• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4664841)   Today's Articles (56)   Subscriber (51649)
For: Xiao Q, Yu H, Zhong J, Liang C, Li G, Ding P, Luo J. An in-silico method with graph-based multi-label learning for large-scale prediction of circRNA-disease associations. Genomics 2020;112:3407-3415. [DOI: 10.1016/j.ygeno.2020.06.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 01/03/2023]
Number Cited by Other Article(s)
1
Qiao LJ, Gao Z, Ji CM, Liu ZH, Zheng CH, Wang YT. Potential circRNA-Disease Association Prediction Using DeepWalk and Nonnegative Matrix Factorization. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023;20:3154-3162. [PMID: 37018084 DOI: 10.1109/tcbb.2023.3264466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
2
Ding P, Zeng M, Yin R. Editorial: Computational methods to analyze RNA data for human diseases. Front Genet 2023;14:1270334. [PMID: 37674479 PMCID: PMC10478215 DOI: 10.3389/fgene.2023.1270334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/14/2023] [Indexed: 09/08/2023]  Open
3
DRGCNCDA: Predicting circRNA-disease interactions based on knowledge graph and disentangled relational graph convolutional network. Methods 2022;208:35-41. [DOI: 10.1016/j.ymeth.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/15/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]  Open
4
Chen Y, Wang J, Wang C, Liu M, Zou Q. Deep learning models for disease-associated circRNA prediction: a review. Brief Bioinform 2022;23:6696465. [PMID: 36130259 DOI: 10.1093/bib/bbac364] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 12/14/2022]  Open
5
Deng L, Liu D, Li Y, Wang R, Liu J, Zhang J, Liu H. MSPCD: predicting circRNA-disease associations via integrating multi-source data and hierarchical neural network. BMC Bioinformatics 2022;23:427. [PMID: 36241972 PMCID: PMC9569055 DOI: 10.1186/s12859-022-04976-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 11/10/2022]  Open
6
Niu M, Zou Q, Wang C. GMNN2CD: identification of circRNA-disease associations based on variational inference and graph Markov neural networks. Bioinformatics 2022;38:2246-2253. [PMID: 35157027 DOI: 10.1093/bioinformatics/btac079] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/05/2021] [Accepted: 02/09/2022] [Indexed: 02/03/2023]  Open
7
Wang CC, Han CD, Zhao Q, Chen X. Circular RNAs and complex diseases: from experimental results to computational models. Brief Bioinform 2021;22:bbab286. [PMID: 34329377 PMCID: PMC8575014 DOI: 10.1093/bib/bbab286] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/23/2021] [Accepted: 07/03/2021] [Indexed: 12/13/2022]  Open
8
Xiao Q, Dai J, Luo J. A survey of circular RNAs in complex diseases: databases, tools and computational methods. Brief Bioinform 2021;23:6407737. [PMID: 34676391 DOI: 10.1093/bib/bbab444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 01/22/2023]  Open
9
Xie G, Chen H, Sun Y, Gu G, Lin Z, Wang W, Li J. Predicting circRNA-Disease Associations Based on Deep Matrix Factorization with Multi-source Fusion. Interdiscip Sci 2021;13:582-594. [PMID: 34185304 DOI: 10.1007/s12539-021-00455-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/18/2021] [Accepted: 06/20/2021] [Indexed: 12/14/2022]
10
Zuo ZL, Cao RF, Wei PJ, Xia JF, Zheng CH. Double matrix completion for circRNA-disease association prediction. BMC Bioinformatics 2021;22:307. [PMID: 34103016 PMCID: PMC8185931 DOI: 10.1186/s12859-021-04231-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/28/2021] [Indexed: 12/14/2022]  Open
11
Xiao Q, Fu Y, Yang Y, Dai J, Luo J. NSL2CD: identifying potential circRNA-disease associations based on network embedding and subspace learning. Brief Bioinform 2021;22:6265177. [PMID: 33954582 DOI: 10.1093/bib/bbab177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/29/2021] [Accepted: 04/14/2021] [Indexed: 12/28/2022]  Open
12
Lei X, Mudiyanselage TB, Zhang Y, Bian C, Lan W, Yu N, Pan Y. A comprehensive survey on computational methods of non-coding RNA and disease association prediction. Brief Bioinform 2020;22:6042241. [PMID: 33341893 DOI: 10.1093/bib/bbaa350] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/20/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023]  Open
13
Xiao Q, Zhong J, Tang X, Luo J. iCDA-CMG: identifying circRNA-disease associations by federating multi-similarity fusion and collective matrix completion. Mol Genet Genomics 2020;296:223-233. [PMID: 33159254 DOI: 10.1007/s00438-020-01741-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/23/2020] [Indexed: 01/22/2023]
14
Inferring Potential CircRNA–Disease Associations via Deep Autoencoder-Based Classification. Mol Diagn Ther 2020;25:87-97. [DOI: 10.1007/s40291-020-00499-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2020] [Indexed: 01/09/2023]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA