261458. [PMID: 34995306 PMCID: PMC8741043 DOI: 10.1371/journal.pone.0261458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/02/2021] [Indexed: 11/25/2022] Open
Abstract
Alkaline-surfactant-polymer (ASP) flooding technology is used to maximize crude oil recovery. However, the extensive use of alkaline materials makes it difficult to treat the water used. Here, an improved multi-zone anaerobic baffled reactor (ABR) using FeSO4 as electron acceptor was employed to treat the wastewater from ASP flooding technology, and the effects on major pollutants (hydrolyzed polyacrylamide, petroleum substances, surfactants suspended solids) and associated parameters (chemical oxygen demand, viscosity) were evaluated. Gas chromatography-mass spectrometry (GC-MS) was used to follow the degradation and evolution of organic compounds while high-throughput DNA sequencing was used to determine the bacterial diversity in the ABR. The results obtained after 90 d of operation showed decreases in all parameters measured and the highest mean removal rates were obtained for petroleum substances (98.8%) and suspended solids (77.0%). Amounts of petroleum substances in the ABR effluent could meet the requirements of a national standard for oilfield reinjection water. GC-MS analysis showed that a wide range of chemicals (e.g. aromatic hydrocarbons, esters, alcohols, ketones) could be sequentially removed from the influent by each zone of ABR. The high-throughput DNA sequencing showed that the bacteria Micropruina, Saccharibacteria and Synergistaceae were involved in the degradation of pollutants in the anaerobic and anoxic reaction zones, while Rhodobacteraceae and Aliihoeflea were the main functional microorganisms in the aerobic reaction zones. The results demonstrated that the improved ABR reactor had the potential for the treatment of wastewater from ASP flooding technology.
Collapse
Affiliation(s)
- Dong Wei
- School of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, People’s Republic of China
| | - Xinxin Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, People’s Republic of China
- Guangzhou HKUST Fok Ying Tung Research Institute, Guang zhou, Guangdong, People’s Republic of China
| | - Chunying Li
- School of Energy and Civil Engineering, Harbin University of Commerce, Harbin, Heilongjiang, People’s Republic of China
| | - Min Zhao
- School of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang, People’s Republic of China
- * E-mail: (MZ); (LW)
| | - Li Wei
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, People’s Republic of China
- Guangzhou HKUST Fok Ying Tung Research Institute, Guang zhou, Guangdong, People’s Republic of China
- * E-mail: (MZ); (LW)
| |
Collapse
|
9
|
Saha A, Mohapatra B, Kazy SK, Sar P. Variable response of arsenic contaminated groundwater microbial community to electron acceptor regime revealed by microcosm based high-throughput sequencing approach. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:804-817. [PMID: 34284694 DOI: 10.1080/10934529.2021.1930448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/10/2021] [Accepted: 05/11/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) mobilization in alluvial aquifers is facilitated by microbially catalyzed redox transformations that depend on the availability of electron acceptors (EAs). In this study, the response of an As-contaminated groundwater microbial community from West Bengal, India towards varied EAs was elucidated through microcosm based 16S rRNA gene amplicon sequencing. Acinetobacter, Deinococcus, Nocardioides, etc., and several unclassified bacteria (Ignavibacteria) and archaea (Bathyarchaeia, Micrarchaeia) previously not reported from As-contaminated groundwater of West Bengal, characterized the groundwater community. Distinct shifts in community composition were observed in response to various EAs. Enrichment of operational taxonomic units (OTUs) affiliated to Denitratisoma (NO3-), Spirochaetaceae (Mn4+), Deinococcus (As5+), Ruminiclostridium (Fe3+), Macellibacteroides (SO42-), Holophagae-Subgroup 7 (HCO3-), Dechloromonas and Geobacter (EA mixture) was noted. Alternatively, As3+ amendment as electron donor allowed predominance of Rhizobium. Taxonomy based functional profiling highlighted the role of chemoorganoheterotrophs capable of concurrent reduction of NO3-, Fe3+, SO42-, and As biotransformation in As-contaminated groundwater of West Bengal. Our analysis revealed two major aspects of the community, (a) taxa selective toward responding to the EAs, and (b) multifaceted nature of taxa appearing in abundance in response to multiple substrates. Thus, the results emphasized the potential of microbial community members to influence the biogeochemical cycling of As and other dominant anions/cations.
Collapse
Affiliation(s)
- Anumeha Saha
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Balaram Mohapatra
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Sufia Khannam Kazy
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India
| | - Pinaki Sar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| |
Collapse
|
10
|
Mohapatra B, Saha A, Chowdhury AN, Kar A, Kazy SK, Sar P. Geochemical, metagenomic, and physiological characterization of the multifaceted interaction between microbiome of an arsenic contaminated groundwater and aquifer sediment. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125099. [PMID: 33951854 DOI: 10.1016/j.jhazmat.2021.125099] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/10/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Geomicrobiological details of the interactions between groundwater microbiome (GWM) and arsenic (As)-rich aquifer sediment of Bengal basin was investigated through microcosm incubations. Role of key microorganisms and their specific interactions with As-bearing minerals was demarcated under organic carbon- amended and -unamended conditions. Acinetobacter (50.8 %), Brevundimonas (7.9 %), Sideroxydans (3.4 %), Alkanindiges (3.0 %) dominated the GWM. The microbiome catalysed considerable alterations in As-bearing mineral [Fe-(hydr)oxide and aluminosilicate] phases resulting in substantial changes in overall geochemistry and release of As (65 μg/L) and Fe (118 μg/L). Synergistic roles of autotrophic, NH4+-oxidizing Archaea (Thaumarchaeota) and chemoheterotrophic bacteria (Stenotrophomonas, Pseudomonas, Geobacter) of diverse metabolic abilities (NH4+-oxidizing, NO3-, As/Fe-reducing) were noted for observed changes. Organic carbon supported enhanced microbial growth and As mobilization (upto 403.2 μg As/L) from multiple mineral phases (hematite, magnetite, maghemite, biotite, etc.). In presence of high organic carbon, concerted actions of anaerobic, hydrocarbon-utilizing, As-, Fe-reducing Rhizobium, fermentative Escherichia, anaerobic Bacillales, metal-reducing and organic acid-utilizing Pseudomonas and Achromobacter were implicated in altering sediment mineralogy and biogeochemistry. Increase in abundance of arrA, arsC, bssA genes, and dissolution of Fe, Ca, Mg, Mn confirmed that dissimilatory-, cytosolic-As reduction, and mineral weathering fuelled by anaerobic (hydro)carbon metabolism are the predominant mechanisms of As release in aquifers of Bengal basin.
Collapse
Affiliation(s)
- Balaram Mohapatra
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Anumeha Saha
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Atalanta N Chowdhury
- Central Ground Water Board, Bhujalika, C.P Block-6, Sector-V, Bidhan Nagar, Kolkata 700091, West Bengal, India
| | - Amlanjyoti Kar
- Central Ground Water Board, Bhujalika, C.P Block-6, Sector-V, Bidhan Nagar, Kolkata 700091, West Bengal, India
| | - Sufia K Kazy
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur 713209, West Bengal, India
| | - Pinaki Sar
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| |
Collapse
|
11
|
Shi W, Song W, Zheng J, Luo Y, Qile G, Lü S, Lü X, Zhou B, Lü C, He J. Factors and pathways regulating the release and transformation of arsenic mediated by reduction processes of dissimilated iron and sulfate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 768:144697. [PMID: 33454476 DOI: 10.1016/j.scitotenv.2020.144697] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
The driving process and explanatory factors regulating the transformation and migration of arsenic (As) mediated by dissimilatory iron reducing bacteria (DFeRB) and sulfate reducing bacteria (SRB) remain poorly understood. The novelty of this study is to explore the driving process and key environmental factors governing As mobilization mediated by DFeRB and SRB based on continuous As speciation and environmental parameter monitoring in a sediment-water system. The results illustrate the reduction process mediated by DFeRB and SRB significantly promotes the reduction of As(V) and the endogenous release of As. However, in the DFeRB and SRB mediated reductions, the main driving process and key explanatory factors that dominate the As mobility are significantly different. DFeRB has significant effects on the reductive dissolution and re-distribution of Fe(III) oxyhydroxides and As-containing Fe(III) minerals and on adsorption-desorption, which in turn influenced the transformation of iron species and the release and ecotoxicity of As. Meanwhile, the environmental factors that affect As mobility depend on Fe2+ and Fe3+ in DFeRB-induced reduction, presenting two main pathways: the process of As mobilization mediated by DFeRB, and the process influenced by the inorganic phosphorus involved in the competitive adsorption and anion exchange. Significantly different from DFeRB, the effects of SRB on As behavior mainly occur by influencing the adsorbed As, pyrite, and As sulfides in the sediments and through the formation of sulfides during the sulfate reduction. The main pathways of As mobilization reflect the direct effects of SRB, S2-, and Fe2+. In addition, the role of NH4+-N in the driving process of As mobility is more pronounced in SRB-induced reduction. NO3--N is an essential factor affecting As mobility, but the effects of NO3--N on As lead to non-significant pathways. This work provides insights into the environmental effects of DFeRB and SRB on the biogeochemical cycle of As.
Collapse
Affiliation(s)
- Wenjing Shi
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Wenjie Song
- Pioneer College, Inner Mongolia University, Hohhot 010021, China
| | - Jinli Zheng
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yu Luo
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Geer Qile
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Sijie Lü
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Xiangmeng Lü
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Bin Zhou
- Tianjin Academy of Eco-Environmental Sciences, Tianjin 300191, China
| | - Changwei Lü
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Institute of Environmental Geology, Inner Mongolia University, Hohhot 010021, China.
| | - Jiang He
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China; Institute of Environmental Geology, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
12
|
Mohapatra B, Phale PS. Microbial Degradation of Naphthalene and Substituted Naphthalenes: Metabolic Diversity and Genomic Insight for Bioremediation. Front Bioeng Biotechnol 2021; 9:602445. [PMID: 33791281 PMCID: PMC8006333 DOI: 10.3389/fbioe.2021.602445] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/09/2021] [Indexed: 12/21/2022] Open
Abstract
Low molecular weight polycyclic aromatic hydrocarbons (PAHs) like naphthalene and substituted naphthalenes (methylnaphthalene, naphthoic acids, 1-naphthyl N-methylcarbamate, etc.) are used in various industries and exhibit genotoxic, mutagenic, and/or carcinogenic effects on living organisms. These synthetic organic compounds (SOCs) or xenobiotics are considered as priority pollutants that pose a critical environmental and public health concern worldwide. The extent of anthropogenic activities like emissions from coal gasification, petroleum refining, motor vehicle exhaust, and agricultural applications determine the concentration, fate, and transport of these ubiquitous and recalcitrant compounds. Besides physicochemical methods for cleanup/removal, a green and eco-friendly technology like bioremediation, using microbes with the ability to degrade SOCs completely or convert to non-toxic by-products, has been a safe, cost-effective, and promising alternative. Various bacterial species from soil flora belonging to Proteobacteria (Pseudomonas, Pseudoxanthomonas, Comamonas, Burkholderia, and Novosphingobium), Firmicutes (Bacillus and Paenibacillus), and Actinobacteria (Rhodococcus and Arthrobacter) displayed the ability to degrade various SOCs. Metabolic studies, genomic and metagenomics analyses have aided our understanding of the catabolic complexity and diversity present in these simple life forms which can be further applied for efficient biodegradation. The prolonged persistence of PAHs has led to the evolution of new degradative phenotypes through horizontal gene transfer using genetic elements like plasmids, transposons, phages, genomic islands, and integrative conjugative elements. Systems biology and genetic engineering of either specific isolates or mock community (consortia) might achieve complete, rapid, and efficient bioremediation of these PAHs through synergistic actions. In this review, we highlight various metabolic routes and diversity, genetic makeup and diversity, and cellular responses/adaptations by naphthalene and substituted naphthalene-degrading bacteria. This will provide insights into the ecological aspects of field application and strain optimization for efficient bioremediation.
Collapse
Affiliation(s)
- Balaram Mohapatra
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
13
|
Shi W, Song W, Luo Y, Qile G, Zheng J, Lü C, He J. Transformation pathways of arsenic species: SRB mediated mechanism and seasonal patterns. CHEMOSPHERE 2021; 263:128255. [PMID: 33297200 DOI: 10.1016/j.chemosphere.2020.128255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 06/12/2023]
Abstract
Sulfate reducing bacteria (SRB) mediated reduction plays a key role in the biological cycling of As, which inherently associates with the transformation of As species. However, the potential pathways of As species transformation, the predominant driving process and their explanatory factors regulating seasonal As mobility mediated by SRB remains poorly understood. This study explored the possible pathways of seasonal As species transformation mediated by SRB, and identified the predominant driving process and key environmental factors in response to As mobilization in different seasons. SRB-mediated reduction governed the seasonal mobilization of As, significantly promoted reduction of As (V) and endogenous release of As, and exhibited strong seasonal variability. The flux of As(III) and TAs in group SRB in summer were 1.92-3.53 times higher than those during the ice-bound period. The results showed two distinct stages namely release and re-immobilization both in summer and ice-bound period. While As was easier to be gradually transformed into a more stable state in SRB reduction process during ice-bound period. Both in summer and ice-bound period, SRB presented significant regulating effects on As behavior by influencing loosely adsorbed As, pyrite and As sulfides in sediments as well as the formation of sulfide during the process of SRB reduction. The main effecting pathways on As mobilization were the direct effects of SRB, S2- and Fe2+ in summer, but IP was also an important pathway affecting As mobility during ice-bound period. This work provides new insights into mechanisms responsible for seasonal As mobilization.
Collapse
Affiliation(s)
- Wenjing Shi
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China; Institute of Environmental Geology, Inner Mongolia University, Hohhot, 010021, China
| | - Wenjie Song
- Pioneer College, Inner Mongolia University, Hohhot, 010021, China
| | - Yu Luo
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Geer Qile
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Jinli Zheng
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Changwei Lü
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China; Institute of Environmental Geology, Inner Mongolia University, Hohhot, 010021, China.
| | - Jiang He
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China; Institute of Environmental Geology, Inner Mongolia University, Hohhot, 010021, China.
| |
Collapse
|
14
|
Li C, Zhang X, Wei L, Wei D, Chen Z, Cao Z, Zhao Q, Chang CC. Molecular biological methods in environmental engineering. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1786-1793. [PMID: 32762138 DOI: 10.1002/wer.1432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/08/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Microbes are sensitive to environmental changes and can respond in a short time. Genomics, proteomics, transcriptomics, metabolomics, and multigroup association are used to characterize the composition, function, and metabolism of microorganisms, and to evaluate the environment according to the changes in microorganisms, which has important reference and guiding significance of environmental monitoring, management, and repair. In this paper, the application of molecular biological methods to study environmental microorganisms in the fields of wastewater treatment, pollution control, soil improvement, and environmental monitoring in 2019 is reviewed.
Collapse
Affiliation(s)
- Chunying Li
- School of Energy and Civil Engineering, Harbin University of Commerce, Harbin, China
| | - Xinxin Zhang
- Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou, China
| | - Li Wei
- Guangzhou HKUST Fok Ying Tung Research Institute, Guangzhou, China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Dong Wei
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Zhongxi Chen
- Daqing Oil-field Design and Research Institute, Daqing, China
| | - Zhenkun Cao
- Daqing Oil-field Design and Research Institute, Daqing, China
| | - Qiushi Zhao
- Daqing Oil-field Design and Research Institute, Daqing, China
| | - Chein-Chi Chang
- Department of Engineering and Technical Services, DC Water and Sewer Authority, Washington, DC, USA
| |
Collapse
|
15
|
Ghosh S, Mohapatra B, Satyanarayana T, Sar P. Molecular and taxonomic characterization of arsenic (As) transforming Bacillus sp. strain IIIJ3-1 isolated from As-contaminated groundwater of Brahmaputra river basin, India. BMC Microbiol 2020; 20:256. [PMID: 32807097 PMCID: PMC7430025 DOI: 10.1186/s12866-020-01893-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/06/2020] [Indexed: 11/10/2022] Open
Abstract
Background Microbe-mediated redox transformation of arsenic (As) leading to its mobilization has become a serious environmental concern in various subsurface ecosystems especially within the alluvial aquifers. However, detailed taxonomic and eco-physiological attributes of indigenous bacteria from As impacted aquifer of Brahmaputra river basin has remained under-studied. Results A newly isolated As-resistant and -transforming facultative anaerobic bacterium IIIJ3–1 from As-contaminated groundwater of Jorhat, Assam was characterized. Near complete 16S rRNA gene sequence affiliated the strain IIIJ3–1 to the genus Bacillus and phylogenetically placed within members of B. cereus sensu lato group with B. cereus ATCC 14579(T) as its closest relative with a low DNA-DNA relatedness (49.9%). Presence of iC17:0, iC15:0 fatty acids and menaquinone 7 corroborated its affiliation with B. cereus group, but differential hydroxy-fatty acids, C18:2 and menaquinones 5 & 6 marked its distinctiveness. High As resistance [Maximum Tolerable Concentration = 10 mM As3+, 350 mM As5+], aerobic As3+ (5 mM) oxidation, and near complete dissimilatory reduction of As 5+ (1 mM) within 15 h of growth designated its physiological novelty. Besides O2, cells were found to reduce As5+, Fe3+, SO42−, NO3−, and Se6+ as alternate terminal electron acceptors (TEAs), sustaining its anaerobic growth. Lactate was the preferred carbon source for anaerobic growth of the bacterium with As5+ as TEA. Genes encoding As5+ respiratory reductase (arr A), As3+ oxidase (aioB), and As3+ efflux systems (ars B, acr3) were detected. All these As homeostasis genes showed their close phylogenetic lineages to Bacillus spp. Reduction in cell size following As exposure exhibited the strain’s morphological response to toxic As, while the formation of As-rich electron opaque dots as evident from SEM-EDX possibly indicated a sequestration based As resistance strategy of strain IIIJ3–1. Conclusion This is the first report on molecular, taxonomic, and ecophysiological characterization of a highly As resistant, As3+ oxidizing, and dissimilatory As5+ reducing Bacillus sp. IIIJ3–1 from As contaminated sites of Brahmaputra river basin. The strain’s ability to resist and transform As along with its capability to sequester As within the cells demonstrate its potential in designing bioremediation strategies for As contaminated groundwater and other ecosystems.
Collapse
Affiliation(s)
- Soma Ghosh
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.,Present address: CSIR- National Environmental Engineering Research Institute, Kolkata Zonal Centre, Kolkata, 700107, India
| | - Balaram Mohapatra
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.,Present address: Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Tulasi Satyanarayana
- Department of Microbiology, University of Delhi South Campus (UDSC), New Delhi, 110021, India.,Presently affiliated to Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Sector 3 Dwarka, New Delhi, 110078, India
| | - Pinaki Sar
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
16
|
Ghosh S, Sar P. Microcosm based analysis of arsenic release potential of Bacillus sp. strain IIIJ3-1 under varying redox conditions. World J Microbiol Biotechnol 2020; 36:87. [DOI: 10.1007/s11274-020-02860-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/18/2020] [Indexed: 10/24/2022]
|
17
|
Jaiswal S, Shukla P. Alternative Strategies for Microbial Remediation of Pollutants via Synthetic Biology. Front Microbiol 2020; 11:808. [PMID: 32508759 PMCID: PMC7249858 DOI: 10.3389/fmicb.2020.00808] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Continuous contamination of the environment with xenobiotics and related recalcitrant compounds has emerged as a serious pollution threat. Bioremediation is the key to eliminating persistent contaminants from the environment. Traditional bioremediation processes show limitations, therefore it is necessary to discover new bioremediation technologies for better results. In this review we provide an outlook of alternative strategies for bioremediation via synthetic biology, including exploring the prerequisites for analysis of research data for developing synthetic biological models of microbial bioremediation. Moreover, cell coordination in synthetic microbial community, cell signaling, and quorum sensing as engineered for enhanced bioremediation strategies are described, along with promising gene editing tools for obtaining the host with target gene sequences responsible for the degradation of recalcitrant compounds. The synthetic genetic circuit and two-component regulatory system (TCRS)-based microbial biosensors for detection and bioremediation are also briefly explained. These developments are expected to increase the efficiency of bioremediation strategies for best results.
Collapse
|
18
|
Rathod J, Jean JS, Jiang WT, Huang IH, Liu BH, Lee YC. Micro-colonization of arsenic-resistant Staphylococcus sp. As-3 on arsenopyrite (FeAsS) drives arsenic mobilization under anoxic sub-surface mimicking conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:527-539. [PMID: 30884274 DOI: 10.1016/j.scitotenv.2019.03.084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
We investigated the subsurface biomatrix of the most abundant As-mineral, arsenopyrite (FeAsS), and meticulously studied a potential biogenic arsenic mobilization phenomenon. An arsenic-resistant [up to 7.5 mM As(III) and 200 mM As(V)] and arsenate-reducing bacterial strain (Staphylococcus sp. As-3) was isolated from a sediment core sample taken from the Budai borehole, on the southwestern coast of Taiwan. Isolate As-3 could reduce 5 mM As(V) to 3.04 mM in 96 h, generating 1.6 mM As(III) under anoxic conditions. Isolate As-3, which adsorbed As(V) up to 19.02 mg g-1 (cdw) and As(III) up to 0.46 mg g-1 (cdw), demonstrated effective As-bioaccumulating ability, as corroborated by a TEM-EDS analysis. Under anaerobic batch conditions, isolate As-3 micro-colonies could grow on as well as interact with arsenopyrite (FeAsS), mobilizing arsenic into soluble phase as As(III) and As(V). Using synchrotron radiation-based FTIR micro-spectroscopy, various functional group signatures and critical chemical bonds enabling a direct interaction with arsenopyrite were underpinned, such as a potential P-OFe bond involved in facilitating bacteria-mineral interaction. Using atomic force microscopy, we analyzed the scattered bacterial cell arrangement and structure and measured various biomechanical properties of micro-colonized Staphylococcus sp. As-3 cells on arsenopyrite. We suggest that the release of organic acids from As-3 drives soluble arsenic release in the aqueous phase under anoxic conditions through oxidative dissolution. Furthermore, arsC-encoding putative cytoplasmic arsenic reductase sequencing and transcript characterization indicated that arsC plays a possible role in the reduction of moderately soluble As(V) to highly soluble toxic As(III) under anoxic conditions. Thus, we suggest that firmicutes such as Staphylococcus sp. As-3 may play an important role in microbially-mediated arsenic mobilization, leading to arsenic release in the sub-surface niche.
Collapse
Affiliation(s)
- Jagat Rathod
- Department of Earth Sciences, National Cheng Kung University, 1, University Road, Tainan 70101, Taiwan
| | - Jiin-Shuh Jean
- Department of Earth Sciences, National Cheng Kung University, 1, University Road, Tainan 70101, Taiwan; Graduate Institute of Applied Geology, National Central University, Chung-Li District, Taoyuan City 32001, Taiwan.
| | - Wei-Teh Jiang
- Department of Earth Sciences, National Cheng Kung University, 1, University Road, Tainan 70101, Taiwan
| | - I-Hsiu Huang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center of Infectious Disease and Signalling Research, National Cheng Kung University, Tainan, Taiwan
| | - Bernard Haochih Liu
- Department of Materials Science and Engineering, National Cheng Kung University, Taiwan
| | - Yao-Chang Lee
- National Synchrotron Radiation Research Center, Life Science Group, Hsinchu 30076, Taiwan; Department of Optics and Photonics, National Central University, Chung-Li District, Taoyuan City 32001, Taiwan
| |
Collapse
|